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It is well-known that Independence Friendly (IF) logic is equivalent to existential second-
order logic (Σ1

1 ) and, therefore, is not closed under classical negation. The Boolean closure
of IF sentences, called Extended IF-logic, on the other hand, corresponds to a proper
fragment of �1

2. In this article we consider SL(↓), IF-logic extended with Hodges’ flattening
operator ↓, which allows to define a classical negation. SL(↓) contains Extended IF-logic
and hence it is at least as expressive as the Boolean closure of Σ1

1 . We prove that SL(↓)
corresponds to a weak syntactic fragment of SO which we show to be strictly contained
in �1

2. The separation is derived almost trivially from the fact that Σ1
n defines its own

truth-predicate. We finally show that SL(↓) is equivalent to the logic of Henkin quantifiers,
which shows, we argue, that Hodges’ notion of negation is adequate.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Independence Friendly logic (IF, for short), introduced by Hintikka and Sandu [1] and which became part of Hintikka’s
foundational programme for mathematics [2], is an extension of first-order logic (FO) where each disjunction and each
existential quantifier may be decorated with denotations of universally quantified variables, as in

∀x∀y∃z|∀y∃w |∀y[y ≈ z∨|∀x,∀y w ≈ y]. (1)

The standard interpretation of IF is through a variation of the classical game-theoretical semantics for FO: Eloïse’s strategy
function for a position of the form ∃x|∀y,∀zψ or ψ ∨|∀y,∀z χ , under valuation v , cannot depend on neither v(y) nor v(z).
Thus, we say that a sentence ϕ is true in model A (notation, A |�+ ϕ) if Eloïse has a winning strategy on the associated
game; and that it is false (notation, A |�− ϕ) whenever Abélard has a winning strategy.

Now, the fact that Eloïse’s strategy may not take into account all the available information turns the game into one of
imperfect information. Thus, certain formula-structure pairs may have a non-determined semantic game; that is, one in
which neither of the players has a winning strategy. As an example of non-determinacy, consider this formula:

χ1 := ∀x∃y|∀xx 	≈ y. (2)
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It is not hard to see that if A is a model with at least two elements, then A 	|�+ χ1 and A 	|�− χ1. One says that χ1 is
neither true nor false in A.

In game-theoretical semantics, negation is interpreted as a switch of roles, i.e., Abélard plays on Eloïse’s former positions
and vice versa. We use ∼ to denote this form of negation and we refer to it as game negation. For any IF-formula ψ and any
model A, A |�+ ψ iff A |�− ∼ψ (i.e., Eloïse has a winning strategy for ψ on A iff Abélard has one for ∼ψ on A). However,
observe that ψ ∨∼ψ is not in general a valid IF-formula (e.g., take ψ to be χ1 in (2)). This means that game negation in IF
is not equivalent to classical negation, which will be denoted with ¬ and is characterized by

A |�+ ¬ψ iff A 	|�+ ψ. (3)

Since the expressive power of IF corresponds to that of existential second-order logic (Σ1
1 ) [2,3] and Σ1

1 is not closed
under (classical) negation, it is clear that classical negation cannot be defined in IF.

Classical negation plays an important role in Hintikka’s original programme. In [2], he claims that “virtually all of classical
mathematics can in principle be done in extended IF first-order logic” (in a way that is ultimately “reducible” to plain IF
logic). What he calls “(truth-functionally) extended IF logic” is the closure of the set of IF-sentences with operators ¬, ∧
and ∨. Clearly, extended IF logic corresponds in expressive power to the Boolean closure of Σ1

1 , which is known to be a
proper fragment of �1

2 [4,5].
Hodges [6] shows that IF logic admits a Tarski-style compositional semantics and then extends his presentation to ac-

count also for extended IF. To support classical negation, he introduces the flattening operator ↓, which “restores two-valued
logic on sentences” [6, p. 556]. That is, extended IF is obtained, roughly speaking, by considering the formulas where ↓ only
occurs on certain positions (roughly speaking, ∼↓ can occur where ¬ would occur in extended IF logic, see below). But
because ↓ is given a compositional semantics, the logic where it is allowed to occur anywhere in a formula is well-defined.
The natural question to ask is what is the logic one thus obtains, and this is the main topic of this paper.

One might suspect the resulting logic to be extremely expressive: freely combining classical negation with second order
existential quantifiers leads to full second-order logic (SO). We will show that this is not the case: IF with unrestricted
classical negation, in Hodges’ style, corresponds to a rather mild fragment of SO, which is properly contained in �1

2. This
will be the subject of Section 4. The separation from �1

2 is based on known results on truth-definitions for the analytical
hierarchy [7,8] that, for the sake of completeness, are presented in Section 6.

Hodges’ overall presentation is based on a mild extension of IF, called slash logic (SL), in which independence restrictions
can occur in any connective (instead of only on ∃ and ∨). The unique feature of his compositional semantics is that the free
variables are interpreted using a set of variable assignments (called deals), instead of just a variable assignment as in usual
Tarski-style semantics for FO. In his terminology, a trump for a given game is a non-empty set of deals, V , such that some
uniform strategy for Eloïse is winning for every game starting with any v ∈ V . To support classical negation, he extends
slash logic with the flattening operator ↓. If we denote a set of variable assignments with V , its semantics can be given by

A |�+ ↓ϕ[V ] iff A |�+ ϕ
[{v}] for all v ∈ V ; (4)

A |�− ↓ϕ[V ] iff A 	|�+ ϕ
[{v}] for all v ∈ V . (5)

Then one defines ¬ϕ as ∼↓ϕ and it is easy to verify that when restricted to formulas evaluated under a set composed of a
single assignment {v} (we omit the braces for readability), negation behaves as expected:

A |�+ ¬ϕ[v] iff A |�+ ∼↓ϕ[v] iff A |�− ↓ϕ[v] iff A 	|�+ ϕ[v]; (6)

A |�− ¬ϕ[v] iff A |�− ∼↓ϕ[v] iff A |�+ ↓ϕ[v] iff A |�+ ϕ[v]. (7)

It is worth stressing out that the asymmetry in clauses (4) and (5), which in turns reflects in the asymmetry in (6) and (7)
is fine. For instance, if in (5) the 	|�+ were replaced by |�− then one would have that ¬ behaves exactly as ∼. Observe also
that the semantics of ↓ is biased towards falsity: if a sentence ϕ in SL is neither true nor false then ↓ϕ is false. Thus, when
working with ↓, the adequate notion to study is being true (|�+) vs. not true ( 	|�+) instead of being true vs. false. This is
why we will study only the notion |�+ in the context of SL with the operator ↓.

Hodges’ slash logic with flattening (SL(↓)) admits a more convenient second-order game semantics, in which Abélard and
Eloïse play what can be regarded as strategy functions for the standard game for SL. This will be the topic of Section 2; for
a proof of the equivalence with the original compositional semantics, the reader is referred to [9].

Arguably, it could be possible that the semantics given to the flattening operator only made sense when restricted to
sentences. Put in other words, it is not clear a priori that Hodges’ characterization of classical negation for IF is the correct
one. We investigate this in Section 5; we will see that SL(↓) coincides with the logic of Henkin quantifiers. The latter can
be seen as the closure by (classical) negation of the logic in which only one top-level Henkin quantifier can be used, which
is known to be equivalent to IF.

Some of the results contained in the present paper appeared in [10].
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2. Syntax and semantics of SL(↓)

We assume a fixed first-order relational language L, as well as a collection of first-order variables, which we will denote
x, y, z, perhaps with subindices. Formulas of SL(↓), in negation normal form, correspond to the following grammar:

ϕ ::= l(x1, . . . , xk) | ∃xi |ρϕ | ∀xi |ρϕ | ↓ϕ | ↑ϕ | ϕ∨|ρ ϕ | ϕ∧|ρ ϕ (8)

where ρ denotes a (possibly empty) finite set of variables and l(x1, . . . , xk) is any first-order literal (i.e., an atom or a negated
atom). We will typically use ∃xi , ∀xi , ∨ and ∧ instead of ∃xi |∅ , ∀xi |∅ , ∨|∅ and ∧|∅ . Since we are working in negation normal
form, game negation ∼ will be a mapping on formulas satisfying ∼∀xi |ρϕ = ∃xi |ρ∼ϕ; ∼↓ϕ = ↑∼ϕ , etc. Finally, ¬ϕ will be
short for ∼↓ϕ .

Bv(ϕ) and Fv(ϕ) denote the sets of bound and free variables of ϕ , respectively, which are defined as in the classical case
with the proviso that variables mentioned in independence restrictions are considered free; e.g., Fv(∃x|ρϕ)= (Fv(ϕ)\{x})∪ρ
(see [9] for a formal definition). A sentence is a formula with no free variables. A fresh variable for a formula is a variable
that is not bound nor free for that formula [11,12]. In order to give a formal account of the semantics of this logic, we need
to refer to the live variables for a subformula ψ of ϕ (here we assume that ψ denotes not only a formula but a concrete
node in the derivation tree of ϕ). Intuitively, these are the free variables of ϕ plus any variable y that would be bound by
a quantifier if we substituted ψ by y ≈ y in ψ (cf. [13]). Formally, the set Lvϕ(ψ) is defined inductively from top down as
follows:

1. Lvϕ(ϕ)= Fv(ϕ).
2. If ψ occurs in ϕ under � ∈ {∼,↓,↑}, then Lvϕ(ψ)= Lvϕ(�ψ).
3. If ψ occurs in ϕ in the form ψ � χ (resp. χ � ψ ), with � ∈ {∨|ρ,∧|ρ}, then Lvϕ(ψ) = Lvϕ(ψ � χ) (resp., Lvϕ(ψ) =

Lvϕ(χ ′ �ψ)).
4. If ψ occurs in ϕ under Q x|ρ with Q ∈ {∃,∀}, then Lvϕ(ψ)= Lvϕ(Q x|ρψ)∪ {x}.

Remark 1. For the sake of simplicity we will impose a further restriction on formulas: there can be no nested bindings of
the same variable (e.g., ∃x∃xϕ) nor a variable that occurs both free and bound in a formula (e.g., x≈ y∨∃xϕ or ∃x|xϕ). This
is called the regular fragment of SL(↓) [12] and it has simpler formal semantics. The results in this paper apply to the whole
language under the proviso that history-preserving valuations are used instead of standard ones (cf. [9] for details).

We interpret SL(↓)-formulas using first-order models A with domain |A|. We use sets of finite valuations to account for
free variables; the domains of these valuations must be large enough to interpret them all (but they can be larger).

Definition 1. Given ϕ and A, we say that, V , a set of finite valuations over A, is suitable for ϕ iff there is a finite set
D ⊇ Fv(ϕ) such that V ⊆ |A|D and D ∩ Bv(ϕ)= ∅ (cf. [12]). We say that a finite valuation v over A is suitable whenever
{v} is suitable.

We define now the game G(A,ϕ, V ), where A is a model and V is a set of finite valuations over A suitable for ϕ . As is
customary, this game is played between two opponents: Abélard and Eloïse (sometimes called Falsifier and Verifier). There
is also a third agent, called Nature, which acts either as a generator of random choices or as a referee.

The board. Game G(A,ϕ, V ) is played over the syntactic tree of ϕ . There is, additionally, a set of variables D and a place-
holder for a valuation v : D→ |A|. Initially, D is such that V ⊆ |A|D and v is empty. In the syntactic tree of ϕ , all the ∃,
∨ and ↓-nodes of the tree belong to Eloïse; while the ∀, ∧ and ↑-nodes belong to Abélard. Moreover, ∃, ∀, ∨ and ∧-nodes
will be (repeatedly) decorated with functions during the game; the first two admit any function f : |A|D∪Lvϕ(ψ)→ |A|; the
last two, only functions f : |A|D∪Lvϕ(ψ)→{L, R}, where ψ stands for the formula that corresponds to the node in question.
Initially, the nodes have no decoration.

The turns. At any point of the game, the remaining number of turns is bounded by the maximum number of nested occur-
rences of ↓-nodes and ↑-nodes in the game-board.

• The opening turn. The first turn is different from the rest. It is composed of two clearly distinguished phases. In the first
phase, both players decorate all their nodes with suitable functions. The order in which they tag their nodes is not
important as long as they do not get to see their opponent’s choices in advance. For simplicity, we will assume they
both play simultaneously. In the second phase, Nature picks a valuation from V and puts it in the placeholder v and
finally evaluates the outcome of the turn, as described below.
• The subsequent turns. In all but the first turn, the formula tree is of the form ↓ψ or ↑ψ (see next). In these turns, both

players get to redecorate their nodes, one after the other; Eloïse goes first when the formula tree is of the form ↓ψ and
Abélard does so on ↑ψ . Finally, Nature replaces the tree with ψ and proceeds to evaluate.

The recursive evaluation procedure used by Nature is the following:
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R1 If the tree has root ψ , of the form ψ1∨|y1,...,yk ψ2 or ψ1∧|y1,...,yk ψ2, then ψ must have been decorated with a func-
tion f : |A|D∪Lvϕ(ψ)→{L, R}. Nature picks elements a1 . . .ak from |A| and proceeds to evaluate f (v[y1 �→ a1, . . . , yk �→
ak])—by construction {y1, . . . , yk} ⊆ D . That is, the values the player was not supposed to consider are randomly re-
placed prior to evaluating the function provided. The tree is then updated with ψ1, if the result is L, and with ψ2,
otherwise. D and v remain unchanged and evaluation proceeds.

R2 If the tree has root ψ , of the form ∃x|y1,...,yk ψ or ∀x|y1,...,yk ψ , then ψ must have been decorated with a function
f : |A|D∪Lvϕ(ψ) → |A|. Nature picks a1 . . .ak , evaluates b := f (v[y1 �→ a1, . . . , yk �→ ak]) and records this choice by
replacing D with D ∪ {x} and v with v ∪ {x �→ b}. Finally, the tree is updated with ψ and evaluation proceeds.

R3 If the tree is of the form ↓ψ or ↑ψ , the evaluation ends (and so does the turn).
R4 Finally, if the root of the tree is a literal l(x1, . . . , xk), the game ends. Eloïse is declared the winner if A |�FO

l(x1, . . . , xk)[v]; otherwise, Abélard wins.

Remark 2. Let ϕ be ↓- and ↑-free; then game G(A,ϕ, V ) consists of only one turn, but the evaluation phase is essentially
the usual game for SL (and, mutatis mutandis, for IF), except that Abélard and Eloïse are substituted by the (strategy)
functions they already played.

Winning strategies. We will not go into a formal description of what a strategy for G(A,ϕ, V ) is. We simply take it to be a
form of oracle that tells the player how to proceed in each turn. As usual, a strategy is said to be winning for a player if
it guarantees that he or she will win every instance of the game, regardless the strategy of the opponent and the choices
made by Nature.

Definition 2. Let V be a set of finite valuations suitable for ϕ . We define:

• A |�+ ϕ[V ] iff Eloïse has a winning strategy for the game G(A,ϕ, V );
• A |�− ϕ[V ] iff Abélard has a winning strategy for the game G(A,ϕ, V ).

When V = {v} we may alternatively write A |�+ ϕ[v] and A |�− ϕ[v]. Also, for a sentence ϕ we may write A |�+ ϕ and
A |�− ϕ meaning A |�+ ϕ[∅] and A |�− ϕ[∅], respectively, where ∅ is the empty valuation. If V is a set of finite valuation
suitable for ϕ and W consists of extensions of the valuations in V , from A |�+ ϕ[W ] we cannot infer A |�+ ϕ[V ]. This
is due to signaling: the value of a variable a player is supposed not to know is available through the value of another
one (cf. [14,15]). It is shown in [9] that the logic of Definition 2 coincides with Hodges’ compositional semantics for SL(↓)
described in Section 1.

We will work with two different kind of equivalences.

Definition 3 (Equivalence). We say that ϕ1 and ϕ2 are equivalent (notation: ϕ1 ≡ ϕ2) whenever Fv(ϕ1) = Fv(ϕ2), A |�+
ϕ1[V ] ⇔A |�+ ϕ2[V ], and A |�− ϕ1[V ] ⇔A |�− ϕ2[V ], for every A and every set V suitable for ϕ1 and ϕ2.

On the other hand, we resort to a coarser notion of equivalence which only considers singletons V = {v}. We need this
in order to compare SL(↓) with “classical” logics such as second order logic (whose formulas are evaluated in classical
valuations).

Definition 4 (Equivalence on classical contexts). We say that ϕ1 and ϕ2 are equivalent on classical contexts (notation: ϕ1 ≡c ϕ2)
whenever Fv(ϕ1)= Fv(ϕ2), A |�+ ϕ1[v] ⇔A |�+ ϕ2[v] and A |�− ϕ1[v] ⇔A |�− ϕ2[v], for every A and every valuation v
suitable for ϕ1 and ϕ2.

Observe that Hodges shows that for any sentence ϕ , A |�+ ϕ if and only if the meaning of ϕ is nonempty. This is the
same as saying that the empty valuation belongs to the meaning of ϕ . Hence, two sentences ϕ1 and ϕ2 are equivalent if
and only if for any structure A, we have A |�+ ϕ1 iff A |�+ ϕ2.

Proposition 1. Given v, a finite valuation over A suitable for ϕ , we have that A |�+ ϕ[v] iff A |�+ ↓ϕ[v], and that A |�− ϕ[v] iff
A |�− ↑ϕ[v].

Proof. The left-to-right directions hold for all V . For the remaining case, note that Nature’s initial choice of a valuation is
irrelevant in this case, so if a player has a winning strategy playing first, this same strategy can be used for the case where
they play simultaneously. �

To see that Proposition 1 fails when V is not a singleton set, consider |A| = {a,b} and V = {{x �→ a}, {x �→ b}}. It is easy
to verify that for ϕ = ∃y|x[x≈ y] we have A |�+ ↓ϕ[V ] (since Eloïse knows the valuation picked by Nature, she can play a
constant function for her existential) while A 	|�+ ϕ[V ].



1106 S. Figueira et al. / Journal of Computer and System Sciences 80 (2014) 1102–1118
Remark 3. Nodes may get redecorated during the game but only by its owner, that is fixed. Hence it is equivalent to
assume that players decorate only those nodes that are not under nested ↓ or ↑. This way, each node gets decorated only
once. Moreover, whenever one is interested in whether A |�+ ↓ϕ[V ] holds, it may be convenient to consider an equivalent
version of G(A,↓ϕ, V ) in which Eloïse plays functions and Abélard plays elements (until the game reaches a ↑, where the
situation gets reversed). This resembles the perfect-information game for IF given by Väänänen in [16].

Under some assumptions, operators ↓ and ↑ turn a formula that may lead to a non-determined game, into one that
always leads to a determined one. This suggests the following notion.

Definition 5 (Determined). We say that ϕ is determined whenever, for every model A, and every set V suitable for ϕ ,
A 	|�+ ϕ[V ] iff A |�− ϕ[V ]. All such formulas constitute the determined fragment of SL(↓).

Intuitively, determined formulas are those that have a well-defined truth-value on every structure. One would like that
first-order formulas (i.e., those with no independence restrictions) be determined. However this is not the case: the formula
x≈ y is not determined when |A| = {a,b} and V = {{x �→ a, y �→ b}, {x �→ a, y �→ a}}. Here the problem resides in the fact
that first-order (as well as any logic in classical context, say second-order) involves single valuations instead of sets of
valuations. Furthermore, though ↓ “restores two-valued logic on sentences”, it is not true that it restores a two-valued logic
on any first order formula, as ↓(x≈ y) is not determined for A and V defined above.

We restrict Definition 5 in order to guarantee that each first-order formula now behaves as we want, and also to ensure
that ↓ and ↑ “determine” a formula. The idea is to consider not arbitrary V , but singletons V = {v}.

Definition 6 (Determined on classical contexts). We say that ϕ is determined on classical contexts (CC-determined for short)
whenever, for every model A, and every finite valuation v suitable for ϕ , A 	|�+ ϕ[v] iff A |�− ϕ[v]. All such formulas
constitute the CC-determined fragment of SL(↓).

Of course, not every SL(↓) formula is CC-determined. For instance the formula in (2) is not CC-determined. The following
result establishes some sufficient conditions for a formula to be CC-determined:

Proposition 2. The following hold:

1. Every FO formula is a CC-determined formula.
2. ↓ψ and ↑ψ are CC-determined formulas.
3. If ϕ and ψ are CC-determined, so are ϕ∧|∅ψ , ϕ∨|∅ψ , ∃x|∅ϕ and ∀x|∅ϕ .

Proof. For 1, suppose ϕ is an FO formula. If A |� ϕ[v] (i.e. ϕ is true in A under v with the classic first-order semantics) then
Eloïse just plays the winning strategy for the classical game-theoretical semantics for FO, which is a valid winning strategy
for the game G(A,ϕ, v). Hence if A |� ϕ[v] then A |�+ ϕ[v]. Analogously for Abélard: if A 	|� ϕ[v] then A |�− ϕ[v]. Since
either A |� ϕ[v] or A 	|� ϕ[v] holds, ϕ is CC-determined.

For 2, observe that by (4) and (5) we have that A |�+ ↓ϕ[v] iff A |�+ ϕ[v] iff A 	|�− ↓ϕ[v]. Hence ϕ is CC-determined.
For 3, observe that on the one hand, A |�+ ϕ∧|∅ψ[v] iff A |�+ ϕ[v], and A |�+ ψ[v]. On the other hand, A |�−

ϕ∧|∅ψ[v] iff A |�− ϕ[v] or A |�− ψ[v]. Since either A |�+ ϕ[v] or A |�− ϕ[v] is true, and the same for ψ , then one of
A |�+ ϕ∧|∅ψ[v] or A |�− ϕ∧|∅ψ[v] must hold. The case for ϕ∨|∅ψ is analogous.

For ∃x|∅ϕ , observe that A |�+ ∃x|∅ϕ[v] iff there is a ∈ |A| such that A |�+ ϕ[v ∪ {x �→ a}], and A |�− ∃x|∅ϕ[v] iff for
all a ∈ |A| we have A |�− ϕ[v ∪ {x �→ a}]. Since ϕ is CC-determined, one of these two must hold. The case for ∀x|∅ϕ is
analogous. �

As was mentioned in the introduction, the semantics of ↓ is biased towards falsity: if A 	|�+ ϕ[∅] and A 	|�− ϕ[∅] then
A |�− ↓ϕ . Observe that this is a straightforward consequence of Proposition 1 and item 2 of Proposition 2.

3. Normal forms for SL(↓)

Normal forms in the context of SL were initially investigated in [13]. Later, Janssen [14] observed some anomalies which
cast doubt on the correctness of these results. However, it was shown in [12,11,9] that only the formal apparatus employed
in [13] was defective, and not the results per se.

In this section we revisit the prenex normal form results of [13] and extend them to account for ↓ and ↑. For this, bound
variables will be tacitly renamed when necessary1 and the following formula manipulation tools will be employed.

1 While this assumption was considered problematic in the context of [13], it is safe here since we are using regular formulas. Moreover, this can also
be assumed for arbitrary formulas under an adequate formalization (cf. Remark 1).
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Definition 7. Let x1 . . . xn be variables not occurring in ϕ; we denote with ϕ|x1...xn the formula obtained by adding x1 . . . xn
as restrictions to every quantifier, every conjunction and every disjunction in ϕ . Also, we write ϕc for the formula obtained
by replacing all independence restrictions in ϕ by ∅.

Notice that ϕc is essentially an FO formula. As is observed in [13], independence restrictions on Boolean connectives can
be removed by introducing additional quantifications. It is not hard to extend this result to SL(↓). In what follows, we shall
use, for emphasis, ∨|∅ and ∧|∅ instead of ∨ and ∧, etc.

Theorem 3. For every ϕ , there exists a ϕ′ such that ϕ ≡ ϕ′ and every disjunction (resp. conjunction) in ϕ′ is of the form ψ1∨|∅ψ2
(resp. ψ1∧|∅ψ2).

Proof. When restricted to models with at least two elements, a simple inductive argument gives us the desired formula.
The important step is that, given a formula ψ :=ψ1∨|x1...xk ψ2 and given y1, y2 fresh for ψ , we can define

ψ∗ := ∃y1|x1...xk
∃y2|x1...xk

[
(y1 ≈ y2 ∧ψ1|y1,y2

)∨ (y1 	≈ y2 ∧ψ2|y1,y2
)
]
. (9)

Fact 4. On models A with at least two elements, we have A |�+ ψ[V ] ⇔A |�+ ψ∗[V ] and A |�− ψ[V ] ⇔A |�− ψ∗[V ].

Proof. Assume A |�+ ψ[V ]. We transform Eloïse’s winning strategy on G(A,ψ, V ) into a winning strategy of Eloïse for
G(A,ψ∗, V ). Suppose Eloïse plays an {L, R}-valued function f for the outermost node ∨|x1...xk of ψ and let a,b ∈ |A| be
two distinct elements. Then Eloïse plays the following |A|-valued functions g1 and g2 for the outermost nodes ∃y1|x1...xk
and ∃y2|x1...xk

of ψ∗ respectively, and an {L, R}-valued function h for the outermost node ∨ of ψ∗: if f (v)= L then g1(v)=
g2(v) = a and h(v) = L; if f (v) = R then g1(v) = a, g2(v) = b and h(v) = R . The rest of Eloïse’s strategy in G(A,ψ∗, V )

is the one she has in G(A,ψ, V ). Observe that g1(v) and g2(v) can be determined independently of the values of x1 . . . xk
because f (v) is determined in that way. It is not hard to check that these definitions of g1, g2 and h are winning for Eloïse
in G(A,ψ∗, V ).

Assume now that A |�+ ψ∗[V ]. We transform Eloïse’s winning strategy on G(A,ψ∗, V ) into a winning strategy of Eloïse
for G(A,ψ, V ). Suppose Eloïse plays |A|-valued functions g1 and g2 for the outermost nodes ∃y1|x1...xk

and ∃y2|x1...xk
of

ψ∗ respectively. Then we define the function f for the outermost node ∨|x1...xk of ψ as follows: if g1(v) = g2(v) then
f (v)= L; otherwise f (v)= R . Since the value of g1(v) and g2(v) can be determined independently of x1 . . . xk then so is
the determination of the value for f (v). One can check that this definition of f (together with the rest of Eloïse’s strategy
for G(A,ψ∗, V )) constitutes a winning strategy for Eloïse in G(A,ψ, V ).

It is straightforward to see that A |�− ψ[V ] iff A |�− ψ∗[V ]. �
By successively applying this truth-preserving transformation in a top-down manner, one can obtain, for any given ϕ ,

a formula ϕ̃ that is equivalent on models with at least two elements.
On models with exactly one element, restrictions are meaningless. Therefore, for any given ϕ we can define the equiva-

lent formula:

ϕ′ := (∀x∀y[x≈ y] ∧ ϕc)∨ (∃x∃y[x 	≈ y] ∧ ϕ̃
)
. � (10)

Formula (9) in the above proof was taken from [13], except that we have added independences on y1 and y2 to ψ1
and ψ2. This prevents undesired signaling [14,15,12,9] and it was most probably an involuntary omission in [13]. Also, since
we are considering only suitable valuations, the following result in [13] is now true.

Lemma 5. If x does not occur in ψ , then the following hold:

1. ∃x|ρ [ϕ]∨|∅ψ ≡ ∃x|ρ [ϕ∨|∅ψ|x].
2. ∃x|ρ [ϕ]∧|∅ψ ≡ ∃x|ρ [ϕ∧|∅ψ|x].
3. ∀x|ρ [ϕ]∨|∅ψ ≡ ∀x|ρ [ϕ∨|∅ψ|x].
4. ∀x|ρ [ϕ]∧|∅ψ ≡ ∀x|ρ [ϕ∧|∅ψ|x].

The above result is a basic building block for a proof of a prenex normal form theorem. In the case of SL(↓), we also
need to show how to extract ↓ and ↑ from arbitrary formulas.

Lemma 6. The following hold:

1. If ψ is CC-determined, then ↓ψ ≡c ↑ψ ≡c ψ .
2. ↓(ϕ∧|∅ψ)≡c ↓ϕ∧|∅ ↓ψ and ↑(ϕ∧|∅ψ)≡c ↑ϕ∧|∅ ↑ψ .
3. ↓(ϕ∨|∅ψ)≡c ↓ϕ∨|∅ ↓ψ and ↑(ϕ∨|∅ψ)≡c ↑ϕ∨|∅ ↑ψ .
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Proof. Item 1 follows straightforwardly from Proposition 1.
For the first equivalence of item 2, suppose that A |�+ ↓(ϕ∧|∅ψ)[v]; this means that Eloïse has a way of decorating

both ϕ and ψ that guarantees she wins each game. Therefore, we have A |�+ ↓ϕ[v] and A |�+ ↓ψ[v] which implies
A |�+ (↓ϕ∧|∅ ↓ψ)[v]. The right to left direction is analogous, and one thus establishes that A |�+ ↓(ϕ∧|∅ψ)[v] iff A |�+
(↓ϕ∧|∅ ↓ψ)[v]. Moreover, since ↓(ϕ∧|∅ψ) and (↓ϕ∧|∅ ↓ψ) are CC-determined formulas (Proposition 2), this implies A |�−
↓(ϕ∧|∅ψ)[v] iff A |�− (↓ϕ∧|∅ ↓ψ)[v].

For the first equivalence of item 3, suppose that A |�+ ↓(ϕ∨|∅ψ)[v]; this means that Eloïse has a way of deco-
rating either ϕ or ψ (or both) that guarantees she wins the corresponding game. Therefore, we have A |�+ ↓ϕ[v] or
A |�+ ↓ψ[v] which implies A |�+ (↓ϕ∨|∅ ↓ψ)[v]. The right to left direction is analogous, and one thus establishes that
A |�+ ↓(ϕ∨|∅ψ)[v] iff A |�+ (↓ϕ∨|∅ ↓ψ)[v]. Moreover, since ↓(ϕ∨|∅ψ) and (↓ϕ∨|∅ ↓ψ) are CC-determined formulas
(Proposition 2), this implies A |�− ↓(ϕ∨|∅ψ)[v] iff A |�− (↓ϕ∨|∅ ↓ψ)[v].

The second equivalences of items 2 and 3 are dual of the first equivalences of items 3 and 2 respectively. �
Definition 8. An SL(↓)-formula is said to be in prenex normal form if it is of the form Q ∗0�1 Q ∗1�2 . . . Q ∗n−1�n−1 Q ∗n ϕ with
n � 0, where each Q ∗i is a (perhaps empty) sequence of quantifiers, �i ∈ {↓,↑} and ϕ contains only literals, ∧|∅ and ∨|∅ .

Theorem 7. For every SL(↓)-formula ϕ , there exists a ϕ∗ in prenex normal form with ϕ ≡c ϕ∗ .

Proof. By Theorem 3 we can obtain a ϕ′ such that ϕ′ ≡c ϕ and no Boolean connective in it contains independences. We
proceed now by induction on ϕ′ . If ϕ′ is a literal, ϕ∗ = ϕ′ . If ϕ′ = ∃x|y1...yk ψ , we have ϕ∗ = ∃x|y1...yk ψ

∗ and the cases for
ϕ′ = ∀x|y1...yk ψ , ϕ′ = ↓ψ and ϕ′ = ↑ψ are analogous. We analyze now the case for ϕ′ = ψ ∨ χ ; the one for ϕ′ = ψ ∧ χ is
symmetrical.

We need to show that there exists a ϕ∗ ≡c (ψ∗ ∨ χ∗), in prenex normal form. We do it by induction on the sum of the
lengths of the prefixes of ψ∗ and χ∗ . The base case is trivial; for the inductive case we show that one can always “extract”
the outermost operator of either ψ∗ or χ∗ .

The first thing to note is that if ψ∗ = Q x|y1...yk
ψ ′ (Q ∈ {∀,∃}), then using Lemma 5 (renaming variables, if necessary) we

have ϕ∗ := Q x|y1...yk
(ψ ′ ∨χ∗)∗ and the same applies to the case χ∗ = Q x|y1...yk

χ ′ . So suppose now that neither ψ∗ nor χ∗
has a quantifier as outermost operator. In that case, they start with one of ↓ or ↑, or they contain only ∧|∅ , ∨|∅ and literals.
In either case, they are both CC-determined and at least one of them starts with ↓ or ↑ (or we would be in the base case).
If we assume that ψ∗ = ↓ψ ′ , using Lemma 6 repeatedly, we have (↓ψ ′ ∨ χ∗) ≡c (↓ψ ′ ∨ ↓χ∗) ≡c ↓(ψ ′ ∨ χ∗), and we can
apply the inductive hypothesis. The remaining cases are analogous. �

Observe that in the proof above, the formula ϕ∗ obtained is (strongly) equivalent to the given ϕ if there are no occur-
rences of ↓ nor ↑ in ϕ (i.e., ϕ ∈ SL). Moreover, in that case, no ↓ nor ↑ are introduced in the resulting ϕ∗ . Hence, we obtain
the following result (cf. Corollary 10.3 in [12]):

Corollary 8. For every SL-formula ϕ , there exists a ϕ∗ in prenex normal form with ϕ ≡ ϕ∗ .

4. Weak dependencies in second-order logic

It is not hard to encode in an SO-formula the game semantics of a CC-determined formula of SL(↓): quantification over
Skolem functions accounts for the functions that can be played by a player while first-order quantification is used for the
rival’s moves (cf. Remark 3). This will be shown in detail in the proof of Theorem 16 (item 1), but we can now anticipate
an interesting feature of this translation: if ϕ is a formula obtained from it and ∃ f ψ is a second-order quantification that
occurs inside ϕ , then although f formally depends on any previously quantified function g , in practice it only depends on
a finite number of values of such g . This motivates the fragment of SO we are about to introduce which, moreover, will be
shown to coincide with SL(↓) (with respect to |�+).

Assumption 9. In what follows we assume, without loss of generality, that if a variable occurs free in an SO-formula, it
does not also appear bound. We reserve letters f , g and h (probably with subindices) to denote second-order functional
variables; arities will be left implicit. We identify first-order variables with 0-ary second-order variables; letters x, y and z
(with subindices) are to be interpreted always as 0-ary functions ( f , g , etc. could be 0-ary too, unless stated). We also
assume, as is customary, that only FO terms occur in SO-formulas (the occurrence of a proper SO terms as in the formula
f ≈ g for f , g unary may be replaced by ∀x[ f (x)≈ g(x)]).

Definition 10. We say that an occurrence of the functional symbol f is strongly free in an SO-formula ϕ whenever f is free
in ϕ and, if the occurrence in question is of the form f (. . . g(. . .) . . .), then the occurrence of g is strongly free in ϕ too. We
say that f is strongly free in ϕ if all its occurrences are strongly free.
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Example 1. Variable g is strongly free in ∃x[ f (x) ≈ g(y, g(z, y))], while f is not (for x is not, either). Any free first-order
variable is also strongly free.

Lemma 9. Let ϕ be an SO-formula and let g1 . . . gk be strongly free in ϕ . Moreover, let v1 and v2 be interpretations of functional
variables in A such that (i) v1( f ) = v2( f ) for every f ∈ Fv(ϕ) \ {g1, . . . , gk}, and (ii) for every gi(t1, . . . , tm) occurring in ϕ ,
v1(gi(t1, . . . , tm))= v2(gi(t1, . . . , tm)). Then, A |�SO ϕ[v1] iff A |�SO ϕ[v2].

Proof. First we analyze a condition over terms:

Fact 10. If ϕ is quantifier-free and t is a term occurring in ϕ , v1(t)= v2(t).

Proof. By induction on the complexity of the term t . If t is a constant symbol it is straightforward. If t is of the form
h(t1, . . . , tm) (or a first-order variable in case m= 0) then by inductive hypothesis for all i = 1 . . .m we have v1(ti)= v2(ti).
In case h /∈ {g1, . . . , gk}, by clause (i) we have v1(h)= v2(h) and therefore v1(t)= v2(t). In case h = gi for some i then by
clause (ii), we conclude v1(t)= v2(t). �

We now show the statement of the lemma by induction on the complexity of ϕ . Suppose ϕ is of the form P (t1, . . . , tm),
where P is an m-ary relation symbol and t1, . . . , tm are terms. By Fact 10, v1(ti)= v2(ti) and then A |�SO ϕ[v1] iff A |�SO
ϕ[v2]. The Boolean cases for ϕ are straightforward. Finally, suppose ϕ is of the form ∃ f ψ . Observe that if g1 . . . gk are
strongly free in ϕ , then f /∈ {g1, . . . , gk}; furthermore, g1, . . . , gk are also strongly free in ψ . Let v1 and v2 be interpretations
of the variables satisfying the hypothesis and suppose that A |�SO ∃ f ψ[v1]. Then, there exists f̃ such that A |�SO ψ[v1 ∪
{ f �→ f̃ }]. Thus, by inductive hypothesis A |�SO ψ[v2 ∪ { f �→ f̃ }]. Hence A |�SO ϕ[v2]. �

It is well-known that ∀x1 . . . xn∃ f ϕ is equivalent to ∃ f̃ ∀x1 . . . xnϕ̃ , where ϕ̃ is obtained by replacing every occurrence of
a term of the form f (t1, . . . , tk) in ϕ by f̃ (t1, . . . , tk, x1, . . . , xn). The following is a generalization of this idea to strongly
free second-order variables used instead of first-order ones.

Theorem 11. Let g1 . . . gn be strongly free in ϕ and let h, free in ϕ , be such that gi(. . .h(. . .) . . .) does not occur in ϕ . Then, for every
f1 . . . fm free in ϕ , there exists ϕ̃ such that g1 . . . gn are strongly free in ϕ̃; f1 . . . fm are free in ϕ̃ and ∀g1 . . .∀gn∃h∃ f1 . . .∃ fmϕ ≡
∃h̃∀g1 . . .∀gn∃ f1 . . .∃ fmϕ̃ .

Proof. The idea is to move ‘h to the front’ using the fact that h does not depend on all the values of gi , but only on finitely
many of them.

Let T be the set of terms of the form gi(t1, . . . , tpi ), 1 � i � n, occurring in ϕ . Since g1, . . . , gn are strongly free in ϕ ,
for each term gi(t1, . . . , tpi ) ∈ T and for each j ∈ {1, . . . , pi} we have that t j is a term built from constant and func-
tion symbols of the language, from variables occurring free in ∀g1 . . .∀gn∃h∃ f1 . . .∃ fmϕ , and from f1, . . . , fm—observe
that the hypothesis precludes h to occur in t j . Hence h only depends on the terms in T . Suppose T = {s1, . . . , sl}, sup-
pose h has arity k, and consider h̃ of arity k + l. Define ϕ̃ as the result of replacing every occurrence of h(t1, . . . , tk)

in ϕ by h̃(t̃1, . . . , t̃k, s1, . . . , sl), where t̃i is the result of the recursive replacement of h by h̃ in ti , for i = 1, . . . ,k. Since
gi(. . .h(. . .) . . .) does not occur in ϕ , no occurrence of h is left in ϕ̃ . One can see that A |�SO ∀g1 . . .∀gn∃h∃ f1 . . .∃ fmϕ[v] if
and only if A |�SO ∃h̃∀g1 . . .∀gn∃ f1 . . .∃ fmϕ̃[v]. �

In a way, what Theorem 11 says is that a strongly free second-order variable corresponds, in terms of information,
to a finite number of first-order terms. Quantification over strongly free second-order variables introduces only “weak”
dependencies between them. This is formalized in the following definition.

Definition 11. We say that an SO-formula in prenex normal form has weak dependencies if in every subformula of the form
∀g1 . . .∀gn∃ f1 . . .∃ fmϕ (with ϕ 	= ∃hψ ) or ∃g1 . . .∃gn∀ f1 . . .∀ fmϕ (ϕ 	= ∀hψ ), g1 . . . gn are strongly free in ϕ . This notion is
extended to an arbitrary formula ϕ requiring that the prenex normal forms induced by the branches of the derivation tree
of the formula have weak dependencies. We use SOw to denote the fragment of SO-formulas with weak dependencies.

It is immediate that SOw is closed under Boolean operations. Moreover, it is not hard (though perhaps rather tedious) to
verify that it is also closed under some standard transformations:

Proposition 12. Every SOw -formula is equivalent to an SOw -formula with only shallow terms (i.e., if g(t1, . . . , tn) occurs in the
formula, all the ti are first-order variables) and the same number of quantifier alternations. Every SOw -formula is equivalent to an
SOw -formula in prenex normal form, with the same number of quantifier alternations and containing no new terms. Both transforma-
tions are primitive recursive.
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Proof. Let ϕ be an SOw -formula. For the first statement, suppose that for some relation symbol P , the atomic formula
P (. . . g(t1, . . . , tn) . . .) occurs in ϕ , where some ti is not a first order variable. Then define ϕ′ as the replacement of
P (. . . g(t1, . . . , tn) . . .) in ϕ by

∃x1 . . .∃xn

( ∧
1�i�n

xi ≈ ti

)
∧ P

(
. . . g(x1, . . . , xn) . . .

)
,

where x1 . . . xn are fresh variables, or by

∀x1 . . .∀xn

( ∧
1�i�n

xi ≈ ti

)
→ P

(
. . . g(x1, . . . , xn) . . .

)

if the first replacement increases the number of quantifier alternations in the resulting formula. Repeating this process for
every atomic subformula of the form P (. . . g(t1, . . . , tn) . . .) where some ti is not a first order variable, we obtain the desired
equivalent SOw -formula.

The second statement is a straightforward consequence of the following facts, since we only need to show that the
quantifiers can be moved step by step to the front of the formula. Firstly, whenever f is not free in ψ then (Q f ϕ) � ψ ≡
Q f (ϕ � ψ), if Q ∈ {∀,∃} and � ∈ {∨,∧}. Secondly, (Q f ϕ) � ψ is an SOw -formula if and only if Q f (ϕ � ψ) is so. Finally, an
analogous rule for negation holds.

It is routine to check that these two transformations are primitive recursive. �
The natural question now is what is the expressive power of this weak fragment. We provide both upper and lower

bounds.

Proposition 13. Every formula in the Boolean closure of Σ1
1 has an equivalent formula in SOw .

Proof. Take any ϕ ∈Σ1
1 ; ϕ can be rewritten as ∃ f1 . . .∃ fn∀x1 . . .∀xnϕ

′ with ϕ′ quantifier-free which is trivially a formula
in SOw . Moreover, recall that SOw is closed under Boolean operations. �
Proposition 14. There are primitive recursive translations that map any formula in SOw to equivalent Σ1

2 - and Π1
2 -formulas. Hence

SOw is contained in �1
2 .

Proof. We first fix some notation. Suppose

ψ = ∃�h∀�g∃�f1∀�f2∃�f3 . . . Q k
�fk ρ,

where ρ is first order, Q k = ∀ if k is odd and Q k = ∃ otherwise, ∃�h [∀�g] is a possibly empty list of existential [universal]
quantifiers, and ∀�f2n+1 [∃�f2n+2] is a nonempty list of universal [existential] quantifiers, and not all symbols in �fk are 0-ary.
We say that Q i �f i is the i-th misplaced block. Clearly ϕ has no misplaced blocks if and only if ψ is Σ1

2 .
We now turn to the proof. Being SOw closed under negations, it suffices to show a primitive recursive translation from

SOw to Σ1
2 . We actually show that the quantifiers in the prenex normal form of an SOw -formula with shallow terms

(cf. Proposition 12) can be reordered, one at a time, in a top-down manner, leading to a Σ1
2 -formula. That this is a primitive

recursive procedure will be immediate.
Suppose, then, that ϕ ∈ SOw is in prenex normal form, it only has shallow terms and it is not in Σ1

2 -form. We convert ϕ

into a Σ1
2 -formula by induction on 
(ϕ), the sum of the lengths of each misplaced block of ϕ . For the base case, the

transformation is just the identity, as 
(ϕ)= 0 implies that ϕ is a Σ1
2 -formula. For the inductive step, suppose that ϕ is not

in Σ1
2 form, i.e. 
(ϕ) > 0. Consider the least block that is misplaced. There are two possibilities.

1. Not all the symbols of the first misplaced block are 0-ary. Suppose

ϕ = ∃h1 . . .∃hl∀g1 . . .∀gn∃x1 . . .∃xk∃h∃ f1 . . .∃ fmψ,

where k, l,m � 0, n � 1, x1 . . . xk of zero arity and h of non-zero arity. Since we assumed ϕ to have only shallow terms,
gi(. . .h(. . .) . . .) does not occur in ψ . By Theorem 11 we can relocate the misplaced ∃h and obtain the equivalent
formula

ϕ′ = ∃h1 . . .∃hl∃h̃∀g1 . . .∀gn∃x1 . . .∃xk∃ f1 . . .∃ fmψ̃.

Observe that if k +m > 0 the only misplaced block that changes from ϕ to ϕ′ is the first one (all the others remain
the same). In this case the length of the first misplaced block in ϕ has length k +m + 1, while the length of the
first misplaced block in ϕ′ has length k +m. Hence 
(ϕ′) < 
(ϕ). In case k +m = 0 then ϕ′ has one less misplaced
block than ϕ , but in this case it is also true that 
(ϕ′) < 
(ϕ). By inductive hypotheses, we can transform ϕ′ into a
Σ1-formula.
2
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2. All the symbols of the first misplaced block are 0-ary. Here it can be the case that gi(. . . x j . . .) occurs in ψ . Therefore,
suppose

ϕ = ∃h1 . . .∃hl∀g1 . . .∀gn∃x1 . . .∃xk∀ f1 . . .∀ fmψ,

where l � 0,k,m,n � 1, the variables x1, . . . , xk are all first-order, and ψ does not start with ∀. In this case we relocate
the quantifiers corresponding to the second misplaced block. Using Theorem 11 repeatedly (recall that x1 . . . xk are
strongly free in ψ ), we obtain the equivalent

ϕ′ = ∃h1 . . .∃hl∀g1 . . .∀gn∀ f̃1 . . .∀ ˜fm∃x1 . . .∃xkψ̃.

Observe that ϕ′ is an SOw -formula, since ∀g1 . . .∀gn∀ f̃1 . . .∀ ˜fm∃x1 . . .∃xkψ̃ is one too. As one can see all the misplaced
blocks of ϕ′ are also misplaced blocks of ϕ , but ϕ′ has one less misplaced block than ϕ , namely ∀ f1 . . .∀ fm . This
implies that 
(ϕ′) < 
(ϕ) and by inductive hypothesis ϕ can be transformed into an equivalent Σ1

2 -formula.

The proof straightforwardly induces a primitive recursive procedure for converting ϕ into a Σ1
2 -formula. �

It will be shown in Section 6 that any logic that can be translated both to Σ1
n and to Π1

n (n > 1) in a primitive recursive
way (in fact, in an arithmetical way) has a truth-predicate in �1

n (cf. Theorem 25). Hence Proposition 14 implies that the
truth-predicate of SOw lies in �1

2. By Tarski’s Undefinability Theorem such predicate cannot be expressed in SOw , which
gives us the following:

Corollary 15. SOw is strictly contained in �1
2 .

The remaining of this section will be devoted to proving that SOw coincides in expressive power with SL(↓). Of course,
this transfers the expressiveness bounds of SOw to SL(↓).

Definition 12. Let ϕ ∈ SL(↓) and ψ ∈ SOw . We say that ϕ and ψ are equivalent, denoted ϕ
.≡ ψ , whenever for every

structure A and every suitable valuation v , A |�+ ϕ[v] iff A |�SO ψ[v].

Theorem 16. The following hold:

1. For every ϕ ∈ SL(↓), there is a ϕ∗ ∈ SOw such that ϕ
.≡ ϕ∗ .

2. For every ψ ∈ SOw , there is a ψ� ∈ SL(↓) such that ψ� .≡ψ .

For the proof of item 1 of Theorem 16, we will use a Skolemization to show that the existence of a winning strategy for
Eloïse in a game G(ϕ,A, {v}) for a ϕ in prenex normal form can be expressed as SOw -formula. We first motivate this sort
of Skolem form with a short example; so let ψ be quantifier-free, with variables among {x1, x2, x3, y1, y2, y3} and consider

χ2 := ↓∀y1∀y2∃x1|y2↑∃x2|y2∃x3∀y3|x3
ψ. (11)

Assume Eloïse has a winning strategy for G(A,χ2, {v}). Using the simplification of Remark 3 this is the case if and only if
A |�SO χ ′2, where

χ ′2 := ∃ f ∀y1∀y2∀z1∀g∃x2∃x3∃z2[ψσ1] (12)

and σ1 = {x1 �→ f (y1, z1), y3 �→ g(y1, y2, f (y1, z1), x2, z2)} is a substitution of variables by terms.2 Notice that z1 and z2
represent the random choices made by Nature during the evaluation phases; e.g., f (y1, z1) expresses that Nature replaced
the value of y2 by a randomly picked z1 when evaluating x1. Since z1 and z2 do not occur in ψ and y1 and y2 occur
universally quantified, just as g , we have that χ ′2 is equivalent to χ ′′2 , where

χ ′′2 := ∃ f ∀y1∀y2∀g∃x2∃x3[ψσ2] (13)

and σ2 = {x1 �→ f (y1), y3 �→ g( f (y1), x2)}. Of course, one could simplify further and replace g( f (y1), x2) by g(x2), but this
will be discussed in more detail later on.

In order to formalize this transformation, we will use some conventions. First, λ denotes an empty sequence (of quanti-
fiers, of variables, etc.). When describing SL(↓) prefixes we shall use patterns such as

↓∀y1|τ1
∃x1|ρ1 . . .∀yk |τk

∃xk |ρk
�Q ;

it must be understood that not necessarily all the xi and yi are present in the prefix, and that either �Q = λ or else
� ∈ {↓,↑} and Q is a (possibly empty) SL(↓)-prefix.

2 As is customary, we use postfix notation for substitution application.
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Definition 13. Given Q ψ in prenex normal form (ψ quantifier-free), T (Q ψ) is the SO-formula π(↓Q )[ψσ↓Q ] with σ↓Q =
τλ
λ ({},↓Q ), where π(λ)= λ, τα

β (σ ,λ)= σ and

π(↓∀y1|τ1
∃x1|ρ1 . . .∀yk |τk

∃xk |ρk
�Q )= ∃ fx1 . . .∃ fxk∀y1 . . .∀ykπ(�Q )

π(↑∃x1|ρ1∀y1|τ1
. . .∃xk |ρk

∀yk |τk
�Q )= ∀g y1 . . .∀g yk∃x1 . . .∃xkπ(�Q )

τα
β (σ ,↓∀y1|τ1

∃x1|ρ1 . . .∀yk |τk
∃xk |ρk

�Q )= τα′
β ′

(
σ ∪ {

xi �→ fxi

(
α′ \ ρi

)
σ

}
,�Q

)
τα
β (σ ,↑∃x1|ρ1∀y1|τ1

. . .∃xk |ρk
∀yk |τk

�Q )= τα′
β ′

(
σ ∪ {

yi �→ g yi

(
β ′ \ τi

)
σ

}
,�Q

)
.

Here, we assumed α′ := α, y1 . . . yk and β ′ := β, x1 . . . xk .

The reader should verify that, modulo variable names, T (χ2)= χ ′′2 . In particular, substitution application in fxi (α
′ \ ρi)σ

and g yi (β
′ \ ρi)σ account for the introduction of nested terms like g(x2, f (y1)) in (13).

Lemma 17. For every ϕ ∈ SL(↓) in prenex normal form, every model A and every suitable valuation v, A |�+ ϕ[v] iff A |�SO T (ϕ)[v].

Proof. First, observe that A |�+ ϕ[v] iff A |�+ ↓ϕ[v] (Proposition 1). One then can show that, for every ψ in prenex normal
form and every suitable v , A |�+ ↓ψ[v] iff A |�SO T (↓ψ)[v] by induction on the number of turns in G(A,↓ψ, {v}) (i.e., in
the number of ↓ and ↑ occurring in ↓ψ ).

The base case is as follows. Suppose ϕ is of the form

↓∀y1|τ1
∃x1|ρ1 . . .∀yk |τk

∃xk |ρk
ψ,

where ψ is quantifier-free. In the game G(A,ϕ, {v}), Eloïse has a winning strategy if she can decorate her nodes (i.e. those
containing an existential quantifier) such that for any decoration of Abélard’s nodes, she wins the game G(A,ψ, {v}). She
must decorate the node ∃xi |ρi

with an |A|-valued function depending on all the variables in the scope of this node in the
syntactic tree of ϕ . Because of Nature’s action in the evaluation phase, this function turns out to be equivalent to a one
whose value is independent on the values of the variables in ρi . Hence Eloïse has a winning strategy if and only if for
each i, there is a function fxi which depends only on the variables in the context of ∃xi |ρi

except the variables in ρi and
such that for any choice y j of Abélard in his node ∀y j |τ j

, the SO formula

ϕ′ = ∃ fx1 . . .∃ fxk∀y1 . . .∀ykψ̃

is true in A under v , where ψ̃ is the result of replacing xi by fxi (�z), for the adequate �z, as explained above. One can verify
that T (ϕ)= ϕ′ . Observe that all the existential quantifiers are in front of all the universal quantifiers because Eloïse has to
play first (as she owns the initial ↓ node), and Abélard has to do it in second place. Observe also that it suffices to consider
first order universal quantifiers because we are analyzing the case when Eloïse has a winning strategy, and hence Abélard
can play ‘at random’, in the sense that any Eloïse should beat any possible play of Abélard’s (see Remark 3).

The analysis for the inductive step is analogous to the basic case, since the game proceeds in turns which are pairwise
independent—except from the fact that the valuation is extended at each step. In the same way one can show the dual case
of ϕ starting with ↑∃x1|ρ1∀y1|τ1

. . .∃xk |ρk
∀yk |τk

ψ . �
Proof of item 1 of Theorem 16. It follows directly from Definition 13 that for every SL(↓)-formula ϕ in prenex normal form,
T (ϕ) is an SOw -formula (incidentally, also prenex normal form). This, together with Lemma 17, concludes the proof of the
first part of Theorem 16. �

For the proof of item 2 of Theorem 16, we define a translation S that maps SOw -formulas in prenex normal form with
only shallow terms (cf. Proposition 12) to equivalent SL(↓)-formulas. If ψ is quantifier-free, then S(ψ)= ψ . Now, suppose
we are given a formula of the form:

ϕ = ∃g1 . . .∃gn∀ f1 . . .∀ fmψ, (14)

where n > 0, m � 0 and ψ 	= ∀hψ ′ . Every occurrence of gk in ψ is a shallow term gk(t̄k), where, t̄k denotes a tuple
of first-order variables whose dimension is the arity of gk (t̄k = λ when gk is a first-order variable). Since ϕ has weak
dependencies, t̄k can only contain variables free in ψ , including those symbols g1, . . . , gn, f1, . . . , fm of arity zero (i.e.
first-order variables). In particular, by Assumption 9, no variable that is bound in ψ may occur in t̄k .

For k = 1, . . . ,n, let t̄1
k , . . . , t̄lk

k denote all the tuples (of first-order variables) such that gk(t̄
i
k) occurs in ψ . Let U =

{ui
k | 1 � k � n,1 � i � lk} be a set of fresh variables and let σU be a substitution that replaces the term gk(t̄

i
k) by the first

order variable ui
k . Moreover, let Y = { ȳi

k | 1 � k � n,1 � i � lk} be a set of tuples of fresh variables where the dimension of
each ȳi coincides with the arity of gk . We then define S(ϕ) as
k
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S(ϕ)=↓∀ ȳ1
1 . . .∀ ȳl1

1 ∀ ȳ1
2 . . .∀ ȳl2

2 . . .∀ ȳ1
n . . .∀ ȳln

n

∃u1
1|Y \{ ȳ1

1} . . .∃u
l1
1 |Y \{ ȳl1

1 }

∃u1
2|Y \{ ȳ1

2} . . .∃u
l2
2 |Y \{ ȳl2

2 }
. . .

∃u1
n |Y \{ ȳ1

n} . . .∃u
ln
n |Y \{ ȳln

n }
[
ρ ∧ (¬χ ∨ S

(∀ f1 . . .∀ fm[ψσU ]
))]

(15)

where ρ =∧
1�k�n,
1�i�lk

( ȳi
k ≈ ȳ j

k→ ui
k ≈ u j

k) and χ =∧
1�k�n,
1�i�lk

ȳi
k ≈ t̄ i

k .

Observe that if ȳi
k = 〈 ȳi

k(1), . . . , ȳi
k(lk)〉 and ȳ j

k = 〈 ȳ j
k(1), . . . , ȳ j

k(lk)〉 then ∀ ȳi
k is to be read as ∀y1

k (1) . . .∀y1
k (lk) while

formula ȳi
k ≈ ȳ j

k in ρ is short for
∧

1�r�lk
yi

k(r)≈ y j
k(r). The same applies to ȳi

k ≈ t̄ i
k in χ .

There are two key points in the above definition of S(ϕ). One is that the substitution σU eliminates every occurrence
of gk in ψ . The other is that in the recursive use of S we use a less complex SOw -formula (in particular, the ∀-prefix may
be of length zero). The dual case (i.e., that when ϕ starts with a ∀) is analogous.

Lemma 18. If x is a first-order variable and ϕ is an SOw -formula then S(∃xϕ)≡c ↓∃xS(ϕ) and S(∀xϕ)≡c ↑∀xS(ϕ).

Proof. We show S(∃xϕ)≡c ↓∃xS(ϕ). The case when ϕ starts with ∀ is immediate. Suppose ϕ is of the form (14), i.e.

ϕ = ∃g1 . . .∃gn∀ f1 . . .∀ fmψ,

and assume g1 is of arity 0. Using the nomenclature used above, we have that l1 = 1, since the only tuple t̄ such that g1(t)
occurs in ψ is the empty tuple t̄ = ( ); on the other hand, since the dimension of ȳ1

1 coincides with the arity of g1, ȳ1
1 gets

trivialized to the empty tuple of variables. So (15) becomes

S(ϕ)=↓∀ ȳ1
2 . . .∀ ȳl2

2 . . .∀ ȳ1
n . . .∀ ȳln

n

∃u1
1|Y

∃u1
2|Y \{ ȳ1

2} . . .∃u
l2
2 |Y \{ ȳl2

2 }
. . .

∃u1
n |Y \{ ȳ1

n} . . .∃u
ln
n |Y \{ ȳln

n }
[
ρ ∧ (¬χ ∨ S

(∀ f1 . . .∀ fm[ψσU ]
))]

. (16)

Now the first existential quantifier is independent of all the previous variables quantified universally (i.e. those variables
in Y ). Then one can swap the block ∀ ȳ1

2 . . .∀ ȳl2
2 . . .∀ ȳ1

n . . .∀ ȳln
n and ∃u1

1|Y without changing the meaning. So (16) is equiva-
lent to

↓∃u1
1|Y
∀ ȳ1

2 . . .∀ ȳl2
2 . . .∀ ȳ1

n . . .∀ ȳln
n

∃u1
2|Y \{ ȳ1

2} . . .∃u
l2
2 |Y \{ ȳl2

2 }
. . .

∃u1
n |Y \{ ȳ1

n} . . .∃u
ln
n |Y \{ ȳln

n }
[
ρ ∧ (¬χ ∨ S

(∀ f1 . . .∀ fm[ψσU ]
))]

,

which is clearly equivalent in classical contexts to S(∃g2 . . .∃gn∀ f1 . . .∀ fmψ).
The case S(∀xϕ)≡c ↑∀xS(ϕ) is analogous. This concludes the proof of Lemma 18. �

Proof of item 2 of Theorem 16. We prove that A |�SO ϕ[v] iff A |�+ S(ϕ)[v] by induction on the number of quantifier
alternations in ϕ . The property is trivially true when ϕ is quantifier-free, so assume instead that ϕ is of the form (14)—the
dual case being analogous. Clearly, ϕ is equivalent to

∃g1 . . .∃gn∀ ȳ1
1 . . .∀ ȳl1

1 ∀ ȳ1
2 . . .∀ ȳl2

2 . . .∀ ȳ1
n . . .∀ ȳln

n
[¬χ ∨ ∀ f1 . . .∀ fm[ψτ ]] (17)

where τ is a substitution of gk(t̄
i
k) by gk( ȳi

k). This means that all occurrences of gk in ψτ are shallow. Furthermore, (17) is
equivalent to ϕ′ defined as

∃g1 . . .∃gn∀ ȳ1 . . .∀ ȳl1∀ ȳ1 . . .∀ ȳl2 . . .∀ ȳ1
n . . .∀ ȳln

n ∀ f1 . . .∀ fmψ̃ (18)
1 1 2 2
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with ψ̃ an SOw -formula in prenex normal form, equivalent to ¬χ ∨ (ψτ ) and with the same number of quantifier al-
ternations as ψτ (Proposition 12). A simple inspection shows that ϕ′ is an SOw -formula as well. Call ϕ′′ the result of
stripping the ∃-prefix from ϕ′ . Then, A |�SO ϕ′[v] iff there are functions Gk : |A|lk → |A| interpreting all the gk , such that,
for A′ = (A, G1, . . . , Gk), A′ |� ϕ′′[v], iff (inductive hypothesis) A′ |�+ S(ϕ′′)[v], iff (Lemma 18):

A′ |�+ ↓∀ ȳ1
1 . . .↓∀ ȳl1

1 ↓∀ ȳ1
2 . . .↓∀ ȳl2

2 . . .↓∀ ȳ1
n . . .↓∀ ȳln

n S(∀ f1 . . .∀ fmψ̃)[v] (19)

which holds (using again the identity ↓∃x↓χ ≡c ↓∃xχ ) iff:

A′ |�+ ↓∀ ȳ1
1 . . .∀ ȳl1

1 ∀ ȳ1
2 . . .∀ ȳl2

2 . . .∀ ȳ1
n . . .∀ ȳln

n S(∀ f1 . . .∀ fmψ̃)[v]. (20)

Now, the key observation is that (20) holds iff A |�+ γ [v], where γ is

↓∀ ȳ1
1 . . .∀ ȳl1

1 ∀ ȳ1
2 . . .∀ ȳl2

2 . . .∀ ȳ1
n . . .∀ ȳln

n

∃u1
1|Y \{ ȳ1

1} . . .∃u
l1
1 |Y \{ ȳl1

1 }
∃u1

2|Y \{ ȳ1
2} . . .∃u

l2
2 |Y \{ ȳl2

2 }
. . .

∃u1
n |Y \{ ȳ1

n} . . .∃u
ln
n |Y \{ ȳln

n }
[
ρ ∧ S

(∀ f1 . . .∀ fm[ψ̃τ ])τ ′] (21)

and τ ′ substitutes all the occurrences of g( ȳi
k) by ui

k . We prove this claim next, but notice that S(∀ f1 . . .∀ fm[ψ̃τ ])τ ′ =
S(∀ f1 . . .∀ fm[ψ̃ττ ′]), and ψ̃ττ ′ ≡ ψσU . Then S(∀ f1 . . .∀ fm[ψ̃ττ ′]) ≡c S(∀ f1 . . .∀ fm[ψσU ]), and we conclude that γ ≡c

S(ϕ), which would conclude the proof.
Then, A |�+ γ [v] iff, according to the block of existential quantifiers ∃ui

k , Eloïse has functions G̃ i
k to play in the nodes

for ui
k for k = 1, . . . ,n and i = 1, . . . , lk depending only on ȳi

k such that makes her win the rest of the game. In any winning

strategy for Eloïse, all the G̃ i
k for a fixed k must be in fact the same function (otherwise, Abélard can beat hear by picking

values that distinguish them and playing the proper conjunct in ρ). So if Eloïse has a winning strategy for G(A, γ , {v}),
her functions G̃ i

k played in nodes ui
k show the existence of the functions Gi

k (take Gi
k := G̃ i

k). Conversely, if there exist the

functions Gi
k then these constitute the winning strategy for Eloïse (take G̃ i

k := Gi
k). �

5. The connection with the logic of Henkin quantifiers

We have shown in the preceding sections that when one adds classical negation to SL (or IF, for that matter) in the
way suggested by Hodges [6], one lands in a rather weak fragment of SO. But this way of incorporating negation may seem
arbitrary, so one may wonder whether this was a sensible definition in the first place. We will argue in this section that
this is indeed the case. To see this, we resort to Henkin quantifiers.

As an example of the simplest (non-trivial) Henkin quantifier, consider formula:(∀x0 ∃y0
∀x1 ∃y1

)
ϕ(x0, x1, y0, y1). (22)

Semantics are usually given using a Skolemization; for instance, (22) is equivalent to the Σ1
1 -formula ∃ f ∃g∀x0∀x1ϕ(x0, x1,

f (x0), f (x1)).
More generally (we follow here the presentation in [17]), a Henkin prefix can be defined as a triple Q = 〈A Q , E Q , D Q 〉

where A Q and E Q are disjoint sets of variables (universal and existential, respectively) Q , and D Q ⊆ A Q × E Q is a depen-
dency relation. When (y, x) ∈ D Q , we say that the existential variable y depends on the universal variable x in Q . Moreover,
if D Q is the union of n complete bipartite graphs, then we can write Q in matritial form using n rows, as in (22). L∗ is the
extension of FO with Henkin prefixes (i.e., they may occur wherever a first-order quantifier is allowed to occur) while L∗1 is
the fragment composed by formulas of the form Q ψ with ψ first-order.

The Skolemization of Q ϕ , denoted sk(Q ϕ), is defined as the result of substituting in ϕ all the free occurrences yi ∈ E Q

by f yi (x̄i), where x̄i is a tuple containing every x such that (yi, x) ∈ D Q . All the f yi are assumed fresh. We then define |�L∗
by extending |�FO with the semantic clause:

A |�L∗ Q ϕ[v] iff (A, F1, . . . , Fk) |�L∗ ∀x̄ sk(Q ϕ)[v], for some functions F1, . . . , Fk on A interpreting the f y1 , . . . , f yk

introduced by Skolemization.

The reason we are interested in these logics comes from the following well-known result, a direct corollary of the
equivalences of Σ1

1 with L∗1 [4,18] and with IF [2].

Theorem 19. IF is equivalent to L∗ .
1
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The crucial connection is that L∗ can be regarded as the result of adding classical negation to L∗1, in an iterated way,
in exactly the same way as SL(↓) is obtained from SL (for a formal treatment of this notion, cf. [19]). We then have the
following:

Theorem 20. L∗ is equivalent to SOw and, therefore, to SL(↓) as well.

Proof. It is straightforward to encode the semantics of an L∗-formula ϕ as an SO-formula T (ϕ). The only case that in-
troduces second-order quantification is T (Q ψ) = ∃ f y1 . . .∃ f yk∀x1 . . .∀xl T (sk(Q ψ)) and one only needs to observe that if
f yi (t̄) occurs in sk(Q ψ) then t̄ is a tuple of variables among x1 . . . xl . Hence, T (ϕ) is in SOw .

The argument for the other inclusion is a straightforward modification of the proof of Theorem 16, item 2; one simply
needs to replace γ defined in (21) by

⎛
⎜⎜⎜⎝
∀ ȳ1

1 ∃u1
1 . . . ∃ul1

1

∀ ȳ1
2 ∃u1

2 . . . ∃ul2
2

...
...

. . .
...

∀ ȳ1
n ∃u1

n . . . ∃uln
n

⎞
⎟⎟⎟⎠

[
ρ ∧ S

(∀ f1 . . .∀ fm[ψ̃τ ])τ ′] (23)

and then argue in an analogous way. �
6. An aside: truth-definitions in the analytic hierarchy

The results of this section appear in [7,8]. We include them in this aside section for the sake of completeness and
readability.

Let N be the standard model of Peano Arithmetic over the signature σ = 〈0,1,+,×〉. For every n > 0, let σn denote
the extension of σ with unary function symbols f1 . . . fn . We say that a Σ1

n -formula is normalized if it has the form
∃ f1∀ f2∃ f3 . . . Q fnψ where ψ is an FO formula over σn . Notice that every quantifier is immediately followed by its dual
so Q = ∀ iff n is even.

Proposition 21. Over N, every Σ1
n -formula is effectively equivalent to a normalized Σ1

n -formula.

Proof. This is a standard result that follows from the expressibility in N of a pairing function [20]. �
We assume a computable Gödelization that assigns a number �α� to every second-order term or formula α (over sig-

nature σ , assuming any f i may occur as a second-order variable). Moreover, we assume the usual formula manipulation
functions; thus, given �ϕ�, we will write, �¬ϕ� for the Gödel number of the formula that results of negating ϕ , �∃xϕ�
for the Gödel number of the formula that results from prepending ∃x to ϕ . Furthermore, sometimes we will mix logical
symbols and natural numbers, as in ∃xp, for x, p ∈N, to denote the formula ∃yϕ where �y� = x and �ϕ� = p.

For every n > 0 we assume the following primitive recursive predicates and functions:

1. Var(x) holds iff x is the Gödel number of a first-order variable.
2. Trmσn (t) holds iff t is the Gödel number of a closed term over σn .
3. Frm0

σn
(p) holds iff p is the Gödel number of an FO-formula over σn .

4. Snt0
σn

(p) holds iff p is the Gödel number of an FO-sentence over σn .

5. Snt1
σ (p) holds iff p is the Gödel number of an SO-sentence over σ .

6. InΣ1
n
(p) holds iff �∃ f p� has at most n− 1 SO-quantifier alternations.

7. subσ (�ϕ�, �x�, t)= �ϕ[x/t]� if Frm0
τ (�ϕ�) holds (t is the numeral of t).

8. matrix(�ϕ�)= �ψ� if InΣ1
n
(�ϕ�) holds and ψ is the matrix of ϕ .

9. normΣ1
n
(�ϕ�)= �ψ�, ψ is a normalized Σ1

n -formula equivalent to ϕ .

Since these are primitive recursive, they can be expressed in the FO-language of σ . Fix two second-order variables v and
X and let Tn(v, X) be the conjunction of the formulas in Table 1. All but S1 are the standard way of describing, in FO,
a truth-predicate X for FO-sentences over σn and a valuation function v for closed FO-terms over σn (see, e.g. [21]). S1,
on the other hand, looks rather unusual and is the only axiom referring to Σ1

n -sentences. Finally, define the SO-formulas
over σn:

θ∃n (x) := ∃X∃v
(
Tn(v, X)∧ X(x)

)
θ∀n (x) := ∀X∀v

(
Tn(v, X)→ X(x)

)
.
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Table 1
Tn(v, X) is the conjunction of these formulas. X is used as a unary predicate but can be
assumed to be a unary function with image in {0,1}.

T1. v(�0�)≈ 0∧ v(�1�)≈ 1

T2. ∀s∀t[Trmσn (s)∧ Trmσn (t)→ v(�s+ t�)≈ v(s)+ v(t)]
T3. ∀s∀t[Trmσn (s)∧ Trmσn (t)→ v(�s× t�)≈ v(s)× v(t)]
T4. ∀s∀t[Trmσn (s)∧ Trmσn (t)→∧n

i=1 v(� f i(t)�)≈ f i(v(t))]
E1. ∀s∀t[Trmσn (s)∧ Trmσn (t)→ (X(�(s≈ t)�)↔ v(s)≈ v(t))]
E2. ∀s∀t[Trmσn (s)∧ Trmσn (t)→ (X(�(s 	≈ t)�)↔ v(s) 	≈ v(t))]
B1. ∀p∀q[Snt0

σn
(p)∧ Snt0

σn
(q)→ (X(�p ∧ q�)↔ X(p)∧ X(q))]

B2. ∀p∀q[Snt0
σn

(p)∧ Snt0
σn

(q)→ (X(�p ∨ q�)↔ X(p)∨ X(q))]
Q1. ∀p∀x[Frm0

σn
(p)∧ Var(x)∧ Snt0

σn
(�∀xp�)→ (X(�∀xp�)↔∀i X(subσ (p, x, i)))]

Q2. ∀p∀x[Frm0
σn

(p)∧ Var(x)∧ Snt0
σn

(�∃xp�)→ (X(�∃xp�)↔∃i X(subσ (p, x, i)))]
S1. ∀p[Snt1

σ (p)∧ InΣ1
n
(p)→ (X(p)↔ X(normΣ1

n
(p))↔ X(matrix(normΣ1

n
(p))))]

Lemma 22. Let ϕ be a Σ1
n -sentence over σ , let ψ be its Σ1

n normalized form and let ψ0 be the matrix of ψ . Moreover, let θn be any of
θ∃n or θ∀n . For any F1, . . . , Fn interpreting f1, . . . , fn, the following are equivalent:

1. (N, F1, . . . , Fn) |�FO ψ0 .
2. (N, F1, . . . , Fn) |�SO θn(�ψ0�).
3. (N, F1, . . . , Fn) |�SO θn(�ψ�).
4. (N, F1, . . . , Fn) |�SO θn(�ϕ�).

Proof. We show only the case for θn = θ∃n . We first show that if either 2, 3 or 4 hold, then 1 holds as well. Let
χ ∈ {ϕ,ψ,ψ0} and assume that (N, F1, . . . , Fn) |�SO θ∃n (�χ�). That means that for some X̃ and ṽ , (N, F1, . . . , Fn, X̃, ṽ) |�FO

Tn(v, X) ∧ X(�χ�). By S1, we may conclude that (N, F1, . . . , Fn, X̃, ṽ) |�FO Tn(v, X) ∧ X(�ψ0�); moreover all the other for-
mulas make ṽ and X̃ uniquely determined on the Gödel number of closed terms and sentences over σn , respectively. Hence,
we conclude that (N, F1, . . . , Fn) |�FO ψ0.

Now we show that if 1 holds, then 2, 3 and 4 hold too. Assume then that (N, F1, . . . , Fn) |�FO ψ0. We know that
F1, . . . , Fn induce a unique valuation γ on closed terms and a unique set Ψ0 of FO-formulas over σn that are true in
(N, F1, . . . , Fn), from which ψ0 ∈ Ψ0 by assumption. Moreover, Ψ0 induces the unique set Ψ of normalized Σ1

n -formulas
such that χ ∈ Ψ iff the matrix of χ is in Ψ0, so ψ ∈ Ψ . Finally, Ψ induces the unique set of Σ1

n -formulas Φ such
that χ ∈ Φ iff its normalized Σ1

n -form is in Ψ , from which ϕ ∈ Φ . Let ṽ be any function such that, for any closed
term t over σn , ṽ(�t�) = γ (t) and let X̃ = {�χ� | χ ∈ Ψ0 ∪ Ψ ∪ Φ}. By construction, we have that (N, F1, . . . , Fn, X̃, ṽ) |�
Tn(v, X)∧ X(�ψ0�)∧ X(�ψ�)∧ X(�ϕ�), so (N, F1, . . . , Fn) |� θ∃n (�χ�) for χ ∈ {ψ0,ψ,ϕ}. �

The main result of this section is that the truth-predicate for Σ1
n -sentences over N is a Σ1

n -set in the analytic hierarchy.
This is formally stated as follows:

Theorem 23. For all n > 0 there is a Σ1
n -formula τn(x) over σ such that for every Σ1

n -sentence ϕ over σ , N |�SO ϕ iff N |�SO τn(�ϕ�).

Proof. We discuss the case for n odd, the even case being analogous. Define, then τn(x) := ∃ f1∀ f2 . . .∃ fnθ∃n (x), which is
clearly Σ1

n since θ∃n (x) is Σ1
n . For the “only if” case, assume N |�SO ϕ , which implies N |�SO ∃ f1∀ f2 . . .∃ fnψ0 where ψ0

is the matrix of a normalized Σ1
n -sentence equivalent to ϕ . This means there is a strategy for Eloïse in the standard

game-semantics for SO that allows her to reach to a position such that (N, F1, . . . , Fn) |�FO ψ0 regardless what Abélard
plays. By Lemma 22, this same strategy is also winning when playing over formula ∃ f1∀ f2 . . .∃ fnθ∃n (�ϕ�), which means
that N |�SO τn(�ϕ�). The converse case is analogous. �

Now, observe that if τn(x) is the Σ1
n -truth-predicate for Σ1

n -sentences, then τ ′n(�ϕ�) := ¬τn(�¬ϕ�) is a Π1
n -truth-

predicate for Π1
n -sentences. Therefore, we get the dual result:

Corollary 24. For all n > 0 there is a Π1
n -formula τ ′n(x) over σ such that for every Π1

n -sentence ϕ over σ , N |�SO ϕ iff N |�SO τ ′n(�ϕ�).

We say that a logic L is arithmetically reducible to Σ1
n over σ if there is a function gΣ1

n
, expressible in FO over σ , such

that for any L-formula ϕ , gΣ1
n
(ϕ) is a Σ1

n -formula and N |�L ϕ iff N |�SO gΣ1
n
(ϕ). The notion of arithmetical reduction

to Π1
n is analogous. It is straightforward to see that if τn(x) is the truth-predicate for Σ1

n , then τL(x) = τn(gΣ1
n
(x)) is a

Σ1
n -truth-predicate for L. Again, a similar result holds for the Π1

n case. From this we get the following result, which allows
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one to easily prove separation results for a logic with respect to �1
n (i.e., to the set of formulas that are logically equivalent

both to a Σ1
n - and to a Π1

n -formula).

Theorem 25. For n > 1, if L is closed under Boolean operations and arithmetically reducible to both Σ1
n and Π1

n then there is a
�1

n-formula that is not equivalent to any formula in L.

Proof. Let τL ⊆N be such that �ϕ� ∈ τL iff N |�L ϕ . By the remark above, τL is a �1
n-set of natural numbers, so let τΣ

L (x)
and τΠ

L (x) be the Σ1
n - and Π1

n -predicates defining τL . Since N may be described up-to-isomorphism by a Π1
1 -sentence ψPA

and Σ1
n and Π1

n are closed (for n > 1) by conjunctions with Π1
1 -formulas we get that τΣ

L (x)∧ψPA is a �1
n-formula and by

Tarski’s Undefinability Theorem, it is not expressible in L. �
We conjecture that this result holds for the case n= 1.

7. Discussion

The motivation for the research reported in this paper was an interest in understanding what are the properties of
IF with classical negation, as defined by Hodges [6]. Taking as starting point the equivalent, game-theoretical semantics
introduced in [9], we first found a characterization of SL(↓) in terms of a syntactic fragment of SO and proved that this
fragment is indeed quite weak: it is strictly contained in �1

2. Moreover, this characterization allowed us to precisely locate
SL(↓) in the logic spectrum: it corresponds to the well-studied logic of Henkin quantifiers, L∗ .

The equivalence with L∗ is a pleasant result, in that it gives a concrete and definite answer to our motivating question.
It also means that some of the results we obtained in the process can, alternatively, be concluded from known properties
of L∗ . It is therefore interesting to make a comparison of both approaches.

In retrospect, one finds that Enderton [4] already saw the connection between L∗ and the fragment of SO with weak
dependencies (cf. Section 5). He goes as far as “cheating” (sic) by saying [4, p. 394]:

The class of finite partially-ordered (f.p.o.) formulas then is defined by adding one additional clause to the definition of
elementary formula (with equality): If ϕ(x1, . . . , xm, y1, . . . , yn) is a f.p.o. formula, then so is the formula:

∃F1 . . .∃Fn∀x1 . . .∀xnϕ
(
x1, . . . , xm, F1(�x1), . . . , Fn(�xn)

)
where �xi is a sublist of x1, . . . , xn .

He then shows [4, Theorem 2] that any L∗ formula can be effectively reduced to a Σ1
2 and to a Π1

2 formula (which proves
L∗ to be, at most, as expressive as �1

2) and the sketched proof corresponds, essentially, to the proof of our Proposition 14.
Mostowski, on discussing Enderton’s result, says [5, p. 23]:

This would suggest that the logic of branched quantifiers is equivalent to �1
2-second order formulas. However it is not

so.

He then proves the separation employing an ad-hoc truth-predicate construction sketched in [22].
On the contrary, we derive the strict separation of �1

2 and L∗ (or SOw or SL(↓), for that matter) as a trivial corollary of
Proposition 14, by way of the results discussed in Section 6 for the analytic hierarchy.

It has been shown in previous work how to extend the expressive power of L∗ to cover the whole of SO. The idea,
roughly, is to allow quantifiers in which existential variables may depend on universal variables and the other way round
as well (see, e.g. [23] for more details).

Another approach, completely different from Hodges’, for adding classical negation to IF is considering Team Logic [24].
On the one hand, Team Logic is an extension of Dependence Friendly Logic obtained by adding classical negation. On the
other, Team Logic can be seen as the closure of IF under classical negation. In this setting, adding classical negation adds
much more expressivity, as the expressive power of Team Logic is equivalent to SO.

One natural question is, then, if there is a counterpart extension for SL(↓) that lands it in full SO. In addition, it would
be interesting to find out if SOw coincides or not with the Boolean closure of Σ1

1 .

Acknowledgments

We are thankful to Marcin Mostowski, Leszek Kołodziejczyk, Konrad Zdanowski and Xavier Caicedo for their comments
and general help regarding the topics of this paper. Also, we thank the editor and two anonymous reviewers for their
constructive comments, which helped us to improve the manuscript. This work was partially founded by UBA (UBACyT
20020110100025) and ANPCyT (PICT-2011-0365) grants.



1118 S. Figueira et al. / Journal of Computer and System Sciences 80 (2014) 1102–1118
References

[1] J. Hintikka, G. Sandu, Informational independence as a semantic phenomenon, in: J. Fenstad, I. Frolov, R. Hilpinen (Eds.), Logic, Methodology and
Philosophy of Science, in: Stud. Logic Found. Math., vol. 126, Elsevier, Amsterdam, 1989, pp. 571–589.

[2] J. Hintikka, The Principles of Mathematics Revisited, Cambridge University Press, 1996.
[3] J. Hintikka, G. Sandu, Game-theoretical semantics, in: J. van Benthem, A. ter Meulen (Eds.), Handbook of Logic and Language, The MIT Press, 1997,

pp. 415–465 (Chapter 6).
[4] H. Enderton, Finite partially-ordered quantifiers, Z. Math. Log. Grundl. Math. 16 (1970) 393–397.
[5] M. Mostowski, Arithmetic with the Henkin quantifier and its generalizations, in: F. Gaillard, D. Richard (Eds.), Séminaire du Laboratoire Logique,

Algorithmique et Informatique Clermontoise, vol. 2, 1991, pp. 1–25.
[6] W. Hodges, Compositional semantics for a language of imperfect information, Log. J. IGPL 5 (4) (1997) 539–563.
[7] P.G. Hinman, Recursion Theoretic Hierarchies, Springer, Berlin, 1978.
[8] S.C. Kleene, Hierarchies of number-theoretic predicates, Bull. Am. Math. Soc. 61 (1955) 193–213.
[9] S. Figueira, D. Gorín, R. Grimson, On the formal semantics of IF-like logics, J. Comput. Syst. Sci. 76 (5) (2009) 333–346.

[10] S. Figueira, D. Gorín, R. Grimson, On the expressive power of IF-logic with classical negation, in: 18th Workshop on Logic, Language, Information and
Computation, in: Lect. Notes Comput. Sci., vol. 6642, 2011, pp. 135–145.

[11] F. Dechesne, Game, sets, maths: formal investigations into logic with imperfect information, PhD thesis, Department of Philosophy, University of Tilburg,
The Netherlands, 2005.

[12] X. Caicedo, F. Dechesne, T.M. Janssen, Equivalence and quantifier rules for logic with imperfect information, Log. J. IGPL 17 (1) (2009) 91–129.
[13] X. Caicedo, M. Krynicki, Quantifiers for reasoning with imperfect information and Σ1

1 -logic, Contemp. Math. 235 (1999) 17–31.
[14] T.M.V. Janssen, Independent choices and the interpretation of IF logic, J. Log. Lang. Inf. 11 (3) (2002) 367–387.
[15] T.M.V. Janssen, F. Dechesne, Signalling in IF games: a tricky business, in: The Age of Alternative Logics, Springer, 2006, pp. 221–241 (Chapter 15).
[16] J.A. Väänänen, On the semantics of informational independence, Log. J. IGPL 10 (3) (2002) 339–352.
[17] M. Krynicki, M. Mostowski, Henkin quantifiers, in: M. Krynicki, M. Mostowski, L. Szczerba (Eds.), Quantifiers: Logics, Models and Computation, vol. I,

Kluwer Academic Publishers, 1995, pp. 193–262.
[18] W. Walkoe Jr., Finite partially-ordered quantification, J. Symb. Log. 35 (4) (1970) 535–555.
[19] T. Hyttinen, G. Sandu, Henkin quantifiers and the definability of truth, J. Philos. Log. 29 (5) (2000) 507–527.
[20] J. Hartley Rogers, Theory of Recursive Functions and Effective Computability, MIT Press, Cambridge, MA, USA, 1987.
[21] G. Sandu, IF-logic and truth-definition, J. Philos. Log. 27 (2) (1998) 143–164.
[22] C. Morgenstern, On generalized quantifiers in arithmetic, J. Symb. Log. 47 (1) (1982) 187–190.
[23] L.A. Kołodziejczyk, The expressive power of Henkin quantifiers with dualization, Master’s thesis, Institute of Philosophy, Warsaw University, Poland,

2002.
[24] J.A. Väänänen, Dependence Logic: A New Approach to Independence Friendly Logic, Lond. Math. Soc. Stud. Texts, vol. 70, Cambridge University Press,

2007.

http://refhub.elsevier.com/S0022-0000(14)00048-8/bib48696E74696B6B613839s1
http://refhub.elsevier.com/S0022-0000(14)00048-8/bib48696E74696B6B613839s1
http://refhub.elsevier.com/S0022-0000(14)00048-8/bib48696E74696B6B613936s1
http://refhub.elsevier.com/S0022-0000(14)00048-8/bib48696E74696B6B613937s1
http://refhub.elsevier.com/S0022-0000(14)00048-8/bib48696E74696B6B613937s1
http://refhub.elsevier.com/S0022-0000(14)00048-8/bib456E646572746F6E3730s1
http://refhub.elsevier.com/S0022-0000(14)00048-8/bib4D6F73746F77736B693931s1
http://refhub.elsevier.com/S0022-0000(14)00048-8/bib4D6F73746F77736B693931s1
http://refhub.elsevier.com/S0022-0000(14)00048-8/bib486F646765733937s1
http://refhub.elsevier.com/S0022-0000(14)00048-8/bib48696E6D616E31393738s1
http://refhub.elsevier.com/S0022-0000(14)00048-8/bib4B6C65656E6531393535s1
http://refhub.elsevier.com/S0022-0000(14)00048-8/bib4647473039s1
http://refhub.elsevier.com/S0022-0000(14)00048-8/bib4647473131s1
http://refhub.elsevier.com/S0022-0000(14)00048-8/bib4647473131s1
http://refhub.elsevier.com/S0022-0000(14)00048-8/bib6465636865736E653035s1
http://refhub.elsevier.com/S0022-0000(14)00048-8/bib6465636865736E653035s1
http://refhub.elsevier.com/S0022-0000(14)00048-8/bib4361696365646F32303039s1
http://refhub.elsevier.com/S0022-0000(14)00048-8/bib4361696365646F3939s1
http://refhub.elsevier.com/S0022-0000(14)00048-8/bib4A616E7373656E3032s1
http://refhub.elsevier.com/S0022-0000(14)00048-8/bib4A616E7373656E3036s1
http://refhub.elsevier.com/S0022-0000(14)00048-8/bib5661616E616E656E3032s1
http://refhub.elsevier.com/S0022-0000(14)00048-8/bib4B4D3935s1
http://refhub.elsevier.com/S0022-0000(14)00048-8/bib4B4D3935s1
http://refhub.elsevier.com/S0022-0000(14)00048-8/bib57616C6B6F653730s1
http://refhub.elsevier.com/S0022-0000(14)00048-8/bib48797474696E656E53616E64753030s1
http://refhub.elsevier.com/S0022-0000(14)00048-8/bib523837s1
http://refhub.elsevier.com/S0022-0000(14)00048-8/bib53616E64753938s1
http://refhub.elsevier.com/S0022-0000(14)00048-8/bib4D6F7267656E737465726E3832s1
http://refhub.elsevier.com/S0022-0000(14)00048-8/bib416C756D6E6F4D6F73743032s1
http://refhub.elsevier.com/S0022-0000(14)00048-8/bib416C756D6E6F4D6F73743032s1
http://refhub.elsevier.com/S0022-0000(14)00048-8/bib7661616E616E656E3037s1
http://refhub.elsevier.com/S0022-0000(14)00048-8/bib7661616E616E656E3037s1

	Independence friendly logic with classical negation via ﬂattening is a second-order logic with weak dependencies
	1 Introduction
	2 Syntax and semantics of SL(↓)
	3 Normal forms for SL(↓)
	4 Weak dependencies in second-order logic
	5 The connection with the logic of Henkin quantiﬁers
	6 An aside: truth-deﬁnitions in the analytic hierarchy
	7 Discussion
	Acknowledgments
	References


