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supported on [0, 1]. Moreaver, we show that W has a second order symmetric hypergeometric
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1 Imtroduction

The theory of spherical functions dates back to the classical papers of E. Cartan and H. Weyl;
they showed that spherical harmonics arise in a natural way from the study of functions on
the n-dimensional sphere S™ — SO{n + 1}/S0O{n}. The first general results in this direction
were obtained in 1950 by (zel’fand, who considered zonal spherical functions of a Riemannian
symmetric space G/K. In this case we have a decomposition G — KAK. When the Abelian
subgroup A is one dimensional, the restrictions of zonal spherical functions to A can be iden-
tified with hypergeometric functions, providing a deep and fruitful connection between group
representation theory and special functions. In particular when G is compact this gives a one
to one correspondence between all zonal spherical functions of the symmetric pair (G, K} and
a sequence of orthogonal polynomials.

In light of this remarkable background it is reasonable to look for an extension of the above
results, by considering matrix-valued irreducible spherical functions on & of a general K-type.
This was accomplished for the first time in the case of the complex projective plane P(C} —
SU(3}/U(2} in [5]. This seminal work gave rise to a series of papers including [6, 7, 8, 10,
14, 15, 16, 17, 18, 19|, where one considers matrix valued spherical functions associated to
a compact symmetric pair (, K} of rank one, arriving at sequences of matrix valued orthogonal
polynomials of one real variable satisfying an explicit three-term recursion relation, which are
also eigenfunctions of a second order matrix differential operator (bispectral property}.

The very explicit results contained in this paper are obtained for certain K-types, namely
the fundamental K-types. Also, the detailed construction of sequences of matrix orthogonal
polynomials out of these irreducible spherical functions, following the general pattern established
in [5], gives new examples of classical sequences of matrix-valued orthogonal polynomials of
size 2 and 3. For the general notions concerning matrix-valued orthogonal polynomials see [9].
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Interesting generalizations of these sequences are given in [20], where the coefficients of the three
term recursion relation satisfied by them is exhibited.

The present paper is an outgrowth of the results of [25, Chapter 5] and we are currently
working on the extension of these results for the spherical functions of any K-type associated
with the n-dimensional sphere. Using [23], one can obtain the corresponding results for the
gpherical functions of any K-type associated with n-dimensional real projective space. The
starting point is to describe the irreducible spherical functions associated with the pair (G, K} —
(SO{n+1),830(n}} in terms of eigenfunctions of a matrix linear differential operator of order two.
The output of this description is that the irreducible spherical functions of the same fundamental
K-type are encoded in a sequence of matrix valued orthogonal polynomials.

Briefly the main results of this paper are the following. After some preliminaries, in Section 3
we study the eigenfunctions of an operator A on (, which is closely related to the Casimir
operator. Every spherical function ® has to be eigenfunction of this operator A; considering the
K AK-decomposition

SO(n + 1) — SO(n)SO(2)SO(n)

and choosing an appropriate coordinate ¥ on an open subset of A, we translate the condition
AP — AP, A € C, into a matrix valued differential equation DH — AH on the open interval
(0,1}, where H is the restriction of ® to SO(2}. The property of the spherical functions

D(zgy) — m(z)P(g)nly), ge€G, =T,YeEK,

tell us that ® is determined by its K-type and the function H.

In Section 4 we first explicitly describe all the irreducible spherical functions of the symmetric
pair (G,K)} — (SO{n + 1),S0(n)} with M-irreducible K-types, with M — SO{n — 1}, the
centralizer of the subgroup A in K; we give these expressions in terms of the hypergeometric
function 5 F). B

In Section 5 the operator D) is studied in detail when the K-types correspond to fundamental
representations. Certain K-fundamental types are M irreducible, and therefore they were al-
ready considered en Section 4; besides, when n is odd there is a particular fundamental K-type
which has three M-submodules, this case is studied in the last section of this work. For the rest
of the cases we considered separately when n is even and when n is odd. Although, in both
cases we worked with the concrete realizations of the fundamental representations considering
the exterior powers of the standard representation of SO(n}:

AT, AT, ..., AFHCY),

withn —2forn — 204 1. ~
In Section 6 we conjugate the operator 1), by using the polynomial function

T(y) — (291_1 291_1);

whose columns correspond to irreducible spherical functions, in order to obtain a matrix-valued
hypergeometric operator D — ¥t D

DP _y(1—y}P"+(C—yU)P' - VP,
with

o ((ﬂ/21+ 1) (ﬂ/21+ 1)) , U—(n+2), V- (g . Ep) .
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Then, we study all the possible eigenvalues corresponding to irreducible spherical functions
and all the polynomial eigenfunctions of 1).

In Section 7, for any fundamental K-type (A*(C™)) with 1 < p < £ — 1, we find a matrix-
weight W, which is a scalar multiple of

2 —1 (2 - 1)2 +n— ﬂ(Z - 1)
W — (y(1 —yp™ (p yﬂ(%} - 1) ! (n— p)(;z}t; — 1) +P) ’

guch that 1) is a symmetric operator with respect to the inner product defined among continuous
vector-valued functions on [0,1] by

(1, Po)w — /0 B ()W (3) Pr(y)dy.

Also we prove that every spherical function gives a vector polynomial eigenfunction P of D.
Therefore we obtain the following explicit expression of P in terms of the matrix hypergeometric
function for any irreducible spherical function

P() — 3 %[5 U5V + X, PO),
i0

see Theorem 7.6.

In Section 8 for each pair (n,p} we construct a sequence of matrix orthogonal polynomials
1Py buwzo of size 2 with respect to the weight function W, which are eigenfunctions of the
gymmetric differential operator ). Namely,

DBy — Py (A(ig? 0) )\(13? 1)) ’

where

Mw, 8) —wlw+n+1)—p if §—0,
20 —
’ —ww+n+1y—n+p if §—1

Finally, in Section 9 we develop the same techniques in order to obtain analogous results for
irreducible spherical functions of the particular K-fundamental type A%(C™) for which we have
three M-submodules instead of only two. This only occurs when n is of the form 24 1.

It is worth to notice that, unlike the other cases, the 3 x 3 matrix-weight built here does
reduce to a smaller size.

2 Preliminaries

2.1 Spherical functions

Let &G be a locally compact unimodular group and let X be a compact subgroup of . Let K
denote the set of all equivalence classes of complex finite dimensional irreducible representations
of K; for each § € K, let & denote the character of §, d(§) the degree of §, i.e. the dimension
of any representation in the class 6, and x5 — d(d}£s5. We shall choose once and for all the Haar
measure dk on K normalized by [, dk — 1.

‘We shall denote by V' a finite dimensional vector space over the field C of complex numbers
and by of all linear transformations of V' into V. Whenever we refer to a topology on such
a vector space we shall be talking about the unique Hausdorff linear topology on it.
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Definition 2.1. A spherical function ® on G of type 6 € K is a continuous function on G with
values in End(V'} such that

i} @(e} — I (I is the identity transformation};
i) ®(x)®(y) — [ xs(k 1) ®({xky)dk for all z,y € G.

The reader can find a number of general results in [21] and [4]. For our purpose it is appro-
priate to recall the following facts.

Proposition 2.2 (21, Proposition 1.2]}. If ® : G — End(V'} is a spherical function of type &
then:

’B) @(klgkg) — @(kl)@(g)@(kg), fO?" all kl?kg c K, gc Gy

1} kv @k} is a representation of K such that any irreducible subrepresentation belongs to 6.

Concerning the definition, let us point out that the spherical function ® determines its
type univocally (Proposition 2.2} and let us say that the number of times that 6 occurs in the
representation k& — ®(k} is called the height of ®.

A spherical function ® : ¢ — End(V} is called irreducible if V' has no proper subspace
invariant by ®(g} for all g € G.

If ¢ is a connected Lie group, it is not difficult to prove that any spherical function @ :
G — End(V) is differentiable (C*°), and moreover that it is analytic. Let D{(G)} denote the
algebra of all left invariant differential operators on & and let D(G)K denote the subalgebra of
all operators in D{((} which are invariant under all right translations by elements in K.

In the following proposition (V, m} will be a finite dimensional representation of X such that
any irreducible subrepresentation belongs to the same class é K.

Proposition 2.3. A function ® : G — End(V'} is a spherical function of type § if and only if

1} © is analytic;
i) ©lkighks) — m{k1)@(g)n{ka), for all k1, ko € K, g € G, and ®(e) — I;
i) [D®](g) — ®(g)[D®](e), for all D € D(G)Y, g€ G.

Moreover, we have that the eigenvalues [D®](e), D € D(G)*, characterize the spherical
functions ® as stated in the following proposition.

Proposition 2.4 ([21, Remark 4.7]}. Let ®,¥ : G — End(V} be two spherical functions on
a connected Lie group G of the same type 6 € K. Then ® — V if and only if (D®}(e) — (DT){e}
for all D € D(G)Y¥.

Let us observe that if ® : G — End(V} is a spherical function, then ® : D — [D®](e)
maps D(G)}¥ into Endx (V) (Endgx (V) denotes the space of all linear maps of V into V which
commutes with (%} for all k € K} defining a finite dimensional representation of the associative
algebra D(G)¥. Moreover, the spherical function is irreducible if and only if the representation
®: D(G) — Endg (V) is irreducible. We quote the following result from [19],

Proposition 2.5 ([19, Proposition 2.5]}. Let G be a connected reductive linear Lie group. Then
the following properties are equivalent:

i) D(GYY is commutative;

1} every srreducible spherical function of (G, K} is of height one.
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In this paper the pair (G,K) is (SO(n + 1),80(n)). Then, it is known that D(G)}¥ is
an Abelian algebra; moreover, D(G)¥ is isomorphic to D{(G)* ® D(K)¥* (see in [13, Theo-
rem 10.1] or [1]}, where D(G}“ (resp. D(K)*) denotes the subalgebra of all operators in D(G)
{(resp. D(K}} which are invariant under all right translations by elements in & (resp. K}.

An immediate consequence of this is that all irreducible spherical functions of our pair (&, K}
are of height one.

Spherical functions of type § (see in [21, Section 3]} arise in a natural way upon considering
representations of G. If g — U(g} is a continuous representation of (7, say on a finite dimensional
vector space F, then

Ps— / x5 (kYU (k)dk
K
is a projection of £ onto Ps& — E(6). If P; £ ( the function ® : G — End(E(5)}} defined by
(I)(g)a‘ - P5U(g)a‘? gc G? e < E(é)? (21)

is a spherical function of type 6. In fact, if & € E(§} we have

P@)0(y)e — BU@RUG — | xs () RU@UED )adk

— ( ﬁ{ Xs (k—l)fp(xky)dk) a.

If the representation g — U(g} is irreducible then the associated spherical function @ is also
irreducible. Conversely, any irreducible spherical function on a compact group { arises in this
way from a finite dimensional irreducible representation of G.

2.2 Root space structure of so(n,C)

Let Ey; denote the square matrix with a 1 in the ¢k-entry and zeros elsewhere; and let us consider
the matrices

Iki—Eik_Eki; ]_S’B?kgﬂ

Then, the set {Ix; }i<k is a basis of the Lie algebra so(n}. These matrices satisfy the following
commutation relations

[Zkis Irs] — s Lri + 6pidsie + Gislior + Oridis.
If we assume that & > ¢, 7 > s then we have
Fris Lis] — Lok, ieis Lol — LIy [y Lri] — Doy [y D] — Lis,
and all the other brackets are zero. From this it easily follows that the set
{lpp—1:2=<p=<n}
generates the Lie algebra so(n).

Proposition 2.6. Given n € N, we have that the operator

Qn— > Ik € D(SO(n))

1< k<
is right invariant under SO(n}, i.e.

Qn € D(SO(MNFPM  vyneN,.
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Proof. To prove that ¢, is right invariant under SQ{n} it is enough to prove that jp,p—l (Qn} — 0
for all 2 < p < n. We have

f:o,:o—l(Qn) - Z ([I:o,:o—l; T Iy + Tl Ip p—1, Ii’c?l])-

1<i k<n
Then
Lop1(Qn) — Z (Liplp—1; + Ip—1:0p) + Z Tep—1dkp + Iipdrp1)
1<i<n 1<k<n
+ Z (TpkeTkp—1 + Tk p—1 Dok} + Z p—1,idps + Ipilp—1;:) — 0.
1<k<n 1<i<n
This proves the proposition. a

2.3 The operator Qs

Let us assume that n — 2£. We look at a root space decomposition of so({n} in terms of the basis
elements [p;, 1 <4<k <n.
The linear span

h - {IZ]_; I43? s ;"52,22—1)@

is a Cartan subalgebra of so(n,C}. To find the root vectors it is convenient to visualize the
elements of so(n,C} as £ x £ matrices of 2 x 2 blocks. Thus b is the subspace of all diagonal
matrices of 2 x 2 skew-symmetric blocks. The subspaces of all matrices A with a block A of
size two, 1 < j < k < £, in the place (7, %} and —A;f-k in the place (k, 7} with zeros in all other
places, are ad(h}-stable. Let

H (oI + - +xplapspr) €h,
for @1,...,zp € R. Then [H, A] — AMH}A, VH €}, if and only if for every A;; we have
wi(HYilojoj 1 Ajp — ap(HY A lopop—y — MH Az,  VHeb.

Up to a scalar, the nontrivial solutions of these linear equations are the following:

Ajiy — (:I; i:i) with corresponding A — F{x; + ax),

1 T . |
Ajj’c — (:I:a’ 1 ) with corresponding A — :F(xj — T ).

Let ¢; € b* be defined by ¢;{H)} — z; for 1 < j < £. Then for 1 < j < k < £, the following
matrices are root vectors of so(2£,C):

Xejte, — Dop—125-1 — Dog gy — HIop—125 + Iop2j-1),

Xee—e, — Lop—125—1 — Logos + WLop—125 + Do pj—1)s

Xej—ep, — D151 + Dog gy — H{Iop—125 — Dok 2j-1),

X_gite, — Lon—1,2j—-1 + Dopog + #{Iop—1,25 — Dok 25-1)- (2.2}

Thus, if we choose the following set of positive roots

AT _fej+ep,e5—ep 1 1<j <k < £},
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then the Dynkin diagram of 50(2¢,C} is Dy

o]
£ 1 TEg
O O PR O
€ — € £ g oz~ & T
(o]
€ 1t

By looking at the 2 x 2 blocks Aj; of the different roots, namely

1 —i 1
Xﬁj-f—ﬁk - (—’B’ _1) » X—Ej—ﬁk - (%' _1) »

1 3 1 —
Xﬁj—fsc - (_%’ 1) ? X_Ej+6k - (% 1) ?

it is easy to obtain the following inverse relations

IZk—l,Zj—l - %(Xej—f—ek + X—ej—ek + Xej—ek + X—ej—f—ek);
IZk,Zj - %(_ Xej—f—ek - X—ej—ek =+ Xej—ek =+ X—ej—f—ek);
IZk,Zj—l - %(Xej—f—ek - X—ej—ek - Xej—ek +X—ej+ek);
IZk—l,Zj — i(Xej—f—ek - X—ej—ek + Xej—ek - X—ej—f—ek)-

From this it follows that
2 2 2 2
L1051+ Lop o + Lopoi1 + o105
- 4l (X63+6k X—Ej—ﬁk + X—Ej—ﬁk XEj-f—Ek + Xﬁj—ﬁk X—Ej-f—ﬁk + X—Ej-f—ﬁk XEj—Ek) -

Therefore

2 1
Q= Y it h Y (KeraX ot Ko aXen,
1<j<t 1<j<kt

+ Xﬁj—ﬁk X—Ej-f—ﬁk + X—Ej-f—ﬁk XEj—Ek) -
Now using the expressions in (2.2} we get

[X6j+6k?X_Ej_Ek] - _4%’(‘{23'-23'-_1 + IstZk_l)?
[Xej—er» Xoejre, ] — 4825251 — Dogop—1)-

Thus ¢?5; becomes

Goe — Z 135051 —2 Z (£—7¥lsin1

L<j<t L=
+ > X e X+ X e X o). (2.3)
Ll

2.4 The operator Qa2eq1

Now we look at a root space decomposition of se(n} in terms of the basis elements Ip;, 1 <4 <
EF<nwhenn_—2{4+1.
The linear span

h - (IZl; I43} B ’IZE!ZE_]-)[C

is a Cartan subalgebra of so(n,C}. To find the root vectors it is convenient to visualize the
elements of so(n,C} as £ x £ matrices of 2 x 2 blocks occupying the left upper corner of the
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square matrices of size 2£ + 1, with the last column (respectively row} made up of £ columns
(respectively rows} of size two and a zero in the place (2£ + 1,2 + 1}. The subspaces of all
matrices A with a block Az, 1 < j < k < £, in the place (7, k), with the block —A;f-k in the place
{k,7} and with zeros in all other places, are ad(h}-stable. Also the subspaces of all matrices B
with a column B; of size two, 1 < j < £, in the place (j,£ + 1}, with the row —BJff in the place
£+ 1,7} and with zeros in all other places, are ad(h)-stable.
On the other hand [H, B] — AB if and only if

$j’if2j52j_]__8j — )\BJ
Up to a scalar this linear equation has two linearly independent solutions:

B; — (;) with corresponding A — Fz;,

Let € € b* be defined by e(H} —z; for 1 <j < £ Thenfor1 <j <k <fand1l <7 </{ the

following matrices are root vectors of so{2{+ 1,C}):

Xejte, — Do—1,25—1 — Iak 2 — (Lok—1,25 + Dox,2j-1),

Xogj—ep, — Dop—12j-1 — Dopoj + #{Lop—1,25 + I2k25-1),

Xej—ey — for—125-1 + Dok 2y — i(Jak—125 — Iok25-1),

Xoejte, — Lop—12j—1 + Dopoj + #{lop—1,25 — I2k25-1),

Xe,r - In,Z'r’—l - éfn,%;

X—e,r — In,Z'r’—l +’3’In,2'r’-
Thus, if we choose the following set of positive roots

A+—{E¢=?Ej—|—6k?€j—6ki1§T§-€?1§j<k§-€}?
then the Dynkin diagram of s6(2{+ 1,C} is By

o0

€1 — ez €2 — €3 g 1 &g =

By looking at the 2 x 1 columns of the different roots, namely

1 1
DR
it is easy to obtain the following inverse relations

In,Z'r’—l - %(Xsr + X—er)a In,Z'r‘ - %(Xsr - X—sr)-
From this it follows that

Bori Iy — 5(Xe X, + X Xe ) — —ilp201 + Xe X,
since [ X, ,X_. | — —2il3,5,—1. Therefore we have that
Qo411 — Z f?;,,j + Qo — Z (—ilppor—1 + X_o. X. ) + Qo
1<j<2¢ 1<r<2f
Then
G2ey1 — Z i1 — Z (2(£ — j) + Lyidzj 251
1<j< 1<j<t
+ Z HX e Xre + Xy Xeg—e, ) + Z X e Xe. (2.4)

1<j<hksct 1<r<2e
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2.5 Gel’fand—Tsetlin basis

For any n we identify the group SO({n} with a subgroup of SO(n+ 1} in the following way: given
k € SO{n) we have

kO
o e (0 1) € SO(n +1).

Let Tin be an irreducible unitary representation of SO(n} with highest weight m and let Vin
be the space of this representation. Highest weights m of these representations are given by
the {-tuples of integers m — m,, — (M, ..., Mg, } for which

Mg = Mop =2 0 2 g _1;n > |m£n| if n— 23;
Mln = Mop = - = gy = 0 if n—20+1,
and m;, are all integers.
The restriction of the representation 7}, of the group SO(24 + 1} to the subgroup SO(2¢)

decomposes into the direct sum of all representations Tyy, M’ — My — (M1p—1,...,Mn—1)
for which the betweenness conditions

T 2641 = Mg = Mo opyl = Moo = 0 2 Tgggt] = Moy = —Myopi]
are satisfied. For the restriction of the representations 7y, of SO(2€) to the subgroup SO(2£ —1)
the corresponding betweenness conditions are

M0 = M1 ae—1 = Maae = My a1 = - = g1 20 = Mp—130—1 = |meze|.

All multiplicities in the decompositions are equal to one (see [24, p. 362]}.
If we continue this procedure of restriction of irreducible representations successively to the
subgroups

SO(n —2) > S0(n—3) > - > SO(2),

then we finally get one dimensional representations of the group SO(2}). If we take a unit
vector in each one of these one dimensional representations we get an orthonormal basis of
the representation space Vi,. Such a basis is called a Gel’fand Tsetlin basis. The elements of
a Gel'fand Tsetlin basis {v(p)} of the representation 7y, of SO(n} are labelled by the Gel’fand

Tsetlin patterns @ — (mp, me—1,...,mz, msy}, where the betweenness conditions are depicted
in the following diagrams.
Ifn—20+1
Min M2 veinnn M M n
m1}n_1 ................ mg}n_1
H— 15 a5 —mags
Mm1d Mg
mis —mas
Mo
Ifn—2f
Miln T2 e Mg n
m1}n_1 .......... mg_1}n_1 _mﬁ—l,n—l
H— 15 mas —Mma2s
Mm1d Mg
mi3 —mi3
Mo
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The chain of subgroups SO{n — 1} > SO(n — 2} > - - - > S0(2) defines the orthonormal basis
{v(gt}} uniquely up to multiplication of the basis elements by complex numbers of absolute value
one.

2.6 An explicit expression for 7 (Qy)

Since Qn € D(SO(n))%°) | given i € SO(n) it follows that 7(Q,) commutes with m(k)} for all
k € SO{n). Hence, by Schur’s Lemma 7{Q»} — Al. From expressions (2.3} and (2.4} we can
give the explicit value of A in terms of the highest weight of 7, by computing 7({)»} on a highest
weight vector.

Proposition 2.7. Let (m, Vi) be an irreducible representation of SO(24) of highest weight m —
(m1,ma,...,my}. Then, 7(Qq} — A, with

A— Z (—m? —2(£ — jymy). (2.5}

1<j<t

Proposition 2.8. Let (m,V,} be an irreducible representation of SO(2£ + 1} of highest weight

m — (my,ma,...,mg}. Then, T(Que1) — A, with
A= D> (—mi = 20 —5) + Lymy) . (2.6)
1<t

3 The differential operator A

We shall look closely at the left invariant differential operator A of SO{n + 1} defined by

n
2
A— Z In—f—l,j?
i—1

in order to study its eigenfunctions and eigenvalues. Later we will use all this to understand
the irreducible spherical functions of fundamental K-types associated with the pair (G, K} —
(SO{n+ 1},S0(n}}.

Proposition 3.1. Let G — SO{n + 1} and K — SO(n}. Let us consider the following left
nvariant differential operator of G

T
2
AN
=1

Then A is also right invariant under K.

Proof. This is a direct consequence of the identity

Qn—f—l — Qn + A
and Proposition 2.6. a

Let us define the one-parameter subgroup A of & as the set of all elements of the form

a(s}—| O coss sins |, —m < s <, (3.1)

0 —gins coss
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where I,,_; denotes the identity matrix of size n — 1, and let M — SO(n — 1} be the centralizer
of Ain K.

Now we want to get the expression of [A®](a(s}} for any smooth function ® on & with values
in End (V) such that ®(kgk'} — n(k)}®(g)m (k") for all g € G and all k, k' € K.

We have

[Ln41,5®] (als}) — ‘I’(G(S) exptlnyy ;) s

Hence, we will use the decomposition &G — K AK to write a(s)exptl,1; — k(s,t)a(s, t)h(s,t},
with k(s,2), h(s,t) € K and a(s,t) € A
Let us take on A\ {a{r}} the coordinate function z{a(s}} — s, with —7 < s < 7, and let

F(s) — F(a(a(s))) — ®lals)).

From now on we will assume that —7 < 5,¢,s + ¢ < 7.
If 7 — n we have a(s}exptlo1n — als}a{t} — a(s + £}, Thus we may take

a(s,t} — a(s + &}, k(s t} — his,t} —e.

Since z{a({s + t}} — s+ ¢, we obtain

82 o2
[ 41,0 ®] (a(s)) — 7 2lals) exp tlnt n) — pallals +1)
-0 t—0
— F”(s).
0
For 1 <j <n—1, when s ¢ Zm, we may take
I 0 0 0 0
ains cost aint
0 +/1—cos? scos?t 0 +/1—cos? scos?t 0
k‘(S? t) — 0 0 In—j—l 0 0 ,
—aint s scost
0 +/1—cos? scos?t 0 +/1—cns? scos?t 0
0 0 0 0 1
I 0 0 0 0
311 & —cosssint
0 +/1—cos? scos? ¢ 0 4/ 1—cos? scos? ¢ 0
h(s? t) — 0 0 In—j—l 0 0],
cogsaint 31 &
0 +/1—cos? sc0s? T 0 +/1—cos? 5cns? T 0
0 0 0 0 1
a(s,t) — [ 0O cos s cost /1 — cos® scos?t
0 —+/1—cos?scos?t cos scost

Then, for 0 < s << 7, we have z{a(s,?}} — arccos(cos s cos ¢} and

cosssint

/1 — cos? scos? ¢

0
5 (als, 1) —

From here we get

COS s

gw(a(s t}) 0  and a—zx(a(s t}}
ot ’ B ot? NP

0 sin s
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Thus

COS s

— ——F'(s).
i—0

5111 s

o
_ F'(s
+ 0 ( )8t

We observe that &(s, 0} — 2(s,0) — e and that a,(s 0} — a{s). Then

—0 and
-0

@) a(s)) — Dpmk(s, )], @(ale)) +22n(h(s, )| Datale, )]

+2—ﬂ(k(s,t))‘ @(a(s))a—ﬂ(h(s 0|, + —@(a(s )|,

+25 fI)(a,(s 0, .3 ﬂ(h(s 0|, + )4 P his, 0,
We also have
%ﬂ(k(s, D - (%k(s?t)‘t_o) i),
and
%ﬂ(h(s?tn‘t—o _ (%h(s? t)‘t_o) :ifzﬂ (Inj).

‘We will need the following proposition, whose proof appears in the Appendix and its idea is
taken from [5].

Proposition 3.2, If A(s,t} — k(s,t} or A(s,f} — h{s,t}, then in either case for 0 < s < m, we

have
a%r o A) ‘ 8A‘ 2
ot lio/
Moreover in each case, fow" 1<j<n—-1and 0 <s<m, wehave
&2 cos? s
5t2 ﬂ(k(s t))‘ " sins { ﬂ"J) @ﬂ(h(s’tn t—0  sin? ﬂ(fn’J)

Now we obtain the following corollaries.

Corollary 3.3. Let © be any smooth function on G with values in End(V,} such that &(kgk') —
m{(k}Y®(gyn(k") for all g € G and all k, k' € K. Then, if F(s) — ®(a(s)), for 0 < s < 1 we have

n—l1

(A8 (afs)) — F(s) + (n 1) 5o F (s} 5 3 (1 PF (S
i-1
_ 2:12“ iﬂ(fm)p(s)ﬂ(f DR cos” SF(S)Zﬂ(f e

J=1 J=1

Corollary 3.4. Let ® be an irreducible spherical function on G of type w1 € K. Then, if
F(s} — ®(a(s}), we have

n—L

COS 5 1
P + (= Do F() + 5= 3 (TP F(s)
i—1
coss =% cos?® s s
— 281112 - Z TT(IWSJJF(S)TT(IWJ) + EF(S) Z T:F(Iﬂ,j)z _ )\F(S)?
1 -1

Jorsome Ace Cand b < s < m.
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Notice that the expression in Corollary 3.4 generalizes the very well known situation when the
K-type is the trivial one, as we state in the following corollary {cf. [11, p. 403, equation (10}]}.

Corollary 3.5. Let © be an irreducible spherical function on G of the trivial K-type. Then, for
F(s} — ®(a{s}} we have

FU(s) + (n— )2 Fl(s) — AF(s),
forsome)\ECandU<s<ﬂ.

Let us make the change of variables y — (1 + coss}/2, with 0 < s < 7; then 0 <y < 1. We
also have coss — 2y — 1, sin? s — dy(1 — ) and d—“i — =225 If we let H(y) — F(s), ie.

H{y) — ®(a(s)), with coss — 2y —1,
we obtain

sins

Fi{s) = ———H'(s),  F'{s)

SlI] S COS S

— ') - ——H' @)

In terms of thlS new variable Corollary 3.4 becomes

Corollary 3.6. Let ® be an irreducible spherical function on G of type w1 € K. Then, if
H(y} — ®(a(s}} with y — (1 +cos s}/2, we have

WL =D 0) + 3ol = 2H0) + g i (I H )

2
+ % Zﬂ(fn,a)H(y)ﬂ(In,J) +3 (- ( H(y)zﬂ(jw) _NH{y),

forsomeAECandU<y<1.

Remark 3.7. Let us notice that, for any y € (0,1}, H(y} is a scalar linear transformation
when restricted to any M-submodule, see Proposition 2.2. Therefore, if m is the number of M-
submodules contained in (V, 7}, we consider the vector valued function H : (0,1} —+ C™ whose
entries are given by those scalar values that H(y)} takes on every M-submodule.

If the End(V}-valued function H satisfies the differential equation given in Corollary 3.6,
then the vector valued function H satisfies

y(1 —y)H"(y) + %ﬂ(l — 2y} H'(y) + Tl)NlH(y)

(1-2y) (1 2@;)2
+ —FEH(y NoH{(y) — XH{(y),
where E, N1 and N, are matrices of size m X 1.
=l n—l
Even more, since » If‘?qj — Qn — Qn—1, Proposition 2.6 implies > If‘?qj € D{SO(n))*°t—1),
j-1 i=1

n—l1

therefore > 7(Z, ;}? is scalar valued when restricted to any M-submodule. Hence, N — N,
i—1

and the equation above is equivalent to

where N is a diagonal matrix of size m x m. To obtain an e'xphclt expression of & for any

NH(y}—AH(y), (3.2)

K-type is a very serious matter; in the following sections we shall find explicitly the expressions
of B and N, for certain K-types.
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Remark 3.8. It is worth to observe that from (2.5) and (2.6) we can immediately obtain every
entry of the diagonal matrix N.

4 The K-types which are M-irreducible

Let K — SO(n}, M — SO{(n—1}, withn — 2£+1, and let m,, — (myn, ..., M} be a K-type such
that Vi, is irreducible as M -module. The highest weights my,—; of the M-submodules of Vi, are
those that satisfies the following intertwining relations

B

Trin Trign cee g n —Hipn

Since Vjp is irreducible as M-module it follows that my, — --- — m, — 0. The converse is
also true, therefore Vi, is M-irreducible if and only if it is the trivial representation.

Let now consider the case X — SO(n}, M — SO(n — 1), with n — 2/ and let m, —
{(M1n, ..., My} be a K-type such that Vi, is irreducible as M-module. The highest weights
my,—1 of the M-submodules of Vi, are those that satisfies the following intertwining relations

Min TMon e e 1n Ty
™M n—1 i i Tg—1n—1 —My—1n—1
Since Vi is irreducible as M-module it follows that mi, — - —my_1, —dand my, —d —j
with 0 < j < 2d, since my_1,, > |myg,|. This implies that m1, 1 — - — mp_np—1 — d and

My_1p—1 —q With d > ¢ > max{d—j,j —d}. Thus, f 0 <j<dwehaved >¢g>d—jand
by irreducibility we must have 7 — 0. Similarly if d < j £ 2d we have d > ¢ = j — d and by
irreducibility we must have 7 — 2d. Therefore m, — do or m,, — df3, where

o—(1,...,1), B—(,...,1,-1).

The converse is also true, therefore V},, is M-irreducible if and only if m,, — do or m,, — df
for any d € Np.

If ® is an irreducible spherical function on SO(n + 1} of type 7, whose highest weight is
my, — do or my, — df5, then from Corollary 3.6 we get that the associated function H satisfies

n—l1

y(L =) H'() + KL~ 2)H () + 2 3 #(1,)*Hiy) — ML),
§—1
To compute nz_:l (15} we write nz_:l T{In)? — 1 Qn — Qu1).
i-1 =1

Let us first consider m,, — doe. If v € V4, is a highest weight vector, then
T Qv — —dd{d+ £ — 1w and T Qu—1}v — —d({ —1}{d+ £ — 1},

see (2.5) and (2.6). Therefore

n—l1

> w{Ingyv — —d{d+ £ — L.
i—1

Let us now consider m, — df. If v € V,, is a highest weight vector, then T{Qp}v —
—2dé(d + £ — 1}v as before, and T((Jn—1}v — —2d(£ — 1}{d + £ — 1}v as before because in both
cases I, is the same.
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Therefore if m, — (d,...,d, +d} we have

n—l1

> w{Ingyv — —d{d+ £ — L.
i—1

Hence, if ® is an irreducible spherical function on SOQ{n + 1}, n — 2£, of type m, —
(d,...,d,td} C?, then the associated scalar value function H — h satisfies

AL V=S i) — ahiw) (41)

y(1 -y} (y) + £(1 — 29)R'(y) —

Let us now compute the eigenvalue A corresponding to the spherical function of type m &
S0O(2¢), of highest weight m,, — do, associated with the irreducible representation 7 € SO(20+1),
of highest weight m, 1 — (w,d,...,d) € Ct Ifw € Vine,, 18 a highest weight vector, then
from (2.6} we have

T Qnr1 v — —(w(w+ 26 — 1} +d{£ — 1}{d+ £ — 1}}v.
If v € Vin,, is a highest weight vector, then from (2.5} we have
T Qnlv — T(Qniv — —dé{d+ £ — 1}v.
Since A — Qi1 — @ it follows that
A——wlw+ 2 -1}y +d{d+£—1).
To solve (4.1} we write A — y®f. Then we get

y(1 =y f" + 2ol —y) + (1 — 29}y f'
+{a(o— 11—y + Lol — 2y) —d{d+£ — 1)1 — )™ " f — X F.

Thus the indicial equation is a{a — 1} + foe — d{d+ £ — 1) — 0 and oo — d is one of its solutions.
If we take 2 — 7% f, then we obtain

y(1—)f" + (2d+ 2 —2(d+ ) f' — dbf — Af.
If we replace A — —w({w 424 — 1} + d{d + £ — 1} we get
y(1 =) f" + (2d+ £ —2(d+ Oy ' — (d — w)(28 + d +w — 1} f — 0.
Leta —d—w, b —2f4+d+w—1, c — 2d + £ then the above equation becomes
y(1 -y} + (e — (1 +a+b)y)f —abf — 0.

A fundamental system of solutions of this equation near 4y — (0 is given by the following
functions

a, b l—c a—c+1,b—c+1
2F1(C;y); Yy 2F1( 2 . Y-

Since A — 3% f is bounded near 3 — 0 it follows that

d—w,20+d+w—1
d ? .
h(y)_uy QF]-( Qd—l—f }y)?

where the constant u is determined by the condition A(1} — 1.
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Remark 4.1. Let A, — h,(y}, w > d, be the function kA above. Then £, is a polynomial of
degree w. Moreover observe that the function 3 used to hypergeometrize (4.1} is precisely hq.

Let us now compute the eigenvalue A corresponding to the spherical function of type m, —
df associated with an irreducible representation 7 of SO(n + 1} of highest weight m,41 —
(w,d,...,d) € Ct. If v € Vin,,, is a highest weight vector, we obtain 7(Qni1)}v — —(w(w +2£ —
1} +difd —1}d+ £ — 1}

If v € Vin, is a highest weight vector, then m(Qn}v — —df{d+ £ — 1}v as above, because Qpv
does not depend on the sign of the last coordinate of my,. Since A — Q41 — () we also have

A——w(w+2{ -1} +d(d+£—1}.
Therefore we have proved the following result.

Theorem 4.2. The scolar valued functions H — h associated with the irreducible spherical
functions on SO(n+ 1), n — 2£, of SO(n)-type m,, — (d,...,d,£d) € C¢, are parameterized by
the integers w > d and are given by

d—w, 2l +d+w—1

where the constant u is determined by the condition hy (1} — 1.

5 The operator A for fundamental K-types

We are interested in finding a more explicit expression of the differential equation given in
Corollary 3.6:

y(1 — ) H" () + ﬂ(l—ﬁyJH(yH 1 )Zﬂ(fn,ﬁ H(y)

—1

* 2(@;(1 23 Zﬂ(f ) ng) + §1(1 Qy))H(y)Zﬂ(fnon AH (y),

for certain representations m € SO(’R)? including those that are fundamental.

The obvious place to start to look for irreducible representations of SQ(n} is among the
exterior powers of the standard representation of SO{n}. It is known that AP(C%) are irreducible
SO(2¢)-modules for p — 1,...,£—1, and that A*(C?%) splits into the direct sum of two irreducible
submodules. While in the odd case AP(C?**1) are irreducible SO(2/+1)-modules forp — 1,..., 4.
See Theorems 19.2 and 19.14 in [3].

Moreover, AP{(C™} and A" P(C™} are isomorphic SO{n}-modules. In fact, if {e1,...,ex} is
the canonical basis of C”, then the linear map £ : AP(C"} — A" P(C™} defined by

f(eul Mo A eup) - (_1)u1+---+upem Mo ey, p?

where u; < --- < up and v1 < --- < Up—p are complementary ordered set of indices, is an
S0O(n)-isomorphism.

All these statements can be established directly upon observing that the elements Ip; —
Epi — By with 1 <4 < k& < n form a basis of the Lie algebra so(n}, and that

Inen — ey, Ie; — —e and Ie; — 0 if 7Lk,

We will refer to the irreducible SO(2£)-modules AP{C?%) for p — 1,...,£— 1, respectively, the
irreducible SO(2¢€ + 1}-modules A?(C?*1} for p — 1,..., £, as the fundamental SO(2£)-modules,
respectively, as the fundamental SO(2¢ 4+ 1}-modules, for reasons that will be clarified in the
following Sections 5.1 and 5.2.
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5.1 The even case: K = SO(2f)

First we will study the case n — 2, with £ > 2. The fundamental weights of s0(2¢,C} are

Ap— €1+ +€p, 1<p<f-2,
Aor—3let+ e —e), M —sla++ea1+e)

Here we will consider the fundamental K-modules
AT, AT, ..., AN,

We will show that the highest weight of AP(C") ise) +--- + ¢, for 1 < p < £ — 1. Observe that
As—1 and Ay are not analytically integral and therefore they will not be considered, although we
will also consider the K-module with highest weight Ap—1 + Ay — €14+ - - +€p—1. Notice that we
have already considered the cases 22y_1 and 22, in Section 4, which are M-irreducible. We will
also show that the fundamental K-modules are direct sum of two irreducible M-submodules.

In order to obtain the explicit expression of E in (3.2} for a given irreducible representation m
of K — SO{n}, of highest weight £1 + - - - + £, Wwe are interested to compute

n—l1

> Al Peit(Tng) ]y, — Xr,s) i,
i1

with v, s — 0,1 corresponding to the two M-submodules Vy and Vi of the representation m,
associated with mp—1 — (1,...,1,0,...,0) € C*! with p — 1 and p ones, respectively (see the
betweenness conditions in Section 2.5}; being Fy and P the respective projections.

Let us consider the standard action of X' — 80{n) on V — C", and take the canonical basis
{e1,...,e,}. Then we have the irreducible K-module AP{(V} for 1 < p < £ — 1. The vector
(e1 —iez} A(ez —deq) A-- - A{egp_1 — i€} is the unique, up to a scalar, dominant vector and
its weight is (1,...,1,0,...,0) € C? with p ones. Then, if V' is the subspace generated by
{e1,...,en—1}, AP(V} is the direct sum of two M-submodules, namely

APVY Vo Vi — ALV Aen @ APV (5.1)

whose highest weights are (1,...,1,0,...,0) € C*" ! withp—1onesand (1,...,1,0,...,0) € C*1
with p ones, respectively. It is easy to see that (e; —deg} A (eg —deg} A-- - Aleg,_g —degy, o) Ae, is
an M-highest weight vector in AP 71(V'} Ae, and that (e —ies) A (es —ieq) A- - A(exp—1 —iegp)
is an M highest weight vector in AP(V").

To get A(0, 0} it is enough to compute

n—l1

> T} Pt (Lng e A+ Aep1 Aeg).
i—1
Since we have that m(l,;}{(e1 A - Aepy Aeg) —er A Aey_1 Ae; we obtain Pyrr(l,;){er A
To get A(0, 1} it is enough to compute

n—l1
> w{Ingy P (Ing e A Aep1 Aen).
i-1

We have

0 i 1<j<p-1,

Pra(lpier A Aepl Aep) —
1 (’f?fj')( L r—1 ﬂ’) {el/\“‘/\ep—l/\ej f p=j<n-1
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Therefore we have

0 if 1<j<p-1,

Tl ) Pia{ L er A - Aey_1 Aey) —
(Lng P17 (Ing Her p—1 /A €n) {_el/\,,,/\ep_l/\en if p<j<n-—l.

Hence A(0,1}) — —(n — p).
Similarly, to get A(1,0} it is enough to compute

n—l1

> wl{IngyPoi(Ing e A Aeg).
i—1

We have

—ep A heg e Aep i 1S5 <p,
ﬁ(fm)(em“'/\e@—{ ' " ? =7 =0

if p+1<j<n-1,
where ey, appears in the j-place. Therefore

f 1<j=p,

. . —E]_/\“‘/\e
T (Ing) ot (Lnj )€1 A - Aep) — {0 ’ if p+1<j<n-1

Hence A(1,0) — —p.
n—L
Also it is clear now that > 1(ln;}P17(Inj)} (€1 A~ -~ A ep) — 0, hence A(1,1) — 0.

i—1
Therefore, when 7 is the standard representation of K in AP(V}, 1 <p < ¢ — 1, we have

(AT, Voot — (_Up P “) |

Therefore, we obtain a more explicit version of Corollary 3.6 using (3.2} and Remark 3.8.

Corollary 5.1. Let ® be an irreducible spherical function on G of type 7 € Sb(ﬂ), n—2¢ If
the highest weight of m is of the form (1,...,1,0,...,0} € C¢, with p ones, 1 <p <£—1, then
the function H : (0,1} — End(C?) associated with © satisfies

y(1 —y)H"(y) + %ﬂ(l —2y)H'(y) + H (p o _Op) Hiy)

(1-2y) (0 p—n
+2y(1—y) (_p 0 )H(QJ—AH(Q);

for some A e C.
5.2 The odd case: K = SO(2£+ 1)
We now study the case n — 2 + 1, with £ > 1. The fundamental weights of s0(2f + 1, C} are

Ap— €1+ +€p, 1<p<i—1,
)\g—%(el—l—“‘—l—q).

Here we will consider the fundamental K-modules

AT, AZ(C™), ..., AHC.
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We will show that the highest weight of AP(C") is ¢y +--- 4+ ¢, for 1 < p < £, Also we will
establish that AP(C™)} splits into the direct sum of two M-submodules for 1 < p < £ — 1, while
A*(C™) splits into the sum of three M-submodules; for this reason it will be treated separately
in Section 8.

Observe that Ay is not analytically integral and therefore it will not be considered, although
we will consider the K-module with highest weight 2X,.

As in the even case we are interested in computing

n—l1

> (I} Bt (Ing) | — A(r,5)Ix,

i1 "
with v, s — 0,1 corresponding to the two M-submodules Vy and Vi of the representation m,
corresponding to m,—; — (1,...,1,0,...,0}) € C¢ with p — 1 and p ones respectively (see the
betweenness conditions in Section 2.5}. Being Py and P) the respective projections.

Let us consider the standard action of X' — 80{n) on V — C", and take the canonical basis
{e1,...,e,}. Then we have the irreducible K-module AP{(V} for 1 < p < £ — 1. The vector
(e1 —iez} A(ez —deq) A-- - A{egp_1 — i€} is the unique, up to a scalar, dominant vector and
its weight is (1,...,1,0,...,0) € C? with p ones. Then, if V' is the subspace generated by
{e1,...,eq—1}, AP(V} is the direct sum of two irreducible M-submodules, namely

APVY Vo Vi — ALV Aen @ APV (5.2)

of highest weights (1,...,1,0,...,0} € C? with p — 1 ones, and (1,...,1,0,...,0) € C¢ with p
ones, respectively. [t is easy to see that (ey —iez) A (e3 —deq} A -~ Aegp_z —degp 2} Aep is
an M-highest weight vector in AP~ }(V'} Ae, and that (e1 —ieg} A{es—ieq) A A(ep—1 —i€3;)
is an M highest weight vector in AP(V'}).

To get A(0, 0} it is enough to compute

n—l1

> w{TngyPoi(Ing e A Aep1 Aen).
i-1

Since we have that {lpj}{e1 A---Aep 1 Aep) —er Ao~ Aey 1 A ey, we obtain Pyfr{Ln;){e1 A
To get A(0, 1} it is enough to compute

n—l1
> w{Ingy P (Ing e A Aep1 Aen).
i-1

We have
0 if 1<j<p-—-1,

Pia{l el A Aep_1 Ae,t —
1 (?‘?,J)(l —1 n) {El/\“‘/\ep—l/\ej if p£i<n—1

Therefore
0 if 1=7=<p-1,

(L )P (L ey A Aepy Aey) —
(o) Fuft (I ) P/ ) {—el/\m/\ep_l/\en if p<j<n-—L

Hence A(0,1}) — —(n — p).
Similarly, to get A(1,0} it is enough to compute

n—l1

> T} Pyt (Lng e A - Aep).
-1
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We have that

et A Aeph---Nep, I 1<j<p,
if prl<j<n—1,

(I )er A Aep) — {;

where ey, appears in the j-place. Therefore

. . —er A hep i 1<j<p,
(Lo ) (L Her A Aey) —
(ﬂj)O(ﬂj)(l :0) {U T: p+1§j§ﬂ—1.
Hence A(1,0) — —p.
n—L
Also it is clear now that > (L) Pit(Zns){e1 A--- Aep) — 0, hence A(1,1) — 0.
i—1

Therefore, when 7 is the standard representation of K in AP(V}, 1 < p < ¢ — 1, we have

(A(r, s))ocre<t — (_Op "5 ’””) .

Therefore, we obtain a more explicit version of Corollary 3.6 using (3.2} and Remark 3.8.

Corollary 5.2. Let ® be an irreducible spherical function on G of type m € Sb(ﬂ), n—2041.
If the highest weight of w is of the form (1,...,1,0,...,0} € Ct, with p ones, 1 <p < £—1, then
the function H : (0,1} — End(C?) associated with © satisfies

y(1 —y)H"(y) + %ﬂ(l —2y)H'(y) + H (p o _Op) Hiy)

(1-2y) /0 p-m
+m(_p 0 )H(E‘JJ—)\H(@);

for some A e C.

6 The spherical functions of fundamental K-types
Let n — 24, the irreducible spherical functions of K-type
m, —{1,...,1,0,...,0) e C%,

with p ones, 1 < p < £ — 1, are those associated with the irreducible representations of & of
highest weights of the form m, 1 — (w4 1,1,...,1,6,0,...,0) € C* that interlaces m,,,

w1 1 ... 1 ) o ... 0
1 ... o1 o ... A

We now consider the K-module AP{C") which has highest weight m,,.
For w — (0 and § — 0 we consider the G-module AP(C™"!) whose highest weight is my, 1, and
we have the following K-module decomposition

AP(C™H) — AP(CY) @ APTHC™) A enp,
where AP(C"} is the sum of two SO{n — 1}-modules:

AP(C™) — AP(C™1) @ APTHCY ) Ae,
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We observe that

a(s){er A---ANep_1Aep) —er A Ae,g A{cosse, —sinse, )

—coss{er A - Aep1 Aeg) —sins{er A Aep—1 A ent1)

Hence, if ®y is the spherical function associated with the irreducible representation of & of
highest weight my41 — (1,1,...,1,8,0,...,0} € C with § — 0, we have that

Cpla(s)er A---Nep_1 Aep) —coss{er A Aep_1 Aeg)

Also we have that a{s}(e1 A ---Aep) —e1 A---Aep. Thus the vector valued function Fiy(s) given
by the irreducible spherical function ®y(a(s}} is

Fals) (cols s) |

For w — (0 and § — 1 we consider the G-module APT1{C"1} whose highest weight m,,,;, and
for 1 < p < £—1 we have the following K-module decomposition

AP — APTHC™) @ AP(C™) A enqa,
where AP(C™} A ep41 is the sum of two SO(n — 1}-modules:

AP(C™) Aepp — AP(C* N Aepp @ APHC™ ) Aey Aegq.
We observe that

a(s){er A---Aep_1Aeghepp) —er A Aey,_1 A(sin se, 4 cosse i)
—sins{er A~ Aep_1 Aeg)tcoss(er - Aep_1 N entl)

Hence, if ®; is the spherical function associated with the irreducible representation of ¢ of
highest weight my41 — (1,1,...,1,6,0,...,0) € C* with § — 1, we have that ®1(a(s))}{e1 A--- A
€1 /€y MAeny1} —coss{er A - Aep_1 Aeg Aepyr). Also we have that

a(sHer - Nephepp1) —e1 A Aep_1 Aeq Aepyl.

Thus the vector valued function F1(s} given by the irreducible spherical function ®1{a(s}} is

no- (1)

Definition 6.1. We shall consider the 2 x 2 matrix-valued function ¥ — ¥(y}, for 0 <y < 1,
whose columns are given by the functions Hy(y} — Fo(s) and Hi(y} — Fi(s}, with coss — 2y—1:

T(y) — (291_1 2;;1—1)' (6.1)

Since the functions Hy(y} and H1(y} are associated with irreducible spherical functions, they
satisfy the differential equation given in Corollary 5.1; moreover, the respective eigenvalues are
A — —p and A — p — n. Therefore, we have

1 14 (1 —2y)? (p—ﬂ 0)
1 -8 + —n{l — 20" 4 — "2 R

L -2 (0 p—ﬂ)@_@(—ﬁ’ 0 )
29(1—y) \—p O ¢ p—n
Furthermore, it is easy to check that the function ¥(y} also satisfy the equation above even
when 7 is odd.
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Theorem 6.2. The function U can be used to obtain a hypergeometric differentiol equation
Jrom the one given in Corollaries 5.1 and b.2. Precisely, if H is a vector-valued solution of the
differential equation sn Corollaries 5.1 or 5.2, with eigenvalue A, then P — U™ H is o solution
of DP — AP, where D is the hypergeometric differential operator given by

pp—s=P' = (FTIETY opyy) P (8 a2,)

Proof. By hypothesis we have that

y(1 —y)H" () + %ﬂ(l g Hy) + L2 (p —n 0 ) )

4(1 —y) 0 -p
(1-2y} /0 p—mn
+m(_p 0 )H(E‘JJ—)\H(@);

Then, writing H — ¥ P, we have
y(1 = )P+ (2y(1 - gy 21 - 2)1) P

-1 FT ’ 1+(1—2y)2 pP—T 0

+H(_ﬂp pgﬂ)@)P_)\P.

Now we compute
_ dy(l—y) (2y—1 -1 2y—1 -1
i Iy! i o
Zy(L =y dy(y—13\ -1 2y-1 -1 2y-1/

Therefore

T+H1H2y— 1) -1 / A+p 0
1oypr— (G j pP_o
vl - ( -1 (Z+ 1@y -1) 0 Atn-p) T 70
This completes the proof of the theorem. a

6.1 A-eigenvalues of spherical functions

Aswesaid, when n — 2£ the irreducible spherical functions of the pair (SO(rn+1}, SO(n}}, of type
my, — (1,...,1,0...,0) € C* with p ones, 1 < p < £—1 are those associated with the irreducible
representations 7 of G of highest weights of the form my,41 — (w4 1,1,...,1,5,0,...,0) € C*
with p — 1 ones, such that the following pattern holds

w1 1 ... 1 ) o ... 0
1 ... o1 o ... 0

Let ®., 5 be the corresponding spherical function. Then A®,, 5 — A®,, 5, where the eigenvalue
A — Aq{w,d) can be computed from the expression A — Qni1 — Qn. fv € Vi, is a highest
weight vector from (2.6} we have

H Qoo v — —{((w + 17 + (20 — 1}(w + 1} 4 (2£ — p}{p — 1} + 26(£ — p) }v.

If v € Vin,, i a highest weight vector, then from (2.5} we have

Qv — —p(20 — phv.
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Since A — Qi1 — @ it follows that
Agplw, 8} — —(w + 1) — (20 — 1w + 1) + (20 — p) — 26(¢ — p)

Analogously, we obtain that the eigenvalues of the spherical functions ®,, 5 of the pair (SO(2£+
2},80(2¢ 4 1}} are of the form

Aget1(w,6) — —(w+ 1w +20+ 1) + 20 —p+ 1 — §2(£ — p) — 62,

here ¢ is 0 or 1 when we are in the cases 1 < p < £ but ¢ could also be —1 in the particular case
p— £

Therefore, we have that the eigenvalues of the spherical functions ®,, 5 of the pair (SO{n +
1},SO(n}} are of the form

— 1) — if §—
T e R A (62)
—w{w+n+1}—n+p if §—£1L
6.2 Polynomial eigenfunctions of the hypergeometric operator D
Let D be the differential operator on the real line introduced in Theorem 6.2:
DP _y(1 —y)P"+(C—yU)P' - VP, (6.3)
with
(n/2+1)} 1 p 0
C—( 1 (n/2+1)) U—{n+2}1, V— 0 n—p)’

where n is of the form 28 or 24+ 1 for e Nand 1 <p < £

We will study the C?-vector valued polynomial eigenfunctions of D.

The equation DP — AP is an instance of a matrix hypergeometric differential equation
studied in [22]. Since the eigenvalues of C, n/2 and n/2 + 2, are not in —Np the function P is
determined by Fy — P(0}. For |y| < 1 it is given by

A 7
Py —oth (P ) B VIOV NRy R
i

where the symbol [C;U; V + A); is inductively defined by

[C; UV 4+ Ao — 1,
[C;UV A+ Nj1 — (C 57 GU +7 -1+ V + N[O UV + N,

forall 7 = 0.

Therefore, we have that there exists a polynomial solution if and only if the coefficient
[C; U3V 4+ Alj41 is a singular matrix for some 7 € Z. Since the matrix C' + 7 is invertible for all
j € Np, we have that there is a polynomial solution of degree j for DP — AP if and only if there
exists Py € C? such that [C;U;V + APy £ Oand (j(U+;7 -1} +V + XN [C;U;V + AR — 0.

Now we easily observe that the only possible values for A such that 7(U/ +7—1}+V + A has
non trivial kernel are those given in (6.2}, Then, if A — —w(w +n+ 1} — p, it is easy to check
that the first and only j for which j{(U +7 — 1} +V + A is singular is 7 — w, and its kernel (of
dimension 1} is the subspace generated by (}). Analogously, if A — —w{w+n+1}) —n+p, it is
easy to check that the first and only j for which j(U 4+ 7 — 1} +V + X is singular is § — w, and
its kernel (of dimension 1) is the subspace generated by (9} respectively. Therefore we have the
following result.
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Theorem 6.3, For ¢ given £ € N taken —2f or 2841 and 1 < p < £ — 1, then the polynomial
eigenfunctions of

DP — y(1—y)P" +(C—yU)P' —VP,

with

0_((’””/2“) ! ) U — (n+2)1, v_(p 0)

1 (n/2+1) G n—p

have eigenvalues —w(w +n+ 1} —p or —w(w +n+ 1} — n + p, with w € Ny; in both cases the
degree of the polynomial is w with leading coefficient a multiple of (§) or (1), respectively.

7 The inner product

(Given a finite dimensional irreducible representation m of X in the vector space V; let (C{G} &
End(V; )% be the space of all continuous functions & : G — End(Vj) such that &k gks) —
(k1 }®@(gn(ks} for all g € G, k1, ks € K. Let us equip V; with an inner product such that
m{k} becomes unitary for all ¥ € K. Then we introduce an inner product in the vector space
(C(G) @ End(V, })**¥ by defining

(1, Bs) — fG tr(®1(9)®3(g)")dg,

where dg denote the Haar measure on ( normalized by fG dg — 1, and where ©5(g}* denotes
the adjoint of ®5(g} with respect to the inner product in V.

By using Schur’s orthogonality relations for the unitary irreducible representations of G,
it follows that if ®; and ®5 are non equivalent irreducible spherical functions, then they are
orthogonal with respect to the inner product {-,-), i.e.

(@1, ®2) — 0.

Recall that, given an irreducible spherical function @ of type 7 of the pair (&, K}, the function
®{a(s}) is scalar valued when restricted to any SO(n — 1}-module (see (3.1} for a{s}}. We shall
denote by m the number of SO{n — 1}-submodules of w, and by di,ds,. .., dn the respective
dimensions of each one of those submodules.

In particular, if &, and ®, are two irreducible spherical functions of type m € K, we consider
the vector valued functions Hi(y} and Hz(y} given by the diagonal matrix valued functions
®1{a(s)) and P2(a(s)) (see Remark 3.7}, with y — (coss + 1}/2, respectively, denoting

Hi(y) — (), hn®))s  Holy) — (AW, Fn®))
Proposition 7.1. If ®,, ®, are two srreducible spherical functions of type m € K then

(n—11 2 &

(1, ®3) — — 2w,

Zd / (y(1 — )™ h(y) fi(y)dy,

with w. — 1 if 1 is even and w, — 2 if n is odd.

Proof. Let A — expRI, 1, be the Lie subgroup of & of all elements of the form

a(s) —expslopin— | O coss sins |, selR,
0 —sins coss

where I, denotes the identity matrix of size n — 1.
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Now [12, Theorem 5.10, p. 190] establishes that for every f € C(G/K} and a suitable cons-
tant e,

L)/Kf(QK)dQK — ﬁ(/M ([; 5*(G(5))f(ka(s)K)a’ns) o,

where dgi and dkps are respectively the invariant measures on G/K and K /M normalized by
fG,/K dgrg — fK,/M dkps — 1 and the function 4, : 4 —+ R is defined by

S.(als)) — H |sinisv{Iniin)l,
rent

with X1 the set of those positive roots whose restrictions to g, the Lie algebra of A, are not
zero. In our case we have §,(a(s)) — |sin™ ! 5.
To find the value of ¢, we consider the function f =1, having then

1— 20*/ sin™* sds.
0

Since

2

e 1 n—2 .
sin™ L sds — — sin"?scoss 4+ —— [ sin™ °ds,
n—1 n—1

we obtain that, for n — 2£ or 2441,

& —2n—4 —24+1 7
/ sin™ L sds — = n LB + / sin™ % sds.
0 n—1ln—-3 n-2042 ],

Therefore

(n—111 1
(n -2 2w,

Cx

withw, —mforn — 2f and w, — 2 for 2¢ 4+ 1.
Since the function ¢ — tr(®1(g)}®2(g)"} is invariant under left and right multiplication by
elements in K, we have

(@, 2) — [ x(@ughale) ) 2. [ s otr (@1 ale)Bafals) ) s
If we put y — +{cos s + 1) for 0 < s < 7 we have

br (@1 (a(s)ofa())) i el D)
Then _

{©1,Bs) — de. idz /01(4@;(1 — N 2 hi(y) fily)dy,

and the proposition follows. a
Proposition 7.2. If &1, ®; € (C°°(GQ) ® End(V, )X %% then

(AD, ®s) — (D1, AD,).
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Proof. If we apply a left invariant vector field X € g, to the function on & given by g —
tr(®1(g}®2(g}"}, and then we integrate over < we obtain

0—/tr((X‘I’ﬂ(g)‘I’z(gJ*Jngr/tr (P1{gl(XD2)(g)"} dg.
G G

Therefore (X ®1,®2) — —{(®1, X®3). Now let 7 : g — gc be the conjugation of gc with
respect to the real linear form g. Then —r extends to a unique antilinear involutive * operator
on D{G} such that (D1D2)* — DD for all Dy, Dy € D{(G). This follows easily from the fact
that the universal enveloping algebra over C of g is canonically isomorphic to D{G}. Then it
follows that (D®,, &) — (&1, D*®5).

Finally, it is easy to verify that A* — A, [ ]

7.1 Spherical functions as polynomial solutions of DP = AP

Let us consider 5? the differential operator on (0,1} introduced in Corollaries 5.1 and 5.2:

y(1 —y)H"(y) + ;nu o H )+ 222 (p -n 0

4y(1 —y) 0 -p
(1-2y} /0 p—mn

Recall that the operator D that appears in (6.3} extends the differential operator D — DL
to the whole real line, where

T(y) — (291_1 le_l)

is the matrix function given in (6.1} and used in Theorem 6.2.
We want to focus our attention on the following vector spaces of C?-valued analytic functions

on (0,1}

) #6)

Sy —{H - H{y): DH _ )\H, H(=5t) analytic at s — 0},
Wy — {P — P(y): DP — AP, analytic on [0, 1]}.

From Theorem 6.2 we know that the correspondence P — WP is an injective linear map
from W), into 5. Now we want to prove that this map is bijective.

Theorem 7.3. The linear map P+ WP is an isomorphism from W), onto S),.

Proof. A vector valued function P € W), is an eigenfunction of the hypergeometric operator D.
Since it is analytic at ¥ — 1 it is determined by P(1}, therefore dim(W,} — 2.

On the other hand, if H € 5 then there is a function F'(s} analytic at s — 0, such that it
extends the function H(S5tl) defined on (0,7). Then, F satisfies the following differential
equation

" coss _, 1+cos?s (fp—n 0O
F (S) + (ﬂ B 1) sinsF (S) + sin? s ( 0 —p) F(S)
coss [0 p—mn
-2 F(s) — AF
o (O PO e - ARG,

or equivalently

sin® sF(s) + L in(2s)F(s) + (2 — sin® ) (p " _Up) F(s)
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~9coss (_Op i ”"“) F(s) _ Asin? sF(s), (7.2)

Let a; € C? and o, 85,75 € C, for § = 0, be the Taylor coefficients of F', sin, sin? and cos at
s — O

F(s)—Zajsj? sins—Zo:jsj?

J=0 Jj=l
F'(s) — Za.j+1(j +1)s7, sin? s — Z B8;8,
>0 iz2
F'(s) = ajpa(f +2)(j+1)s/,  coss—> ys
=0 J=0

Therefore, from (7.2} we have

§—2 41 B
> [Z Bi—romio(k + 2)(k + 1) + ’””Tl Y 27 Fay papi(k+1) + (p . n _0 )

i=0 L0 k0 P

(zaj Z,sj kak) _2(0 p- ’“) Z% kak] EENYS lz,sj kak]

iz0 k=0

Hence, since 8 — a; — vy — 1, we have that

{j(j — 1)+ (n - 1)j+2 (p_“ _p_”ﬂ aj

p p
is a linear combination with matrix coefficients of {ag, @1,...,@;_1}; it is clear that for j — 1 and
7 > 2 the matrix above is non singular, therefore {ag,a;} determine completely the sequence
faj}ij=p. Also it is clear that when j — 0 or 2, that matrix has nullity 1. Therefore we can
conclude that dim(S)} — 2. The theorem follows. [

Theorem 7.4. Let H be the C?-valued analytic function on (0,1) given by an irreducible sphe-
rical function © on G of fundamental K-type (1,...,1,0,...,0} € C!, with p ones, 0 < p < £.
If P _ U 1H, then P is polynomial.

Proof. We know that the function H is analytic in (0, 1}, and from Corollary 5.1 we know that
it is an eigenfunction of the operator D (see (7.1}). Also we know that the function H{t5=4)
is analytic at s — 0, since ®(a(s)} it is. Therefore from Theorem 7.3 the function P — U1 H is
an analytic eigenfunction of D on the closed interval [0, 1].

If we introduce the following matrix-weight function V' — V(y} supported on the interval [0, 1]

V) - - (§ D),

with w, — 7 if n is even and w, — 2 if n is odd, then from Proposition 7.1 we have

(g, B1) — /0 H3 (5)V (5) H () .

It follows from Propositions 7.1 and 7.2 that Disa symmetric operator with respect to the
inner product defined among continuous vector-valued functions on [0, 1] by

(v, Ho)y — /0 H (4)V () Ha()dy.
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Then, since D — 1]?_151]?? we have that D) is a symmetric operator with respect to the inner
product defined among continuous vector-valued functions on [, 1] by

1
(P, Pyyw — /0 P ()W () Pu(3)dy,
where
W _— Io*Vr,

Actually, we have that (W, D} is a classical pair in the sense of [7], see also [2]. As the weight W
has finite moments there exists a sequence {Q),},>¢ of 2 x 2 matrix-valued orthonormal poly-
nomials, such that DQ, — Q»A- where A, is a real diagonal matrix (for precise definitions and
general facts on matrix-valued orthogonal polynomials see [5] and [2]}.

Let {e1, ez} be the canonical basis of C2. Then

1
(@res, Queshw — € ( /O QZ(yJW(yJQ:(dey) e etsyile; — b b

Therefore, for 7 > 0, 7 — 1,2, {Q.¢;} is a family of C?-valued orthonormal polynomials such
that

D(Q.e;) — (DQrYe; — (QrAv)e; — Qu(Avej) — M(Quej),

where A, — diag(\l, A2).
Now we write our function P — ¥ 1H as P — > . jQr€;, where a,; — (P, Qe;)w. Since P
i
is analytic on [0, 1] the sum converges not only in the Z2-norm but also in the topology based

on uniform convergence of sequences of functions and their successive derivatives.
Therefore,

AP —DP — 3" ariMQue;.

™uf
Then ar; — 0 if A A A Since dim W, — 2 it follows that P is a polynomial. ]

Remark 7.5. It is easy to see from (5.1} and (5.2} that the dimensions of the AM-submodules of
the fundamental representation of X with highest weight of the form (1,...,1,0...,0}, with p
ones, are given by

J {n—1} 4 {n— 1}
T -Dm-p) 7T plln-1-pV
therefore the weight W is given by

T (n—2w, pl(n — p)! 0 n—p

with w, — 7 if n is even and w, — 2 if n is odd. Then, W is a scalar multiple of

(p@y —1P+n—p n{2y — 1) )
n(2y — 1) (n—p)2y -1’ +p)
Even more, since ¢ < p << £ and n — 24,24 41 it follows that p £ n — p. Then it can be proved

that the weight W does not reduce to a smaller size, i.e., there is not any invertible matrix M
such that M*W (y}M is diagonal for all y € [0, 1].
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For a given fundamental K type m € SO{n), n — 2f or 2/ + 1, with highest weight of the
form (1,...,1,0,...,0) € C with p ones (0 < p < £}, let ®,, 5 denote the irreducible spherical
function of the pair (SO(n + 1), SO(n)) given by 7 € SO(n 4 1) with highest weight of the form
(w+1,1,...,1,6,0...,0) with p — 1 ones.

Therefore, combining (6.2}, Theorems 6.3 and 7.4 we have the following statement.

Theorem 7.6. Given w € Ny, every trreducible spherical function ©y, 5 of the pair (SO(n + 1},
SO(n)), withn — 20 or 20+ 1, of type my, — (1,...,1,0,...,0) € C* with p ones (0 < p < £),
corresponds to a vector valued function P, s (§ — 0,1), which is a polynomial of degree w; and
the leading coefficients of P,y and P, are multiples of (}) and (V) respectively. Precisely

L
Pusly) = > SIC; T3V + NP s(0)
i—0 7

with
- (" ay)s v v=(f 1),
L I WO S A
Even more, the value of P, 5(0) can be computed.
Proof. It only remains to prove that P, 5{0} can be computed.

Let us consider the case § — (. 'We know from (6.2} and Theorem 6.3 that there is some
c € C such that

(G U3V 4+ X Puo(0) — (3) |

Since [C;U;V + Alw is invertible, this ¢ is univocally determined by the condition ®(e} — I,
which implies

T(1) Z jl![C; U; V4 Al Pup(0) — G) .
i—0

Similarly, we can prove the same for Py, 1(0}. [ |

Remark 7.7. It is worth to observe that for w, w' > 0 and 6,8" — 0,1, since {P,, 5, Py 5 )w —
(@5, Do 50), we have that if (w,d} £ (w', 8’} then

{Pus, P st jw — O

Therefore, our construction encodes all equivalent classes of irreducible spherical functions of
a fundamental K-type of highest weight X,, 0 < p < £, in the orthogonal set of C%-valned
polynomials { P, 0, Puw1}. The degree of Py and Py 1 is w, and the leading coefficient is
a multiple of (§) or {{}, respectively.
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8 Matrix valued orthogonal polynomials

8.1 Matrix valued orthogonal polynomials

In this subsection, given n of the form 2£ or 2£ + 1 with £ € N, for a fixed 0 < » < £ we
shall construct a sequence of matrix-valued polynomials { £, b0 directly related to irreducible
spherical functions of type m € SO(n) of highest weight m, — (1,...,1,0...,0} € C¢ with p
ones.

(;iven a nonnegative integer w and § — 0,1, we can consider ®,, s, the irreducible spherical
function of type 7 associated with the irreducible representation 7 € Sb(ﬂ+ 1} of highest weight
of the foom m, — (w+1,1,...,1,4,0,...,0} with p — 1 ones.

We insist on recalling that, since 7 has only two SQ(n — 1}-submodules, we can interpret the
diagonal matrix-valued function ®,, s(a(s}}, s € (0,7}, as a 2 column vector function.

Now we consider the vector-valued function

Pw,5 : (U? 1) — (CZ

given by the vector function P, 5(y} — U {y}®, s(a(s)), with cos(s} — 2y — 1. Then, we define
the matrix-valued function

Pw—Pw(y);

whose §-th column (§ — 0,1} is given by the C%-valued polynomial P, 5{y).
Let consider the matrix-valued skew symmetric bilinear form defined among C™ 2x 2 matrix-
valued functions on [0,1] by

e - | 0 )W) Py,
o]
where

(n—1)!'2 (n—1)! njz (P2 =1 +n—p n(2y — 1)
W“‘m—zw;hﬂn_@ﬂﬂl—w)’ ( n(2y — 1) (ﬂ_@@y_32+g)

see Remark 7.5. Then we state the following theorem.

Theorem &8.1. The matriz-valued polynomial functions P,, w > 0, form a sequence of or-
thogonal polynomials with respect to W, which are eigenfunctions of the symmetric differential
operator D in (6.3}. Moreover,

D&_&me 0 )

0 Alw, 1)
where
Maw, 8) — —w{w+n+1)—p af §—10,
—w{w+n+1l}—n+p f §—1

Proof. From Theorem 6.2 we have that the 4-th column of P, is an eigenfunction of the
operator D) with eigenvalue A{w, 8}, see (6.2} and (6.3}. Therefore we have

DP, — PyAy,

with

Aw — (A@g? 0) )\(18?1)) '
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From Theorem 7.6 we know that each column of P, is a polynomial function of degree w and,
even more, that P, is a polynomial whose leading coefficient is a nonsingular diagonal matrix.
Given w and ', non negative integers, by using Remark 7.7 we have

(P, Pu)w — / Po(yy W (y) P (y)du — > / (Pus(yy Wy} Py s(y)du) Es 5
0 550070

1
— D duwdss ( /0 Pw,a(y)*W(y)Pwnaf(y)du) Es 5

5,50

1 1
a3 fo (P s (5)*W () Pavs (), ) B,

which proves the orthogonality. Even more, it also shows us that (P, FP.y)w is a diagonal matrix.
Also, making a few simple computations we have that

(DP?-U?P?.U’> - 5w,w’<Pw?Pw’>Aw - 5w,w’A*w<Pw?Pw’> - <Pw?DPw">;

for every w, w' € Ny, since A,, is real and diagonal. This concludes the proof of the theorem. B

9 The SO(2¢ + 1)-type with highest weight 2X,

In this section K — SO(2f + 1}. We will focus on the particular case when the K-type is given
by an irreducible representation 7w with highest weight 2X; — (1,1,...,1}. We will first see that
guch K-module is the direct sum of three AM-submodules, and we will find similar results to those
obtained for the fundamental K-types A1,..., Ay that are direct sum of two M-submodules.

Let us consider the irreducible X-module A*(V), with ¥V — C", n — 2£ + 1. The vector
v — (e] —ieg} A (eg —ieq} A A {eg_1 — Tegp} is the unique, up to a scalar, dominant vector
and its weight is 23, — (1,1,...,1}.

It is not difficult to see that A*(V) is the sum of three M-irreducible submodules, namely

AV —VieVyeV, (9.1)

with respective highest weights (1,...,1),(1,...,1,0},(1,...,1,—1}) € C* and having Vp —
AU V) Ae, and Vi @ Vo = ALC™Y).
The vectors

v — (€1 —dez} A ez —ieq} Ao A{ew—1 — e},
vy — —(e1 —7eg} Aes —ieq} A - Aegp_g —degp o) Mey,
v_1 — (€1 —iex} A (ez —deq} A -+ A (ep—1 + ie20}

are M-highest weight vectors in V1, Vp and V_1, respectively. Also let us call /1, £y and P
the respective projections on V1, Vj and V_,, according to the decomposition (9.1}.
In order to obtain the explicit expression of E in (3.2} we are interested to compute

n—l1

> i) Bet(Ing)|y, — Alr, ),
i—1

with 7,5 — 1,00, —1 corresponding to the three M-submodules V1, Vi and V_; of the representa-
tion .
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I[f1<j<Z, then

_ . 0 if kL7,
T {Ln,25—1 )} (€281 — P21 ) — . s j
—e, if k—j,
_ . 0 it kL7,
?'T(fn,zj)(ezk—l —iegp) — 4 . * j
ie, i k—j

therefore, it is easy to see that Pof(ln2j-1)vg — Pot(In2jjvg — O and that Poa(Znoj—1jvs —
Poir{lni}vs — 0 when s £1 and r = 1; Le.

A0,0) — A(—1,-1} — A(L, -1} — A(—1,1} — A(1,1} — 0.
Furthermore, it is easy to see that, for 1 < § < £ and r equal to 1 or —1, we have
(L2510 )P0 (Tn2j—1 Yor + T Ln2j )P0 {Ln 2 Jor — —vr,

then A(—1, 0} — A(1, 0} — —£. Therefore, it only remains to compute

£

> (i Tn 21} Pt (Ln g1 Yoo + 7 {(In 25} Peit (In Yoo}
i1

for s — £1.
To obtain Pyi(Z, vy it is necessary to decompose (1, 1 }vy according to the direct sum (9.1).
We know that #(X_,—,)n € V1 and #(X_;4e,)v—1 € Vo1, recall that

Xocjmep — Inp1pj1 — Ioppy +1{Inp125 + Lopnj—1),

Xeirep — Loe—125—1 + Do oj +i{Iop—125 — Top2j—1),
see (2.2). We have

T Xe;—ep ) (€2j-1 — €25} — —2(e0_1 + T3y},

T (X _e;—ep) (€201 — €30} — 2 (e9j_1 + €9},
Tr (X_Ej_sf) (egp—1 —iegp} — 0, for k- Ls,4.

Therefore, for 1 << § < £,
TAXejmep) 01 — 2(e1 —d€2) A A (€2(0-1)-1 — G€3(0-1)) A (€251 + Fey)

— 2(8]_ — ’iEQJ A A (Egj_g — ’iEQj_Q) M (Egg_l + ’B'EQEJ M (EZj—f—l — i82j+2)/\
SRR (EZE—I - ’3823)

Similarly, for 1 < 7 < £,
T (X_Ej—f'ff) v — 2(8]_ — ’B'EQJ Mo (82(2—1)—1 — iez(g_l)) M (Egj_]_ + ’B'EQJ;)

+ 2(8]_ — ’iEQJ A A (Egj_g — ’iEQj_Q) M (Egg_l + ’B'EQEJ M (EZj—f—l — i82j+2)/\
A (e — degp).

Hence, for 1 < j < £, we have
_??: (fr (X—E:J—Ef) v+ (X—Eﬁff) ’“—l)

— (&1 —dea} A Aleguor)—1 —degp_n)) Aej — T{1n25)00,
b (Xoeymad) 1+ (Koeyper) )
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—(e1 —deg) Ao Aegp_ny—1 — g1y} A e — T Ly 51 ).
Then, for 1 <j < £,
T (Inpj—1) PLit (I pj—1)vo — %ff (Ingjr} T {X_g;—e,) 01
— %(el —deg} A A e N A (eg(g_l)_l — éeg(g_l)) A enp,

i (In2g) Pr (Inog) vo — Gt (L) 1 (Xogymey) w1
. _%(el _ ,3’82) P e?j—l Mo A (82(2—1)—1 — ’B’EZ(E_U) M €.

Therefore, for 1 << § < £,

T (Inpj—1) Prit (L pj—1)vo + 7 {(Ln gy y oo PLr (Ln 25 ) v — —%’UO.
Besides, for 7 — £ we have

(L2 g — %(—ful +v_1} and T{Lp 20—1 )00 — %(’Ul +v_1}.
Therefore, since

7t (Ine) Prv(Lnoe)vg — — 70 (Lnne) w1 — — 210,
T (In,Zﬁ—l) Pli'.l'(fnsgg_l)’vo — %ﬂ' (Iﬂ,?f—l) v — _%,UO?

we have that

n—l1
: : £+1
Zﬂ' {(IngyPri(Injjvg — — 5 v,
i
ie.
£+1
A0,1) - —21 2
Analogously we obtain
£4+1
A0, ~1) — —— 12,
2
Hence
0 —£ 0
(AT, s)}—1<rs<1 — —HTI 0 _HTl
0 —£ 0

Therefore, we obtain a more explicit version of Corollary 3.6 using (3.2} and Remark 3.8,

Confront Corollary 5.2.

Corollary 9.1. Let ® be an irreducible spherical function on G of type m € Sb(ﬂ), n—2041.
If the highest weight of T is of the form (1,...,1) € C¢, then the function H : (0,1) — C3

associated with © satisfies DH — MH, for some A € C with

-7 [ }]
e 1 1— 293211
BH —y(1— g)H'(5) + 2n(l —2)H () + 2" T 0 41 0 ) HE)
2 49(1_9) 0 0 ¢
[ —f [
1-—2
e )

2?-}(1 - y) 02 ¢ 0
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9.1 Spherical functions of SO(2£ + 1)-type 2,

Let n — 2/ + 1, we now focus on the spherical functions ®,, 5 of type m, — (1,...,1) € C?t,
which are associated with the irreducible representations of SO({n + 1} of highest weights of the
form mp41 — (w+1,1,...,1,6} € C**! such that the following pattern holds

w41 1 ... 1 )
1 ... o1 -1

As before we make the function ¥ whose columns are given by the spherical functions ®g g,
§ — —1,0,1. When w — 0, this is calculable using [24, p. 364, equation (8)}] or alternatively by
considering the G-modules A“(C™T1) — V; @ V_; and A*(C™1) — V{ and working in the same
way that we already did in the beginning of Section 6 for the 2 x 2 cases (here V;, for t — 1,0, —1,
are the irreducible G-modules with highest weights (1,...,1,) e C&1),

Therefore, if coss — 2y — 1 we have

& —i5

e 1 e
Tyy— | 1 %(e‘is +e %) 1
e—?,S 1 e?,S
2y — 1+ 2i+/y — y° 1 2y — 1 — 2i+/y —?
_ ( 1 2 — 1 1 ) .
% —1-2y—1y> 1  2—1+2iy—1?

Fach column of ¥ satisfies the differential equation given in Corollary $.1. And it is easy to
check that we have

¢ 0 0
1 1—2y)%+1
1 - H @)+t o)+ LT o ) )
2 4@(1 —E‘-}) 0 0 _f
a_2y [ 0, ¢ 0O —¢—-1 0 0
Ty 0 -HL Uy Ty 0 —£ 0
A N R 0 0 —£-1

Theorem 9.2. The function U can be used to obtain a hypergeometric differentiol equation
Jrom the one given in Corollary 9.1. Precisely, if H is a vector-valued solution of the differential
equation in Corollary 9.1, with eigenvalue X, then P — U H is g solution of DP — AP, where D
15 the hypergeometric differential operator given by

DP _y(1—y}P"+(C—yU)P' - VP,

with
(n+2)/2 1/2 0
C( 1 (n+2}/2 1 )? U—(n+2)1,
0 1/2 (n+2)/2

—£—-1 0 0
V— 0 —£ 0 :
0 60 —£-1

Proof. Let us write H — TP, Then

y(l — y)PN + (2y(1 — y)llf_lllff + ;(1 — Qy)f) P
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a2 [ —f 0 0
+ gt y(l—y)@”—l—ﬁ(l—Zy)lI'f—l—M 0 —4—-1 0 |V¥
2 4y(1—y) _
0 0 {
0 —£ 0
72(1 = %) _Hl o L] g | P_AP
y(1— y) 0 ¢ 0
Now we compute
n (n+2}/2 1/2 0
25(1 — )T~ 1 51— 2] — —(n+ 2yl + 1 (n+2)/2 1 :
0 1/2 (n+2}/2
Therefore
(n+2}/2 1/2 0
y(1—y)P"+ | —(n+ 2yl + 1 (n+2)/2 1 P’
0 1/2 (n+2}/2
—£—-1 0 0
+ 0 —£ 0 —A | P01
0 0 —£-1
This completes the proof of the theorem. a

‘We obtain a similar result to Theorem 6.3, with an analogous proof:

Theorem 9.8. For ¢ given £ € N let n — 20+ 1, then the nonzero polynomial eigenfunctions of

DP — y(1—y)P" +(C—yU)P' —VP,

with
(n+2)/2 1/2 0
C — 1 (n+2}/2 1 ) U—(n+2)1,
0 1/2 (n+2)/2
—£—-1 ¢ 0
V— 0 7 0 ,

0 60 —£-1

have eigenvalues —w(w +n+ 1} — £ or —w(w+n+ 1} — £ — 1, with w € No. In both cases
the degree of the polynomaal is w and the leading coefficient can be any multiple of (g) or any

linear combination of (é) and (%), respectively.

Let us consider :D: the differential operator on (0,1} introduced in Corollary 3.1

DH —y(1 — o) H"(y) + ;ﬂ(l —2y)H'(y)

B 5 —f 0 0 B 0 —£ 0
—(14 Ziy) +1 0 —£—-1 0 H(y)—l—iz(l 1 2y) —E—g—l 0 —E;—l H{y).
E‘-}( _y) 0 0 ¢ ?—!( _y) 0 ¢ 0

Recall that the operator D) that appears in Theorem 9.3 extends the differential operator D —
UDT! to the whole real line.
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We want to focus our attention on the following vector spaces of C-valued analytic functions

on (0,1}

Sy —{H—-H(y): DH — )\H, H(=#t1} analytic at s — 0F,
Wy — {P — P(y): DP — AP, analytic on [0,1]}.

From Theorem 9.2 we know that the correspondence P — WP is an injective linear map
from W) into S. In fact, ¥((coss + 1}/2} is analytic as a function of s and P is analytic at
y — 1, hence H{{coss+1}/2} — (FPP}H(coss + 1}/2} is analytic at s — (.

Then, we have an analogous result to Theorem 7.3, whose proof is quite similar and therefore
we will omit it.

Theorem 9.4. The linear map P+ WP is an isomorphism from W, onto 5.

Now, we can easily make a proof similar to that one of Theorem 7.4 in order to obtain next
theorem.

Theorem 9.5. Let H be the C*-valued analytic function on (0,1} given by an srreducible sphe-
rical function ® on SO(2£+ 2} of fundamental SO(20 + 1)-type (1,...,1) € Ct. f P — T 1H,
then P is polynomial.

For a given fundamental K-type m € SO(n), n — 2¢ + 1, with highest weight (1,...,1) € C%,
let ®,,; denote the irreducible spherical function of the pair (SO{n + 1},S0(n)} given by 7 €
SO(n + 1) with highest weight of the form (w+1,1,...,1,6) e C&L § — —1,0,1.

Now, combining Theorems 9.3, 9.5 and the expression of the eigenvalue A, (w, é} given in (6.2}
we have the following statement.

Theorem 9.6. Given w € N, every irreducible spherical function @, 5 of the pair (SO(n + 1},
SO(n)) withn — 2041, of type m,, — (1,...,1) € C¢, corresponds to a vector-valued func-
tion Pys (w > 0, 6 — —1,0,1}, which is o polynomial of degree w. The leading coefficients

of Py ts o multiple of
binations of (é) and (

and the leading coefficients of Py 1 and Py are both linear com-

. Precisely

[ty
S o T Y

L
Pos(y) — > L0 U3V + AL P s(0),

o7
with
(n+2)/2 1/2 0
C— 1 (n+2)/2 1 )
0 1/2 (n+2)/2
—£—1 0 0
U—{n+2}1, V— 0 7 0 ,
0 0 —£-1
A — A, ) — —w(w+n+1)—4£ if 6—0,
—ww+n+1}—£—-1 i §—£1

Even more, the value of P, 5(0) can be computed.
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Proof. It only remains to prove that P, 5{0} can be computed.
Let us consider the case § — (. 'We know from (6.2} and Theorem 9.3 that there is some

¢ € C such that

0
[C;U V4 Ay Pup(0) —c | 1
0

Since [C;U; V 4 A]w is invertible this ¢ is univocally determined by the condition ®({e} — I which
implies

w 1

1
@(1)ZE[C;U;V+A]ij,0(U)— 1
i—0" 1

Now let us consider the cases § — £1. We know from (6.2} and Theorem 9.3 that
1 0
[C3U3V + Aw by s(0) € < 0],]0 > ;
0 1

since [C;U; V 4 Ay, is invertible, this condition tells us that P, 5{(} belongs to a plane which

contains the origin and does not depend on 4.
Besides, the condition ®,, 5{e} — I, for § — £1, tells us

1 111w
1111 ZE[C;U;VJrA]ij,a(U)-
1 1 1 1/ j—-0

Then, P, 5{0} belongs to a plane, parallel to the kernel of
1 1 1y w 1
111 ZE[C;U;VJFA]J-,
1 1 1/ -0

which does not contain the origin and does not depend on 4. Therefore we know that both
Py, 1(0} and Py _1(0) are in the same straight line.
On the other hand, recall that we have

coss+1 coss—+ 1
bl (P55 (12T,

where
a(s} — | © coss sins |
0 —sins coss
then

d i 0 —i
—| Pla(s))— | 0 © 0 |P,s(1)
ds|, g

s — 0 1
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From [24, p. 364, equation (8)] we can easily compute £®,, s(a(s)) at s — 0, which is obtained
by looking at the action of 7(f.41,} and considering the corresponding projection, see (2.1};
having then

. -1 i 0 N w
Pkt A I I N LG UV + X3 P s(0).
144 1 . . ] = 4! :
—i 0 %/ j-0

This last condition establishes that P, 1(0)} and P, _1(0} are in two different and parallel
planes, and the line mentioned above does not belong to any of them since each plane has to
intersect it. Therefore the values of P, (0} and P, _1(0) are univocally determined. [

9.2 Matrix-valued orthogonal polynomials of size 3

In this subsection, given n of the form 24 4+ 1 with £ € N, we shall construct a sequence of
matrix-valued polynomials { P, }w>o directly related to irreducible spherical functions of type
1 € SO(n) of highest weight m, — (1,...,1) € C*

(iiven a nonnegative integer w and 6 — —1,0, 1, we can consider ®,, 5, the irreducible spherical
function of type 7 associated with the irreducible representation 7 € Sb(ﬂ+ 1} of highest weight
of the form m, — (w+1,1,...,1,4}.

We insist on recalling that, since m has only three SO(2f}-submodules, we can interpret the
diagonal matrix-valued function ®.s(a{s}}, s € (0,7}, as a 3 column vector function.

Now we consider the vector-valued function

Pys: (0,1) —C?

given by the vector function P, s(y} — ¥ (y)}®,, s(a(s)), with cos(s}) — 2y — 1. Then, we define
the matrix-valued function

Pw—Pw(y);

whose -th column (§ — —1,0,1) is given by the C*-valued polynomial B, 5(y).
Let consider the matrix-valued skew symmetric bilinear form defined among continuous 3 x 3
matrix-valued functions on [0, 1] by

(P,Q)w — /0 Q" ()W (y) Py)dy,

where the 3 x 3 weight-matrix W is given by

(n — 1)l i 00
Wiy — w1 - PP [ 0 d 0] T(y)
{n—2}1 0 0 ds
with
(22 + 1)) (22 + 1))
h—ds -y B apr oy
and

2y — 1+ 2i+/y — y° 1 2y — 1 — 2i/y — 42

Ty} — 1 2y —1 1
2 —1-2y—1y> 1  2—1+2iy—1?

Let us recall that, from Proposition 7.1, we have

1
(fI)w,&(I)w’ﬁ’) —A\ P?_j,éw(y)Pw",é’dy'
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1 01
Remark 9.7. Notice that W reduces to a smaller size: if M — ( 0 /2 0) we have
-1 01

MWM — =S - 9)
2d1(2y — 1) + ds di(2y — 1} + da(2y — 1}/v/2 0
x | di(2y — 1)W2 +do(2y — 1}/+/2 dy + do(2y — 1)?/2 0
0 0 di8(y — )

Then we state the following theorem.

Theorem 9.8. The motriz-valued polynomial functions By, w > 0, form a sequence of ortho-
gonal polynomials with respect to W, which are eigenfunctions of the symmetric differential
operator D from Theorem 9.2. Moreover,

Aw,—1) 0 0
DB, _ P, 0 Mw,0) 0 |,

0 0 Alw, 1}
where
— 1} — f 8 —
)\(w?c‘i) . ’LU(’LU +n+ ) P Bf O?
—w{w+n+1y—n+p f §—+£1.
Proof. The proof is completely analogous to the proof of Theorem 8.1 a
Appendix

Proof of Proposition 3.2. For || sufficiently small A(s, ¢} is close to the identity of K, i.e. to
the identity matrix [,. So we can consider the function
B(s, t)? N B(s,t)®

2 3 ’

X(s,t) — log(A(s,t}) — B(s, 1) — (9.2)

where B(s,t} — A(s,t} — I,. Then

A {(X{(s, £}
it

m{A(s, £)) — mlexp X (s,1)) — exp £ (X(s,8}} — >

iz0

Now we differentiate with respect to ¢ to obtain

05 (58] 30 (38 o0 ()
+ it (%_)t{) (X + Hi(X)r (%—f) (X) + g (X)* (%)f) +-o. (9.3)

Since X{(s,0) — 0, if we differentiate (9.2} with respect to ¢ and evaluate at (s,0) we obtain

aZ(TToA) PX i (8X 2
‘ 982 1o "o L_O '

and 8

To compute Bt o we differentiate (9.2} and we get

o 2

X 8B (0B L. (dB\ /@B _, ,.[0B |0/ OB
8t_8t_2(8t)8_28(8t)+3(8t)8+3B ot ) BB 5 )+
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Since B(s, 0} — (0 we have

0X o8 04

Ot lto Ot o Ot 10
We also get

X

9%A
Ot2 ‘t_() B2 L_

A N’
0 (8t L_o) '

Now we will first consider the case A(s,f} — k(s,#}. A direct computation yields to

0 0 0 0 0
—sinssint sin® s cost
Ok 0 {1—cos? s cos? £)3/2 0 (1—cos? s cos? £)3/2 0
— — |0 0 0 0 0],
ot 0 —sin? scost 0 —sinssint 0
{1—cos? s cos? £)3/2 (1—cos? s cos? £)3/2
0 0 0 0 0
in particular 8k‘t 0 sullsf’”f Differentiating once more with respect to ¢ and evaluating at

¢ — 0 we obtain 2 8t2 m(Eﬂ + Enx}. Then we get

2l —

82}1‘ (8_A

2
1

k] I _ By ———1I%. 0.

Ot2 lz_o ot 3—0) 311123( + o) sin?s ™ 0

Similarly when A(s,t} — h(s,f} we obtain

0 0 0 0 0
0 —sin scos? scost sint 0 —coascostsin? s 0
Oh (1—cos? s cos? t)3/2 (1—cos? s cos? t)3/2
-—_— 10 0 0 0 o,
ot 0 cos scostsin® s 0 —sinscos? scostsint 0
(1—cos? s cos? £)3/2 (1—cos? s cos? £)3/2
0 0 0 0 0
in particular %}; ‘t_o —80T, g Differentiating once more with respect to ¢ and evaluating at
t — () we obtain %E_O ;0;' j 5+ Enn). Then we get
A fA 2 (3052 s cos? s
—2‘ — | = - (EJ'J' + Enn} — —fﬁd — 0
Ot2 g Ot 1t sin® s
Proposition follows. a
Acknowledgements

This paper was partially supported by CONICET, PIP 112-200801-01533 and SeCyT-UNC.

References

[1] Cooper A., The clagsifying ring of groups whoss clagsifying ring is commutative, Ph.D. Thesis, Massachusstte
Institute of Technology, 1975,

[2] Duran A.J., Matrix inner product having a matrix symmetric sscond order differential operator, Rocky
Mountarn J. Math, 27 (1997}, 585 600.

[3] Fulton W., Harrie J., Representation theory. A first course, Graduate Tewts m Mathematics, Vol. 129,
Springer-Verlag, New York, 1991,



Spherical Functions of Fundamental K-Types Assoclated with the n-Dimensional Sphere 41

[4] Gangolli R., Varadarajan V.8., Harmonic analysis of spherical functiong on real reductive groups, Ergebnisse
der Mathematsk und threr Grenzgelrete, Vol 101, Springer-Verlag, Berlin, 1988,

[5] Grimbaum F.A., Pacharoni I., Tirao J., Matrix valued spherical functions associated to the complex pro-
jective plane, J. Funct. 4nal 188 (2002}, 350 441, math RT/0108042.

[6] Grimbaum F.A., Pacharoni I, Tirao J., Matrix valued spherical functions associated to the thres dimensional
hyperbolic space, Internat. J. Math., 13 (2002}, 727 784, math RT /0203211,

[7] Grimbaum F.A., Pachareni I., Tirao J., Matrix valued orthogonal polynomials of the Jacobl type, Indag.
Math. (N.5.) 14 (2003}, 353 366.

[8] Grimbaum F.A., Pacharoni I, Tirao J., Matrix valued orthogonal polynomials of Jacobi type: the role of
group representation theory, Ann. Inst. Fourter (Grenoble) 55 (2005}, 2051 2068,

[9] Grimbaum F.A., Tiraoc J., The algebra of differential operators associated to a weight matrix, Integral
Eguations Operator Theory B8 (2007}, 449 475,

[10] Heckman G., van Praijsgen M., Matrix valued orthogonal polynomials for Gelfand pairs of rank one,
ard{iv:1310.5134.

[11] Helgason 5., Differential geometry and symmetric spaces, Pure and Applied Mathematics, Vol. 12, Academic
Press, New York London, 1962

[12] Helgazon 8., Groups and geometric analysis. Integral geometry, invariant differential operators, and spherical
functions, Mathematical Surveys and Monographs, Vol 83, Amer. Math. Soc., Providence, RI, 2000.

[13] Knop F., Der Zentralisator einer Liealgebra in siner einhiillenden Algebra, J. Reine Angew. Math. 406
(1990}, 5 9.

[14] Koelink E., van Projjssen M., Roméan P., Matrbevalued orthogonal polynomials related to (SU(2}) x
SU(2},diag}, Tnt. Math., Res. Not. 2012 (2012}, 5673 5730, arXiv:1012.2719,

[15] Koelink E., van Projjssen M., Roméan P., Matrbevalued orthogonal polynomials related to (SU(2} x
SU(2), diag), 11, Publ. Res. Inst. Math. Sci. 49 (2013}, 271 312, arXiv:1203.0041.

[16] Pacharoni I., Romén P., A sequence of matrix valued orthogonal polynomials associated to spherical fune-
tions, Constr. Approz. 28 (2008}, 127 147, math RT /0702494,

[17] Pacharoni I., Tirac J., Thres term recursion relation for spherical functions associated to the complex
projective plans, Math. Phys. Anal. Geom. T (2004}, 193 221.

[18] Pacharoni I., Tirao J., Matrix valued orthogonal polynomials arising from the complex projective space,
Constr. Approx. 25 (2007}, 177 192,

[19] Pacharoni 1., Tirao J., Onestep spherical fanctions of the pair (SU(n + 1}, Uln}}, in Lie groups: stroc-
ture, actions, and representations, Progr. Math., Vol. 306, Birkhiuser /Springer, New York, 2013, 309 354,
ar?iv:1209.4500.

Pacharoni 1., Zarridn 1., Matrix ultraspherical polynomials: the 2 x 2 fundamental cases, ar¥iv:1309.6902.
Tirac J., Spherical functions, Rev. Un. Mat. Argentina 28 (1977}, 75 98,

Tirao J., The matric-valued hypergeometric equation, Proc. Natl. Acad. Seci. USA 100 (2003}, 81538 3141,

Tirac J., Zurridn 1., Spherical functions: the spheres ve. the projective spaces, J. Lie Theory 24 (2014),
147 157, arXiv:1207.0024,

[24] Vilenkin IN.J., Klimyl A.1J., Representation of Lie groups and special functions. Vol. 3. Clagsical and quan-
tum groups and special functions, Mathematics and tts Applications (Soviet Sertes), Vol. 75, Kluwer Aca-
demic Pablishers Group, Dordrecht, 1992,

[25] Zurridn 1., Funciones Esféricas Matriciales Asociadas a las Esferas y a log Espaciog Proyectivos Reales,
Ph.D. Thesig, Universidad Nacional de OCérdoba, 2013, available at http://www2.famaf . wmc.edu.ar/
publicacicnes/decuments/serie_d/DMat 78, pdf, arXiv:1306.6531.



