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Abstract High accuracy energies of low-lying excited states, in molecular systems,
have been determined by means of a procedure which combines the G-particle-hole
hypervirial (GHV) equation method (Alcoba et al. in Int J Quantum Chem 109:3178,
2009) and the Hermitian operator (HO) one (Bouten et al. in Nucl Phys A 202:127,
1973). This work reports a suitable strategy to introduce the point group symmetry
within the framework of the combined GHV-HO method, which leads to an improve-
ment of the computational efficiency. The resulting symmetry-adapted formulation
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has been applied to illustrate the computer timings and the hardware requirements in
selected chemical systems of several geometries. The new formulation is used to study
the low-lying excited states torsional potentials in the ethylene molecule.

Keywords G-particle-hole matrix · Reduced density matrix · Hypervirial of the
G-particle-hole operator · Hermitian operator method · Point group symmetry

1 Introduction

All the electronic properties of physical interest, including the energy, can be expressed
by means of expectation values of one- and two-electron operators. Therefore, the eval-
uation of these quantities can be implemented using only the second-order reduced
density matrix (2-RDM) without recourse to the N -body wave function. Both varia-
tional and non-variational approaches have been developed to determine directly the
2-RDM elements for electronic systems. There is a large bibliography on this subject,
which the interested reader may find in the Davidson [1] and Coleman and Yukalov
[2] books as well as in many proceedings and reviews [3–8]. In the last years our
interest has been focused on a non-variational method based on the iterative solution
of the G-particle-hole hypervirial equation (GHV) [9], which arises from the con-
traction of a particular case of the quantum Liouville equation [10]. The accuracy of
the results obtained with the GHV method for the ground state of molecular systems
at equilibrium geometry was excellent when compared with the Full Configuration
Interaction (FCI) procedure counterpart quantities [9,11–13]. However, the study of
the excited states is still a partially open question [14,15]. The results provided by
the GHV method for ground states have recently induced us to study the suitability
to combine this method with the Hermitian operator (HO) procedure by Bouten et
al. [16,17] for computing excited state energies. We have calculated directly excited-
state energies from the sole knowledge of the ground-state 2-RDM, or, equivalently,
from the G-particle-hole matrix, which is obtained by solving the GHV equation [18].
Applications to molecular systems have shown that this combined GHV-HO method
can yield accurate energy values not only for excited states but also for some ground
states in which the GHV method presents shortcomings [18–20].

The aim of this work is to enhance the efficiency of the combined GHV-HO method
by the exploitation of molecular point group symmetry. Following a recent report made
within the framework of the GHV method [21], a symmetry-related analysis of the
matrices and matrix operations involved in the HO method is performed. This analysis
leads to a symmetry-adapted formulation of the combined GHV-HO algorithm for
Abelian groups which generates significant computational savings in both floating-
point operations and memory storage.

This work has been organized as follows. In the next section we report the notation,
the definitions and the general theoretical background of the GHV and HO methods.
In Sect. 3 we describe the symmetry-adapted formulation of the GHV-HO method.
The performance and efficiency of this new formulation are shown and analyzed for
a set of molecules in Sect. 4. Finally, the conclusions of this work are described in the
last section.
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2 Basic theoretical background

2.1 Notation and definitions

We will consider pairwise-interacting N -electron systems, whose Hamiltonian Ĥ may
be written within second quantization formalism [22] as

Ĥ = 1

2

∑

pq;rs

0Hpq
rs a p† aq† as ar (1)

where a p† and ar are second quantization creation and annihilation operators, respec-
tively; the indices stand for the elements of a finite basis set of 2K orthonormal
spin-orbitals. 0H is a second-order matrix which collects the one- and two-electron
integrals, ε

q
s and 〈pq|rs〉 (in the 〈12|12〉 notation), respectively, and the Kronecker

deltas
0Hpq

rs = δ
p
r ε

q
s + δ

q
s ε

p
r

N − 1
+ 〈pq|rs〉 (2)

In this formalism the elements of the first- and second-order reduced density matrices
(1- and 2-RDM) [22] and those of the second-order G-particle-hole correlation matrix
[23] may be expressed as

1Dt
v = 〈�| at†av |�〉, (3)

2Di j
kl = 1

2! 〈�| ai†a j†alak |�〉 (4)

and
2Gim

l j = 〈�| 2Ĝim
l j |�〉 =

∑

�′ �=�

〈�| ai†am |�′〉〈�′| a j†al |�〉. (5)

where � and �′ are wave functions of the N -electron system. These three matrices,
which are related by [24]

2! 2Di j
ml = 1Di

m
1D j

l − 1Di
l δ

j
m + 2Gim

l j (6)

are the basic tools of the GHV and HO methodologies.

2.2 The G-particle-hole hypervirial equation method

Applying a matrix-contracting mapping which involves the G-particle-hole operator
2Ĝ to the matrix representation of a particular case of the quantum Liouville equation—
the hypervirial of the N -electron density operator—one obtains the GHV equation
[9,10], whose compact form is

〈
�

∣∣∣
[

Ĥ , 2Ĝim
l j

]∣∣∣ �
〉

= 0 (∀ i, j, l, m) (7)
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and its explicit development leads to [9]

∑

p,q,r,s

0Hrs
pq

(3;2,1)Cpq j
rsl

1Di
m −

∑

p,q,r,s

0Hpq
rs

(3;2,1)Crsm
pqi

1Dl
j

+ 2
∑

p,r,s

0Hrs
pm

(3;2,1)Ci pj
rsl + 2

∑

p,q,r

0Hpq
jr

(3;2,1)Clrm
pqi

+ 2
∑

p,q,r

0Hir
pq

(3;2,1)Cpq j
mrl + 2

∑

q,r,s

0Hql
rs

(3;2,1)Crsm
jqi = 0 (8)

where
(3;2,1)Ci jm

pqt =
∑

�′ �=�

〈�| ai† a j† aq ap |�′〉〈�′| am† at |�〉 (9)

are the elements of a third-order correlation matrix [25].
Despite the GHV equation depends not only on first- and second-order reduced

density matrices but also on third-order correlation ones, these last matrices can be
approximated in terms of the lower-order ones [8,12,19,26–29]. The approxima-
tion algorithm which is now being used is modification of Nakatsuji–Yasuda’s one
[12,27]. Following this procedure, a solution of the GHV equation may be obtained
by iteratively solving a set of differential equations to minimize the second-order error
matrix resulting from the deviation from exact fulfilment of the equation, yielding an
approximated G-particle-hole matrix corresponding to the eigenstate being considered
[11].

2.3 The Hermitian operator method

In 1973, Bouten et al. studied the properties of the particle-hole subspace of a state
reporting the so-called Hermitian operator method [16,17]. This method allows one
to compute the set of low-lying excited states of an electronic system from the sole
knowledge of the G-particle-hole matrix corresponding to the ground state. The pro-
cedure is based on a relation connecting the ground state � (reference) with an excited
eigenstate � of the Hamiltonian through an excitation operator Ŝ:

Ĥ Ŝ |� 〉 = E� |�〉 (10)

This relation implies the following equivalent equation

〈� | [ Ŝ, [ Ĥ , Ŝ ′ ]]| � 〉 = ( E� − E� ) 〈� | Ŝ Ŝ ′ + Ŝ ′ Ŝ | � 〉 (11)

which has to be solved. To this aim, the authors proposed to approximate the excitation
operator as follows, [16]

Ŝ =
∑

t,v

{ c(+)
t,v ( at†av −1 Dt

v +av† at −1 Dv
t )+ i c(−)

t,v ( at† av − 1Dt
v − av† at + 1Dv

t )}
(12)

where the c symbols represent real coefficients and i is the imaginary unit.
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By replacing this definition into Eq. (11), one obtains the following system of
decoupled equations for the excitation energies ( E� − E�) and the expansion vectors
c(±)

H(±±) c(±) = 2 ( E� − E� ) G(±±) c(±) (13)

where G(±±) are functionals of the G-particle-hole matrix corresponding to the refer-
ence eigenstate

Gi j (±±)
pq = 2Gi j

pq ± 2Gi j
qp ± 2G j i

pq + 2G j i
qp (14)

and the matrices H(±±) have the following form

Hi j (L±±)
pq = 4

∑

r,s

{
H̃ jr

ps
2Dqs

ir ± H̃ir
ps

2Dqs
jr ± H̃ jr

qs
2Dps

ir + H̃ir
qs

2Dps
jr

}

− 2
∑

r,k,l

{
δ

q
i H̃pr

kl
2Dkl

jr ± δ
q
j H̃pr

kl
2Dkl

ir ± δ
p
i H̃qr

kl
2Dkl

jr + δ
p
j H̃qr

kl
2Dkl

ir

}

+ 2
∑

k,l

{
H̃pi

kl
2D jq

kl ± H̃pj
kl

2Diq
kl ± H̃qi

kl
2D j p

kl + H̃q j
kl

2Di p
kl

}
(15)

with
H̃ir

ps = 0Hir
ps − 0Hri

ps ≡ 0Hir
ps − 0Hir

sp (16)

As can be observed, Eq. (13) constitutes a generalized eigenvalue system which only
depends on the 2-RDM, or equivalently on the G-particle-hole matrix, which turns
out to be the output of solving the GHV equation. That is fundamental reason why
we have proposed to combine the GHV method with the HO one [18]. In the next
section we outline an algorithm for exploiting point group symmetry, by which the
computational efficiency of the combined GHV-HO method is highly improved.

3 Symmetry-adaptation of the GHV-HO method

It is well known that the operations of the symmetry point group of a molecule,
group F , maintain the matrix elements of the second-order electron integral matrix
0H unchanged and therefore, this matrix is an invariant (2,2)-tensor for the group F
[30]. Analogously, if the N -electron wave function � belongs to a one-dimensional
representation of F , then the 1- and 2-RDM and the G-particle-hole matrix are invari-
ant (1,1)- and (2,2)-tensors for the symmetry point group, the formers in the particle-
particle metric while the latter in the particle-hole metric [30]. Therefore, when the
spin-orbitals are symmetry-adapted and ordered according to their irreducible repre-
sentations, these first- and second-order matrices are sparse, and when F is Abelian
they are also block diagonal. The structure of the symmetry forbidden coefficients in
all these matrices is easier to analyze when the group F possesses an Abelian D2h
subgroup, and hence only this kind of groups will be considered hereafter. When
the studied electronic system has no Abelian subgroup, an Abelian subgroup will be
considered.
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The sparsity of all the first- and second-order matrices have been recently exploited
within the framework of the GHV method by carrying out a detailed analysis of the
matrix operations involved in Eq. (8). This analysis has led to a symmetry-adapted
formulation of the GHV algorithm which generates significant computational savings
in both floating-point operations and memory storage [21]. Let us now reconsider
the analysis for the case of the HO decoupled equations, Eq. (13). In this case, three
different types of terms need to be calculated,

∑

r,s

H̃ jr
ps

2Dqs
ir ≡ 2Zq j

pi (17)

∑

k,l

H̃pi
kl

2Dkl
jq ≡ 2Wpi

jq (18)

and
∑

r,k,l

δ
q
i H̃pr

kl
2Dkl

jr = δ
q
i

1Yp
j ≡ 2Xqp

i j (19)

with the auxiliary matrix 1Y defined as

1Yp
j ≡

∑

r,k,l

H̃pr
kl

2Dkl
jr (20)

A detailed analysis of the mathematical operations involved in the calculation of
these terms reveals that the corresponding auxiliary and final matrices are defined by
covariant equations in particle-particle or particle-hole metric, as appropriate. Those
matrices can be expressed in terms of elementary tensorial operations as follows:

2Z =
(((

H̃ ⊗ 2D
)(1,2,3,4)→(1,3,4,2)

(1,2,3,4)→(3,1,2,4)

)

con

)

con
(21)

2W =
(((

H̃ ⊗ 2D
)(1,2,3,4)→(3,4,1,2)

(1,2,3,4)→(1,2,3,4)

)

con

)

con
(22)

1Y =
((((

H̃ ⊗ 2D
)(1,2,3,4)→(1,2,3,4)

(1,2,3,4)→(3,4,1,2)

)

con

)

con

)

con

(23)

2X = δ ⊗ 1Y (24)

where

(V ⊗ W)
i1...iv+w
m1...mv+w

= Vi1...iv
m1...mv

× Wiv+1...iv+w
mv+1...mv+w

(25)
(

V(1,...,v)→(τ (1),...,τ (v))
(1,...,v)→(σ (1),...,σ (v))

)i1...iv

m1...mv

= V
iτ (1)...iτ (v)
mσ(1)...mσ(v)

(26)

(Vcon)
i1...iv−1
m1...mv−1 =

∑

x

Vi1...iv−1x
m1...mv−1x (27)

The covariance of these equations implies that all the intermediate and final matrices
involved in HO method are invariant tensors for the group F , which retains symmetry
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properties of the input density and electron integral matrices. The block structure of
these tensors can be applied to efficiently perform the evaluation of the HO operations
for each one of the auxiliary operations resulting from Eq. (13). Thus, for instance,
the auxiliary matrix 2Z defined in Eq. (17) is a (2,2)-tensor for the group F whose
non-vanishing blocks are associated with irreducible representations πi , π j , πp, πq

of F such that πi ⊗ π j ⊗ πp ⊗ πq = A. Hence, one could avoid the evaluation of the
symmetry forbidden elements, and calculate the remaining elements as follows

2Zq j
pi =

∑

πr ,πs
π j ⊗πr ⊗πp⊗πs=A
πi ⊗πr ⊗πq⊗πs=A

∑

r∈πr ,s∈πs

H̃ jr
ps

2Dqs
ir (∀ p ∈ πp, q ∈ πq , i ∈ πi , j ∈ π j )

(28)

In a similar way, the auxiliary matrix 2W defined in Eq. (18) can be evaluated as

2Wpi
jq =

∑

πk ,πl
πp⊗πi ⊗πk⊗πl=A
πk⊗πl⊗π j ⊗πq=A

∑

k∈πk ,l∈πl

H̃pi
kl

2Dkl
jq (∀ p ∈ πp, q ∈ πq , i ∈ πi , j ∈ π j )

(29)

On the other hand, the non-vanishing blocks of elements 1Y j
p in Eq. (20) are associated

with irreducible representations πp, π j of F such that πp ⊗π j = A, and for each one
of these blocks one calculates

1Y j
p =

∑

πr ,πk ,πl
πp⊗πr ⊗πk⊗πl=A
πk⊗πl⊗π j ⊗πr =A

∑

r∈πr ,k∈πk ,l∈πl

H̃pr
kl

2Dkl
jr (∀ p ∈ πp, j ∈ π j ) (30)

The remaining matrix operations involved in the calculation and solution of the
symmetry-blocked HO generalized eigenvalue equations can be analyzed and eval-
uated in a similar way. Therefore, it is possible to exploit the block structure of the
ordinary density and electron integral matrices entering in the HO equations to improve
the efficiency of the HO computations and reduce the memory requirements. In the
next section the computational advantages of a symmetry-adapted formulation of the
GHV-HO (sa-GHV-HO) method, which results from combining the symmetry-adapted
formulations of the GHV (sa-GHV) and HO (sa-HO) algorithms, will be discussed
and analyzed.

4 Results and discussion

4.1 Efficiency of the sa-GHV-HO method

To illustrate the computational advantages of the sa-GHV-HO method, we have carried
out numerical determinations in small- and medium-sized molecular systems in their

123

Author's personal copy



J Math Chem (2014) 52:1794–1806 1801

Table 1 Comparison of
floating-point operations and
memory (in brackets)
requirements of the HO
computational algorithms: ratios
of the non-symmetry-adapted to
the symmetry-adapted
formulations

System Subgroup Irr. rep. Basis set

STO-3G 6-31G 6-31G(d)

NH3 Cs 2 3.11 3.29 3.75

[1.88] [1.91] [1.93]

H2O2 C2 2 4.05 4.27 3.92

[2.00] [2.00] [2.00]

FH C2v 4 4.78 6.80 9.36

[2.84] [3.00] [3.43]

H2O C2v 4 6.05 8.32 11.78

[3.09] [3.20] [3.54]

CH4 D2 4 10.74 14.34 15.61

[4.00] [4.00] [4.00]

C2H6 C2h 4 13.72 20.70 18.41

[3.76] [3.82] [3.87]

Li2 D2h 8 17.17 30.86 47.97

[6.35] [6.72] [7.30]

C2H2 D2h 8 17.55 24.38 46.21

[5.68] [6.00] [6.87]

C2H4 D2h 8 21.61 38.52 52.52

[6.18] [6.39] [7.07]

ground states at equilibrium experimental geometries [31] using the basis sets STO-
3G, 6-31G and 6-31G(d). These systems have been chosen in order to explore the
computational improvements implemented by the algorithms in different point groups.
The electron integrals for the sa-GHV and sa-HO methods and their initial values (at
a mean-field level of approximation) required for initiating the iterative GHV process
have been computed with the PSI3 package [32]. In order to fairly assess the improved
performance due to symmetry, two sets of calculations have been carried out using
identical algorithms. In first set of calculations we have assumed a C1 symmetry point
group, and in the second one the group assumed corresponds to the largest Abelian
subgroup of the symmetry point group describing the full symmetry of the system
determined by PSI3 code. Consequently, the gains due to symmetry reflect directly
the inherent savings in the symmetry-adapted method.

Table 1 reports the statistics concerning the computational cost and hardware
requirements of the HO calculations. That table shows the ratios of the computing
time and memory needs between the calculations performed in the largest Abelian
subgroup of the symmetry point group described by PSI3 code and those performed
in C1 subgroup. As can be appreciated from the results presented in Table 1, the
improvement increases not only with the order of the group but also with the size of
the basis set considered. The results show that computational efficiency ranges from
3.11 to 52.52 in floating-points operation rates and from 1.88 to 7.30 in memory allo-
cation. These computed factors of reduction due to symmetry are indeed close to the
theoretical estimations in most cases. Thus, considering that the group F has f irre-
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ducible representations, and assuming that the partitioning of molecular spin-orbitals
according to irreducible representation is strictly regular, then a straightforward cal-
culation shows that (2, 2)-tensors have f blocks of size (K 2/ f ) × (K 2/ f ), so they
have K 4/ f 2 non-vanishing coefficients, and the operations involved in calculation and
solution of the generalized eigenvalue equations Eq. (13) have a time proportional to
f × (K 2/ f )3 = K 6/ f 2. As in the GHV method [21], these estimations show that
the computational costs of the HO method can be reduced by a factor of f in storage
and f 2 in floating-point operations. The asymptotic f and f 2 values are only actually
achieved when the symmetry blocking of the orbitals is optimum as can be appre-
ciated from the results presented in Table 1 for the methane molecule. Note that in
cases where the dimension of irreducible representation is far from regular, values of
∼ 0.3 f 2 in computer times and ∼ 0.7 f in memory are achieved. This is the case of
STO-3G basis set in the acetylene molecule which has 4, 0, 1, 1, 0, 4, 1 and 1 orbitals
of ag, b1g, b2g, b3g, au, b1u, b2u and b3u symmetries, respectively.

4.2 Application of the sa-GHV-HO method to describe the low-lying excited states
torsional potentials in the ethylene molecule

As an application of the proposed algorithms, we have studied the low-lying excited
state potential energy curves (PEC) in the ethylene molecule, which demands a high
computational cost without the symmetry adaptation. To perform this work our strategy
has consisted in decomposing the study into two main steps. In the first one, one applies
the sa-GHV method to describe the PEC of a ground state thus generating an initial set
of accurate G-particle-hole matrices. In the second step, we use as data the G-particle-
hole matrices obtained with the sa-GHV method and implement the sa-HO method
to obtain the energy of the excited states in which one is interested and which could
not be directly obtained with the GHV. All these calculations have been performed
using minimal STO-3G basis sets. In addition to the sa-GHV/sa-GHV-HO results, the
reported Fig. 1 includes restricted HF, single-reference CIS model results, and FCI
ones, which is reason why a minimal basis set has been employed. The PSI3 quantum
chemistry package has been used to calculate the integrals matrix 0H, and the initial
values of all the matrices required.

The ethylene molecule in its ground state belongs to the symmetry point group
D2h; the partially twisted ethylene belongs to the symmetry point group D2 and that
90◦ twisted one to C2v. Although at the equilibrium geometry (D2h) the ethylene
molecule is a well-behaved closed-shell molecule whose π -valence ground state can
be described accurately by single-reference methods, it becomes a diradical at 90◦
twisted, when the π -bond is completely broken. Thus, at the twisted geometry the
ground state ethylene molecule is two-configurational. As mentioned above, the first
step to use our algorithms was to apply the sa-GHV method to study the ground
state thus generating an initial accurate G-particle-hole matrix. This state was well
approximated producing a cuspless PEC close to the FCI one. Our results show two of
the most important low-lying excited states of ethylene molecule reviewed by Merer
and Mulliken in their early experimental work [33], T (lowest triplet) and TR (triplet
Rydberg). These two states could be accurately obtained by single excitations from
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Fig. 1 Ethylene torsion, minimal basis set. Energy values (in hartrees) for the ground state and first two
triplet excited states of ethylene as functions of the torsional angle. The solid and dashed curves denote
the FCI and HF/CIS energy curves, respectively, while circles denote energies computed by means of the
sa-GHV and sa-GHV-HO methods

N (the ground state). We have calculated the PEC of these states as functions of the
torsional angle between the planes of the two methylene groups.

Figure 1 shows a comparison of the ground and two low-lying triplet excited states
described by the sa-GHV/sa-GHV-HO, HF/CIS and FCI methods. We report the energy
eigenvalues of only one HO equation corresponding to either H(++) or H(−−), i.e. to
the symmetric or antisymmetric particle-hole subspace. Table 2 presents the energy
errors relative to FCI method, the maximum absolute errors (MAE) and the nonpar-
allelity errors (NPE). The GHV energy error relative to FCI for the ground state lies
within 1.29 10−3 and 1.11 10−2 hartrees. The ground state is two-configurational near
90◦ so the algorithms for the construction of higher-order matrices are not entirely
accurate and as a result, the errors are slightly higher at the barrier. However, the NPE
and MAE of the GHV method for the ground state reported in Table 2 are an order of
magnitude lower than those of the HF method. The excellent performance of the GHV
method for the ground state reported also in Ref. [21] is retained when we apply the
sa-GHV-HO method to generate excited states. As can be appreciated the accuracy of
the results obtained with the sa-GHV-HO for the ethylene molecule is far better than
that of the CIS calculations. Thus, the CIS energy error relative to FCI lies near 1.00
10−1 hartrees, while for the sa-GHV-HO method the error lies between 3.98 10−4

and 9.82 10−3 hartrees for the first excited state and between 9.77 10−3 and 2.44
10−2 hartrees for the second excited state. CIS method explicitly take into account
the same excitations than the HO one and therefore, its inferior performance must be
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due to the fact that the HO method profits of the knowledge of correlated ground state
G-particle-hole matrix.

5 Concluding remarks

In this work we have outlined a scheme to introduce the point group symmetry in the
GHV-HO framework. The proposed algorithm provides a procedure for exploiting the
sparseness of the matrices involved in the calculations due to symmetry which leads
to an efficient computational implementation. The cpu and memory requirements for
calculations using this approach are not limited by the total number of spin-orbitals
constituting the basis set but rather by the maximum number of spin-orbitals belonging
to the irreducible representations of the symmetry point group the molecular system.
Hence, large molecules belonging to high symmetries no longer represent a formidable
computational obstacle. We highlight that the reported strategy for exploiting symme-
try within the GHV-HO method may also accelerate other RDM-oriented approaches
such as the contracted Schrödinger equation method [7,8,27,34–37] and the equation-
of-motion techniques [18–20,38–43].
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