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Algebraic functions in quasiprimal algebras
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A function is algebraic on an algebra A if it can be implicitly defined by a system of equations on A. In this
note we give a semantic characterization for algebraic functions on quasiprimal algebras. This characterization
is applied to obtain necessary and sufficient conditions for a quasiprimal algebra A to have every one of its
algebraic functions be a term function. We also apply our results to particular algebras such as finite fields and
monadic algebras.
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1 Introduction

Let A be an algebra and let ti(x1, . . . , xn, z1, . . . , zm), si(x1, . . . , xn, z1, . . . , zm) be terms, for i = 1, . . . , k.
Suppose that for every (a1, . . . , an) ∈ An the system of equations

t1(a, z) = s1(a, z)
...

tk(a, z) = sk(a, z)

has a unique solution b ∈ Am. One such system on A implicitly defines m functions f1, . . . , fm : An → A by
letting (f1(a), . . . , fm(a)) be the unique b ∈ Am such that

ti(a, b) = si(a, b), for i = 1, . . . , k.

We call a function f : An → A algebraic on A if it can be implicitly defined by a system in the above described
manner. There are many natural examples of algebraic functions. For instance, let D = (D,∧,∨, 0, 1) be a
complemented distributive lattice, and consider the complementation operation c : D → D. This function is
implicitly defined by the system

x ∧ z = 0

x ∨ z = 1,

and thus is algebraic on D.
Algebraic functions have some appealing properties, and are an interesting choice as expanding operations.

The authors have investigated the subject of algebraic functions for general algebras (see [3]) as a natural devel-
opment of their study of axiomatizability by sentences of the form ∀∃! ∧ p = q (see [2]).

A finite algebra A is called quasiprimal if the ternary discriminator, dA : A3 → A defined by

dA(a, b, c) =

{
a if a 6= b
c if a = b,

is a term operation of A.
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In the current note we provide a complete characterization for algebraic functions on quasiprimal algebras
(Theorem 3.2). We apply this result to several particular cases such as finite fields and monadic algebras, and to
describe those quasiprimal algebras in which every algebraic function is a term-function.

2 Preliminaries

Throughout this note an algebra is a model of a first order language without relation symbols. Let A be an
algebra. We write CloA to denote the set of term-functions of A.

Let γ be an inner isomorphism of A, that is, an isomorphism between subalgebras of A. We say that a
function f : An → A preserves γ if Dom(γ) is closed under f , and for any a1, . . . , an ∈ Dom(γ) we have
γf(a1, . . . , an) = f(γ(a1), . . . , γ(an)).

EFD-sentences and algebraic functions

An equational function definition sentence (EFD-sentence for brevity) in the language L is a sentence of the form

∀x1 . . . xn∃!z1 . . . zm
k∧

i=1

si(x, z) = ti(x, z),

where si, ti are L-terms, n,m ≥ 0. In this note we are only concerned with EFD-sentences having m ≥ 1, so in
the sequel we assume that EFD-sentences have at least one existential quantifier. Let ϕ be as in the display above
and suppose A � ϕ, the function defined by ϕ in A is the map

An → Am

a 7→ the only b ∈ Am such that
∧k

i=1 si(a, b) = ti(a, b).

We write [ϕ]A to denote this function, and if πj : Am → A is the jth canonical projection, let [ϕ]Aj = πj ◦ [ϕ]A,
for j = 1, . . . ,m. After introducing this notation we have an easy way to identify algebraic functions, in fact:

Remark 2.1 A function is algebraic on A if and only if it is of the form [ϕ]Aj , for some EFD-sentence ϕ that
holds in A.

For a more thorough account on the basic properties of algebraic functions we refer the reader to [3]. One
elementary fact we do need to mention is:

Lemma 2.2 Let ϕ be an EFD-sentence such that A � ϕ, and let B ∈ S(A). Then B � ϕ iff [ϕ]A(Bn) ⊆ Bm.
Recall that a clone on a set A is a set of operations of finite arity on A which contains all projections and is

closed under composition. Of course, the term-functions on an algebra A form a clone on A.
As shown in [3], the set of algebraic functions on A is a clone, which we denote by Cloalg A. It is easily seen

that CloA ⊆ Cloalg A.
We shall need the following:
Lemma 2.3 Let A be any algebra and let f1, . . . , fk ∈ Cloalg A.

(1) There is an EFD-sentence ϕ such that A � ϕ and

f1, . . . , fk ∈ Clo(A, [ϕ]A1 , . . . , [ϕ]Am).

(2) Cloalg (A,f1, . . . , fk) = Cloalg A.

P r o o f. (1). Let ϕi = ∀x1 . . . xni
∃!z1 . . . zmi

εi(x, z) be such that [ϕi]
A
1 = fi, for i = 1, . . . , k, and let

n = max{ni : i = 1, . . . , k}. If we take

ϕ = ∀x1 . . . xn∃!z11 . . . z1m1
. . . zk1 . . . z

k
mk

ε1(x, z11 , . . . , z
1
m1

) ∧ . . . ∧ εk(x, zk1 , . . . , z
k
mk

)

it is clear that ϕ has the desired property.
(2). First note that Cloalg (A,f1, . . . , fk) = Cloalg((A,f1, . . . , fk−1), fk), thus it suffices to prove the case
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k = 1. Let f ∈ Cloalg (A,f1) and let ϕ = ∀x∃!z ε(x, z) be an EFD-sentence of the expanded language such that
f = [ϕ]

(A,f1)
1 . By means of a routine inductive argument we can suppose w.l.o.g. that each term occurring in ϕ

is either a variable or a basic operation applied to variables. Take ψ = ∀y∃!w δ(y, w) such that f1 = [ψ]A1 . Let
ε′(x, z, u1) be the formula obtained by taking the first occurrence of a term of the form f1(v1, . . . , vn) in ε(x, z)
and replacing it by a new variable u1. Next, take

ϕ′ = ∀x∃!zu1 . . . ul ε′(x, z, u1) ∧ δ(v1, . . . , vn, u),

where u2, . . . , ul are new variables. Observe that [ϕ′]
(A,f1)
1 = f and ϕ′ has one less occurrence of f1 than ϕ.

Thus, it can be proved by induction that there is an EFD-sentence λ in the language of A such that [λ]A1 = f .

Quasiprimal algebras

Recall from the Introduction that a quasiprimal algebra is a finite algebra having the ternary discriminator as a
term-operation. We shall need the following characterization of quasiprimal algebras by A. Pixley:

Theorem 2.4 ([7]) For a finite algebra A the following are equivalent:

(1) A is quasiprimal.

(2) If f : An → A, with n ≥ 1, preserves all inner isomorphisms of A then f ∈ CloA.

3 Main results

A fixed-point subalgebra of A is a subalgebra of A having as its universe the fixed-point set of an automorphism
of A. A class of models C has the finite intersection property if given A ∈ C and A ⊇ B,C ∈ C, such that
B ∩ C 6= ∅, then B ∩ C ∈ C. Before we can state our main result we need to introduce a closure operator on
S(A). Given F ⊆ S(A) we define K(F) to be the smallest subset of S(A) such that:

- F ⊆ K(F)

- all trivial subalgebras of A are in K(F)

- K(F) is closed under fixed-point subalgebras

- K(F) has the finite intersection property

- K(F) is closed under isomorphisms relative to S(A).

Lemma 3.1 Let A be a quasiprimal algebra, and let F ⊆ S(A). Then, there is an EFD-sentence ϕ such that
F = Mod(ϕ) ∩ S(A) if and only if K(F) = F .

P r o o f. We prove the nontrivial direction. Since K(F) = F , Theorem 1 of [4] says that there is a finite set Σ
of ∀∃!-sentences such that F = Mod(Σ) ∩ S(A). A detailed inspection of the way the sentences of Σ are built
in the proof of the aforementioned theorem shows that the matrix of each one of these sentences is satisfiable
by trivial algebras. (For this to be true it is a key fact that all trivial subalgebras of A are in F .) Now, by the
well known translation result for quasiprimal algebras [8], we can obtain a set Σ′ of EFD-sentences such that
Mod(Σ′) ∩ S(A) = Mod(Σ) ∩ S(A) = F . Finally, it is a routine exercise to check that the conjunction of
EFD-sentences is logically equivalent to an EFD-sentence.

We are now ready to present our characterization of algebraic functions in quasiprimal algebras.

Theorem 3.2 Let A be quasiprimal, and let f : An → A with n ≥ 1. T.f.a.e.:

(1) f is algebraic on A.

(2) There are f1, . . . , fm−1 : An → A such that:

(a) every trivial subalgebra of A is closed under f, f1, . . . , fm−1, and
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(b) if B,C are subalgebras of A such that f(b), f1(b), . . . , fm−1(b) ∈ B for every b ∈ Bn, and γ : B→ C
is an isomorphism, then f, f1, . . . , fm−1 preserve γ.

(3) f preserves isomorphisms between members of K(A).

(4) f ∈ Clo(A, [ϕ]A1 , . . . , [ϕ]Ak ) for some EFD-sentence ϕ such that Mod(ϕ) ∩ S(A) = K(A).

Furthermore, if ϕ is any EFD-sentence satisfying Mod(ϕ) ∩ S(A) = K(A) then

Cloalg A = Clo(A, [ϕ]A1 , . . . , [ϕ]Ak ).

P r o o f. (1)⇒(2). This is easy.

(2)⇒(3). Let F = {B ∈ S(A) : f(b), f1(b), . . . , fm−1(b) ∈ B, for every b ∈ Bn}. It is straightforward to
check that K(F) = F , and since A ∈ F we have K(A) ⊆ F . Thus (3) follows.

(3)⇒(4). Lemma 3.1 produces an EFD-sentenceϕ such that Mod(ϕ)∩S(A) = K(A). Let Ae = (A, [ϕ]A1 , . . . , [ϕ]Ak ).
Observe that from Lemma 2.2 we have S (Ae) = K(A), and so f preserves inner isomorphisms of Ae. Thus, by
Theorem 2.4, f is a term-function of Ae, and we have proven (4).

(4)⇒(1). Direct from Lemma 2.3.
Finally, observe that the only fact used about ϕ in (3)⇒(4) is that Mod(ϕ) ∩ S(A) = K(A), thus (1) and (4)

are equivalent for any such ϕ, proving the furthermore part.

Interestingly, a result almost identical to the above holds for a class of algebras broader than that of quasiprimal
ones.

Corollary 3.3 Suppose A is a finite algebra having the discriminator as an algebraic function. Then (1)-(3)
of Theorem 3.2 are equivalent for A, and these three conditions are equivalent to

(4′) f ∈ Clo(A, [ϕ]A1 , . . . , [ϕ]Ak ) for some EFD-sentence ϕ such that Mod(ϕ) ∩ S(A) = K(A) and dA ∈
Clo(A, [ϕ]A1 , . . . , [ϕ]Ak ).

Furthermore, ifϕ is any EFD-sentence satisfying Mod(ϕ)∩S(A) = K(A) and dA ∈ Clo(A, [ϕ]A1 , . . . , [ϕ]Ak ),
then

Cloalg A = Clo(A, [ϕ]A1 , . . . , [ϕ]Ak ).

P r o o f. Observe that the proofs of (4)⇒(1)⇒(2)⇒(3) of Theorem 3.2 are valid for any algebra A. We
prove (3)⇒(4′). Let A∗ be the expansion obtained from A by adding the ternary discriminator as a basic op-
eration. Since A and A∗ have the same subalgebras and inner isomorphims it is clear that K(A∗) = K(A).
So, Theorem 3.2 says that there is an EFD-sentence ψ such that Mod(ψ) ∩ S(A∗) = K(A∗), and f ∈
Clo(A∗, [ψ]A

∗

1 , . . . , [ψ]A
∗

k ). By (2) of Lemma 2.3, the functions [ψ]A
∗

1 , . . . , [ψ]A
∗

k are algebraic on A, and
now by (1) of the same lemma, there is an EFD-sentence ϕ such that

f ∈ Clo(A∗, [ψ]A
∗

1 , . . . , [ψ]A
∗

k ) ⊆ Clo(A, [ϕ]A1 , . . . , [ϕ]Am).

It remains to check that Mod(ϕ) ∩ S(A) = K(A). Clearly, K(A) ⊆ Mod(ϕ) ∩ S(A), since A � ϕ. Finally, if
B ∈ Mod(ϕ)∩S(A), from the inclusion in the display above it follows that B is closed under [ψ]A

∗

1 , . . . , [ψ]A
∗

k .
Thus, by Lemma 2.2,

B∗ ∈ Mod(ψ) ∩ S(A∗) = K(A∗).

and hence B ∈ K(A).
The furthermore part is proved exactly as in Theorem 3.2.
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Recall that the quaternary discriminator on a set A is the function

sA(x, y, z, w) =

{
z if x = y,
w if x 6= y.

Each discriminator is obtainable from the other as a term-operation [1]. Thus for any algebra A we have

sA ∈ Cloalg A⇐⇒ dA ∈ Cloalg A.

As shown in [5], it is possible to describe those algebras in which the quaternary discriminator is mono-
algebraic, i.e., algebraic and definable by an EFD-sentence with only one existential quantifier.

Theorem 3.4 ([5]) Let A be a finite algebra and letQ be the quasivariety generated by A. The following are
equivalent:

(1) The quaternary discriminator is mono-algebraic on A.

(2) Q has equationally definable relative principal congruences, and every non-trivial subalgebra of A is a
relatively simple member of Q.

So Corollary 3.3 applies to all algebras satisfying (2) of Theorem 3.4.
To give a quick example, let 3 be the simple 3-element de Morgan algebra. It is easy to see that the quasivariety

generated by 3 coincides with the variety generated by 3, and it is well known that this variety has equationally
definable principal congruences. Now, 3 has no proper automorphisms, so K (3) = {3} and it follows that every
finitary operation is an algebraic function on 3 (cf. Proposition 4.3 below).

4 Applications and examples

Quasiprimal algebras without new algebraic functions An interesting application of Theorem 3.2 is the
following:

Theorem 4.1 Let A be a quasiprimal algebra. The following are equivalent:

(1) If f : An → A, with n ≥ 1, is algebraic on A then f ∈ CloA.

(2) S(A) = K(A).

P r o o f. (1)⇒(2) For the sake of contradiction suppose there is B ∈ S(A) \K(A). As K(A) is closed under
non-empty intersections, there is a smallest C ∈ K(A) such that B ⊆ C. Let b1, . . . , bn be an enumeration of
B, and let a ∈ C \B. Define f : An → A by

f(x) =

{
γ(a) if γ(b) = x and γ is an isom. between members of K(A),
x1 otherwise.

To see that f is well defined suppose γ(b) = δ(b). Observe that by the minimality of C we have that C ⊆
Dom(γ) ∩ Dom(δ), thus we may actually assume C = Dom(γ) = Dom(δ). Now B ⊆ Fix(δ−1 ◦ γ) ∈ K(A),
and so C ⊆ Fix(δ−1 ◦ γ). Clearly this yields γ(a) = δ(a).

Next we prove that f satisfies (3) of Theorem 3.2. We only show that f preserves the universes of algebras
in K(A). Take D ∈ K(A) and suppose γ is an isomorphism between members of K(A) such that γ(b) ∈ D.
Observe that γ(C) is the smallest member of K(A) containing γ(B). Thus f(γ(b)) = γ(a) ∈ γ(C) ⊆ D. We
conclude that f is algebraic on A, but since f(b) = a /∈ B, f cannot be a term-function.
(2)⇒(1) This follows directly from Theorems 2.4 and 3.2.

For example, let A be a finite set and take A = (A,dA). Since every permutation of A is an isomorphism of
A it follows that K(A) = P(A) = S(A), where P(A) stands for the power set of A. Thus, Cloalg A = CloA.
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Monadic algebras Recall that every finite and simple monadic algebra is of the form M = (M,∧,∨,c , c0, 0, 1)
where (M,∧,∨,c , 0, 1) is a finite boolean algebra and c0 is a unary operation on A satisfying

c0(x) =

{
0 if x = 0
1 if x 6= 0.

Finite and simple monadic algebra are quasiprimal. For proofs of these facts and a more detailed account on
monadic algebras see [1]. It is easy to check that given S a subalgebra of M, there is an automorphism γ of M
such that Fix(γ) = S. Thus, applying Theorem 4.1 yields

Cloalg M = CloM.

It is worth mentioning that this fact was obtained through different means in [3].

Finite fields Let GF(pn) be the finite field of order pn, considered as a model of the language {+,−, ·, 0, 1}.
Note that the term

x(x− y)p
n−1 + z(1− (x− y)p

n−1)

represents the ternary discriminator in GF(pn). It is well known that the automorphism group of GF(pn) is
cyclic and consists of the successive powers of the Frobenius automorphism γ(x) = xp. Also, for each divisor
d of n, GF(pn) has exactly one subalgebra Sd of order pd, which is isomorphic with GF(pd), and these are all
the subalgebras of GF(pn). Now, given d a divisor of n, observe that Fix(γd) = Sd and thus

Cloalg GF(pn) = CloGF(pn).

It is interesting to note that in the case of infinite fields the situation changes as the multiplicative inverse (with
0−1 = 0) is algebraic but not a term-operation. Moreover, in the case of algebraically closed fields of charac-
teristic 0, the multiplicative inverse together with the basic operations of the field generate the clone of algebraic
functions (see [6]).

Two simple De Morgan algebras Let D denote the simple De Morgan algebra with 4 elements. Of course,
the language of D is {∨,∧,−, 0, 1}. Let 2 denote the two-element subalgebra of D, and let c be the complement
operation on D.

Proposition 4.2 For a function f : Dn → D the following are equivalent.

(1) f ∈ Cloalg D

(2) f ∈ Clo (D,c )

(3) f({0, 1}n) ⊆ {0, 1} and f preserves the only nontrivial automorphism of D.

P r o o f. We show first that the ternary discriminator is algebraic on D. Observe that the complement operation
x 7→ xc is algebraic on D since

ϕc = ∀x∃!z x ∧ z = 0 & x ∨ z = 1

holds in D and x 7→ xc = [ϕc]
D. Further observe that the term

t(x, y) = (xc ∨ y) ∧ (x ∨ yc) ∧ (xc ∨ y) ∧ (x ∨ yc)

represents the equality test on (D,c ). That is, t(D,c)(x, y) is 1 when x = y and 0 otherwise. So, the term

(x ∧ t(x, y)c) ∨ (z ∧ t(x, y))

represents dD, the ternary discriminator on (D,c ). Thus dD ∈ Clo (D,c ) ⊆ Cloalg D.
So, we can apply Corollary 3.3 and the fact that K(D) = {D,2} = Mod(ϕc) ∩ S(D) to conclude the

proof.
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Let 3 = ({0, 12 , 1},∨,∧,−, 0, 1) be the three-element De Morgan algebra. For x ∈ {0, 12 , 1} define

bxc =

{
1 if x = 1
0 if x 6= 1.

Proposition 4.3 Every function of finite arity on {0, 12 , 1} is algebraic on 3. Furthermore,

Cloalg 3 = Clo

(
3, b.c , 1

2

)
.

P r o o f. The EFD-sentence

ϕb.c = ∀x∃!z (x = z ∨ (x ∧ x) & z ∨ z = 1)

witnesses the fact that the function x 7→ bxc is algebraic on D. Next, note that the term

t(x, y) = bx ∧ yc ∨ bx ∧ yc ∨ bx ∨ x ∨ y ∨ yc

represents the equality test on (3, b.c), and as in the proof of Proposition 4.2 we obtain d{0,
1
2 ,1} ∈ Clo (3, b.c) ⊆

Cloalg 3.
Clearly K(3) = {3}, and since the only automorphism of 3 is the identity, by (3)⇔(1) of Corollary 3.3 every

f : {0, 12 , 1}
n → {0, 12 , 1} is algebraic on 3.

It is a routine exercise to check that if the discriminator and all constant functions are in the clone of a finite
algebra then every finite operation is in that clone. Since this is true of Clo

(
3, b.c , 12

)
the furthermore part is

proved.
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