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1. Introduction

Let X = (X, {R,—}f’zo) denote a commutative association scheme, where X is a finite set. Suppose Maty (C) denotes the
algebra over C consisting of all matrices whose rows and columns are indexed by X. For each i, let A; denote the binary
matrix in Maty (C) whose (x, y)-entry is 1 if and only if (x, y) € R;. We call A; the ith adjacency matrix of X. We abbreviate
A = Ay, and call it the adjacency matrix of X. The subalgebra of Maty (C) spanned by Ay, A1, ..., Aq is called the Bose-Mesner
algebra of X, denoted by 8. Since B is commutative and generated by real symmetric matrices, it has a basis consisting of
primitive idempotents, denoted by Ey = |71|], Ei,E,,...,Es. Foreachi e {0, 1,...,d}, write

d d
. 1 .
A= j:ZOPi(I)Ej, Ei = x| ;%(})Af

The scalars p;(j) and g;(j) are called the eigenvalues and the dual eigenvalues of X, respectively.
Fixx € X.For 0 <i < d, let E/ denote the diagonal matrix in Matyx (C) whose (y, y)-entry is defined by

o _ )1, if(x,y) €R;,
(E)yy = {0, otherwise.

The subalgebra 7~ (x) of Matx (C) generated by Ao, A1, . .., Ag; E§, ET, . . ., Ej is called the Terwilliger algebra of X with respect
to x.

Terwilliger [12] first introduced the Terwilliger algebra of association schemes, which is an important tool in considering
the structure of an association scheme. For more information, see [4,5,13,14]. The Terwilliger algebra is a finite-dimensional
semisimple C-algebra; it is difficult to determine its structure in general. The structures of the Terwilliger algebras of some
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association schemes have been determined; see [1,3] for group schemes, [ 15] for strongly regular graphs, [7,11] for Hamming
schemes, [10] for Johnson schemes, [8] for odd graphs, and [9] for incidence graphs of Johnson geometry.

Let [n] denote the set {1, 2, ..., n} and <[Z]) denote the collection of all d-element subsets of [n]. For 0 < i < d, define

R = {(x,y) € (lzj> X (lzl) | [xNy| = d—i}. Then (([ZJ) , {R,—}?ZO) is a symmetric association scheme of class d, which

is called the Johnson scheme, denoted by J(n, d). Note that J(n, d) is isomorphic to J(n, n — d). So we always assume that
n > 2d.

Since the automorphism group of J (n, d) acts transitively on ([Z] ) the isomorphism class of the Terwilliger algebra 7 (x)

of J(n, d) is independent of the choice of x in [ZJ . We will denote 7 := 7 (x).

In [10], the Terwilliger algebra of the Johnson scheme J(n, d) was determined when n > 3d. In this paper, we focus on
the remaining case, and determine the Terwilliger algebra 7 of J (n, d). In Section 2, we introduce intersection matrices and
some useful identities. In Section 3, two families of subalgebras M™% and W of Maty (C) are constructed. In the last two
sections, we show that 7 = M™% when 2d < n < 3d,and T = & when n = 2d.

2. Intersection matrix

In this section we first introduce some useful identities for intersection matrices, then describe the adjacency matrix of
the Johnson scheme J(n, d) in terms of intersection matrices.

Let V be a set of cardinality v. Let H{J(v) be a binary matrix whose rows and columns are indexed by the elements of (‘l/)

and (‘J/) respectively, whose ojoj-entry is 1if and only if |o; N o] = r. We call H{j(v) an intersection matrix. For simplicity,

m

write H; j := H; jm(”). Now we introduce some useful identities for intersection matrices.

Lemma 2.1 ([6, Theorem 3]). For 0 < | < min(i, j) and 0 < s < min(j, k),

min(i, k) g . .
I s _ g\ (i—g k—g v+g—i—k
HOH W) = ) (Z(h) (l—h> (s—h) <j+h—z_s>)H"g*k(v)'

g=0 h=0

Lemma 2.2 ([10, Lemma 4.5]). Let v be a positive integer.
(Foro<i<j<l<v,

I—i
H;j(v)H;(v) = (1 —j) Hj.
(i) For 0 < max(i,l) <j<w,

(b (v — max(i, I) —m

HijH () = >

m=0
(iii) For 0 <j < min(i, ) < v,
min(i,l)—j s
min(i, [) —m
HiH0) = Y ( ;

m=0

in(i.l—
)H{r;ln(l m)(v).

j—max(@, ) —m

) H:}in(i,l—m) (U) )

Pick x € (T). For0 < i < d, write ; ;== {y € ([Z]) | x Ny| = d — i}. Then we have the partition <[ZJ) = CJ?:OQi.

Now we consider the mth adjacency matrix Ay, of ] (n, d) as a block matrix with respect to this partition. Denote (Ap,)|q;x e
the submatrix of A, with rows indexed by §2; and columns indexed by £2;.

In the remainder of this paper, we always assume that I""¥ denotes the identity matrix of size (Z) and A,(,'{ % denotes the
mth adjacency matrix of J (v, k). In fact A,(,f’k) = H,’:,;’”(v).

Lemma 2.3 ([10, Lemmas 3.1, 3.5]). Let A denote the adjacency matrix of J(n, d). For 0 <i < j < d, we have
Ao, = [(@d=D @ A—di) | A@dd—D) g j(1=d.)
Algixaiy = Himig-i-1(d) @ Hijr1(n — d),
Agixg; =0, ifj>i+2,

where “®" denotes the Kronecker product of matrices.
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3. Two algebras

Let2d <nandX = [Z] .Fix x € X. In this section we shall construct two subalgebras M™% and & of Maty (C), which

are in fact the Terwilliger algebras T = 7 (x) of J(n, d) in the cases where 2d < n < 3d and J(2d, d), respectively. Hereafter
the ground set of all matrices H (d) in front of “®” is x and that of H’ (= d) behind “®” is [n] \ x.

Let B-Y denote the Bose- Mesner algebra of J (v, k), and {E\"" ")}mm(k 71 denote its primitive idempotents. Let p{""* (j)

be the eigenvalue of A™" satisfying A" ")E<" b= k) (])Ef" 9,
Fori,j=0,1, d define the vector space

M5 <:8<d D Hy_i4-i(d) ® (B H;j(n — d)).
LetL:Y —> L(Y) be a map from Ui,j:o Mif']?’d) to Matx (C) such that forany Y e M(" D

_ )Y, ifl=iandm=j,
LN i2ixan = {0, otherwise.

Define

M(n d) __ @L(M(n d) (1)

i,j=0

Lemma 3.1 ([10, Lemma 4.4]). Let R(v, k, h) == {r | H,(v) # 0}. Then 8 Hy (v) = Hin(v) BYP = ({H] , () }rerw.ky)-

Lemma 3.1 implies that Hy_; i (d) ®H (n —d),r €eR(d,d—i,d—j),s € R(n—d, i,j) is a basis ofMi(j’d). By Lemma 2.1,
we observe that M™® is an algebra.

By Lemmas 2.3 and 3.1, the adjacency matrix A of J (n, d) belongs to M™?. Since each mth adjacency matrix of J (n, d)
may be written as a polynomial of A, one gets 8% C M ™9, The fact that E}, = L(Hg—m.d—m(d) @ Hpm(n — d)) € M™D
implies that 7 is a subalgebra of (™%,

Next we construct another algebra . Fori,j =0, 1, ..., d, let N; j be the vector space generated by
(B0 @ E@D + ED @ ED) (Hy_ia—j(d) ® Hij(d)), 0 <r <s<min(d,d—i). (2)
Define
d
N = EPLN:y. 3)
i.j=0

Observe that &/ € M©@%D,

Lemma 3.2. Each vector space N; ; has the basis

HiZ 78 (d) @ HIY(d) + HEZ (@) @ HE (D), g.h e R(d.i.j). g <h. (4)

Proof. By Lemma 3.1 we have that 8 X Hj ,(v) = Hyp(v) B8P = ({H] ,(V)}rer.ken))-
Also note that it holds that '

H~ 58 (d) @ Hj(d) + Hy [ (d) ® HE (d) = HE (d) @ H];(d) + H];(d) ® Hf(d),
and that {Hg (d)®Hh (d)}g.nerqi,j) are linearly independent, which implies that {H (d)®H (d)+H (d)®H (d) Je.her(d,ij).g<h
are linearly mdependent Hence, the desired result follows. O
Theorem 3.3. Let N be as in (3). Then N is an algebra.
Proof. It suffices to show that N; ;N; x € N; . By Lemma 2.1 there exist scalars afs such that

min(i, k)

HU(@H () = > of HE (),
g=0

which implies that
(H}(d) ® H{(d) 4 H;(d) ® H’}(d))(H; .(d) ® Hj(d) + H; . (d) ® H;,(d))

min(i,k) min(i,k)
= Y > @ o, +oh o )H(A) @ Hy(d) + Hi(d) @ HE ().
g=0 1=0

asdesired. O
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Lemma 3.4. Let T be the Terwilliger algebra of J(2d, d). Then T is a subalgebra of N.
Proof. Observe that Ag;xq,,, = 0 forl > 2. By Lemma 2.3, we obtain Ao, xo,.; = Ha—i.d-i—1(d) ® H;i+1(d), and
Aaixa, = [dd=D) g A@D | gdd=D) o (i)

min(i,d—i) min(i,d—i)

Z Z (pgd,i) (T) +p§d,i) (S))(Eﬁd’d_i) ® Es(d,i))

r=0 s=0
min(i,d—i) min(i,d—i) (d 1)( (d,i)
1N +p17 (), _@di 4i | pdd—i @i
- > (E@4) @ E@) 4 E@d=D @ gy
r=0 s=0

Then A € V. Also we have that E = L(Hg—m.g—m(d) ® Hpm(d)) € N,s0T C N. O
We next introduce two mappings proposed in [10]: the lift map denoted by £; and the pullback map denoted by
For 0 < i < d, define .£; to be the linear mapping from M(" D to M(J'r‘l :+1 satisfying
LiELTD @ EMDY = (Hy_i 14— i(ESHy—i g—i-1(d)) @ (Hiy1i(n — DETVH; 111 (n — d));
for 0 < i < d, define &; to be the linear mapping from Mif?’d) to Mi(f‘fzq satisfying
PES @ EM D) = (Haoipr,a-i(DE " Hy-ig-i41(d) ® (Hiz1,i(n — DE"*PH; iy (n — d)).
Note that the lift map is defined by premultiplying by (Hd—i—l,d—i(d) ® Hit1,i(n — d)) (that is equal to Ao, ,xe; by
Lemma 2.3) and post multiplying by (Hd_i,d_i_1(d) ® Hiiy1(n— d)) (that is equal to Ao, x;,, by Lemma 2.3). Since they
belong to J|QI+1><_QI and Tjg;xq;,, respectively and since 7 is an algebra, then £i(Y) € Tjg, xqy, forany Y € T xq;:.

Similarly £i(Y) € Tlo,_,xe;,_, forany Y € 7o.«q;.
By [2, p. 220],for 0 <j <k,

v, - . . v, v — k _.]
PG =k—pw—k=p—j  pYG) = (1Y ( ki ) (5)
write I, i j = v — k + p'"Y () and p, 1 = k + p{" ().

Lemma 3.5 ([10, Lemma 5.6]).
Li(ED @ EMY) = paair lngis BTV @ BT,
PESTD QEMDY = Iy g iy poais ESTD @ ETAD,

E(U J

Here, 0if j > min(k, v — k).

Corollary 3.6 ([10, Corollary 5.7]).
ENPHy 4-i(d)) ® EMH; j(n — d) = (Hg—ia—j()E* ") @ (Hij(n — )ES4D).

4. 7 -algebraof J(n, d) for2d < n < 3d

In this section we always assume that 2d < n < 3d and M™% is as in (1). We shall prove that M™? is the Terwilliger
algebra 7 of J(n, d).

For any real number a, we have

min(i,d—i) min(i,n—d—i) ) )
A+aDigxg = Y. Y. (ir+ s+ QE® D @ E"40, (6)
r=0 s=0

where p;, = p(ld’d_D (r) and A;s = pﬁ”_d’i) (s). We always assume that a is a real number large enough such that the
coefficients in (6) are positive.

Remark 1. If the coefficients in (6) are pairwise distinct, each Er(d'd_i) ® Es("_d’i) belongs to 7|, xo; since the left hand side of

(6) and its powers belong to 7}, « ;. By orthogonality of the idempotents

min(i,d—i) min(i,n—d—i)

(A+aDigxgy = Y D (uur+his+aE) @ EMD, )
r=0 s=0

obtaining a linear system of equations given by the powers of (A + al) |, xo; as linear combinations of Er(d'df") ® E§"7d‘i) with
a Vandermonde matrix. See Section 5.1 in [ 10] for more explanation.
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Theorem 4.1. Suppose 2d < n < 3d. Let 7 be the Terwilliger algebra of J(n, d) and M™9 be the algebra as in (1). Then
7 =MD

Proof. Since L(MiE;‘d)) L(M(” -9 (Hg—i4—j(d) ® Hij(n — d))), by [10, Proposition 5.2] it is sufficient to prove that, for
o<r 5min(d—i,i)andO§s§min(n—d—i,i),

E}fd,d*l’) ® Es(ﬂfd,i) e ﬂﬂixﬂi- (8)

We shall prove (8) by induction on i (i decreases from d to 0).

Comment 1. Since it holds that P;11(Y) € Tigxq forany Y € Tiq, xq:, the strategy of the proof is to pull back those

projectors Er(d‘dﬂ;l) ® Es("fd"“) € Toi qx2, (Whenever its pullback is different from zero) or separate the projectors as we
explained in Remark 1.

Induction: observe that (A + al) o, x 2, = Zfzo(ﬂd,o + Aas + a)E((,d’o) ® Es("fd’d) . Since the parameters A4 ; are pairwise
distinct, (8) holds fori = d.

Case 1.[41+1<i<d-—1.

Note that in this case min(d —i,i) =d —iand min(n—d —i,i) =n—d —i.

ForO<r<d—i—1land0 <s<n—d—i—1by(5)onegetslyq_i_1, # 0and py_git+1s # 0. By Lemma 3.5,

d,d— d, d,d—i—1 —d,i+1
E( ) ®E(n D= ldd i— lrpn dl+]$ H'l(ErS : )®Es(n * ))’

and so E(d’d_i) ® E("_‘“) € Toix0;-
It is not possible to pull back (ES"' " @ E" ™) nor also (" @ EI" 1Y),
By (6), we have

d—i—1 n—d—i—1
A+a)ige, = Y > (ir+ his + QE*) @ EF4D
r=0 s=0
n—d—i o d=izi . ,
= Z (Wia—i + Ais + a)E(d 0 ® Es(nidJ) + Z (Wi + Aip—d—i + a)Er(d’dil) ® E,gn_;i?
s=0 r=0

It follows that the right hand side of the equality belongs to 7|, « ;. In order to show that (8) holds, it suffices to show that
each term belongs to Jjo,« ;. Observe that there do not exist three coefficients with the same value. If there exists a term

whose coefficient is different from other coefficients, then this term belongs to 7}, x ;- Next suppose that there exist two

terms with the same coefficient. Suppose that st 4—i +Aig+@ = iy +Ain—g—i+a. Then E(d d—i) ®E,§”7d”') 4 Eldd=D ®E,5":df?

belongs to To,« ;» and by Lemma 3.5 its image under #; is

i+ 0= + 2 DESTT @ BP0 (i 3,0 (i + Ainma—n B0 @ BV

Suppose (i+ i d—i) (i+Aiq) = (i+ i) (+Ain—d—i). SInce wi g—i+Ariq = tiu=+Ain—d—i,ON€ Gets p; d_iriqg = i urin—d—i.
It follows that (w;g—i — Ain—d—i)(Uid—i — Hiw) = 0, a contradiction to p;q—; 7# Ain—d—i and w;q4—;i # piy. Therefore, we
have

(i + pia—i) (A + Aig) # ( + piw) 0+ Ajn—d—i),

which implies that both EX*" P @ E" "V and "V @ E™*" " belong to Tig, , xg, ;. Computing their image under
£Li_1, by Lemma 3.5 again E(d 4 Eé" 4D and E) E,(," dd :) belong to o, x0;, as de51red

Case 2.i=[%2].

We divide our discussion into two subcases.

Case 2.1.n — d is odd. By Lemma 3.5, for any E‘*4™" @ E" 49 ¢ Mi(,?’d),

PUEID @ EMDY =y iy Pngis EHD @ EM4D £ 0,

Similar to the proof in Case 1, (8) holds.
Case2.2.n—diseven.For0 <r <d—i—1and0 <s<n—d—i— 1, by Lemma 3.5,

d,d— d, d,d—i—1 —d,i+1
E( ) ®E(n = Idd i— lrpn dl+ls i+1(Er( ' )®E$(n " ))’

which implies that E**" @ E"™*" € 7ig... q..
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Next we consider r = d —iors = n —d — i Write uj, = pfid_‘?_i) (r) and A}, = pf”_d’i) (s). Since (Ag)|2;x2; =

1
(d,d—i) (n—d,i)
Ayli T ®A ,
d—i—1 n—d—i—1

S D Sl S TR P
r=0 s=0

n—d—i d—i—1
d,d—i —d,i —i —d,i

(igoi Mg+ QE @ EMD 4 Z (Wir Mipoaoi + OB © E

s=0 r=0

It follows that the right hand side of the equality belongs to Tjg;x ;- By (5), observe that ;. A;,_,_; + ais not equal to any

other coefficient. Then Er(d’d_i) ® Er?:z‘f? € Tgixe for0 <r<d—-i-1
By (6),
n—d—i 4 4
Z (Mig—i + dis + a)E;‘ff”) ® E=4D
s=0

belongs to Tjo, x ;- Moreover, its coefficients are pairwise distinct, so Eé‘f?f") QE" " belongs to Toixe; for0 < s <n—d—i.

Therefore, (8) holds.
Case3.[91 <i<[%41—1.
Note that in this case min(d — i,i) =d —iand min(n —d —i,i) = i.
Similarly, by Lemma 3.5 we have that Eﬁd“H) ® E§"7d‘i) belongs to Fjo,xo, for0 <r <d-—i—1land0 <s <i.
By (6) again, the matrix

i
> idei + Ais + QESET @ B0
s=0

belongs to To,x ;- Moreover, its coefficients are pairwise distinct, so (8) holds.
Case4.0 <i<T4]-1.
Note that in this case min(d — i, i) = iand min(n — d — i, i) = i.
By Lemma 3.5 again, (8) holds. O
Next we shall decompose 7 as a direct sum of some simple ideals.
ForO<r < L%J and0 <s < L“T’dj, define

ers = min{i | 0 # E @ B0 e M{T ),
drs = {i| 0 #E*) @ M e M) — 1.
Note that e; s = max(r, s) and e s + dy s = min(d —r,n — d — s).
For0 <r < min(d —i,i) and 0 < s < min(n — d — i, i), define
BTy = (B PHy_iaj(d) ® (E"*"Hij(n — d)), )

BT = ({L(°Tij)}o<ij=d)- (10)

Proposition 4.2. Let *7 be as in (10). Then *7 is an ideal of 7.
Proof. It suffices to show that L(*T;;)L(PITy,) €™ 7 and L(P9Ty, )L(PTy) €™ T
Ifj # I, then L(*T;)L(*T;y,) = 0. Suppose j = I. Since Hy_i ¢—;(d) ® Hij(n — d) € M7 and Hg_j 4_m(d) ® Hym(n — d) €

I\/Ij(,':,’,d), we obtain (Hg—; ¢—j(d)Ha—j a—m(d)) ® (Hij(n — d)Hjm(n — d)) € M,f';;d). It follows that there exist scalars B, , such
that

(Hg—i,q—j(d)Hy_j 4—m(d)) ® (H; j(n — d)H; (n — d))
min(i,d—i) min(i,n—d—i)

= > Y BuwnE T He g (@) ® ESHim(n — d)).
u=0 v=0

By Corollary 3.6,
BTy P = 8r.p 85.q(Haia—j(DE " Hy_j 4-m(d)) ® (Hij(n — DESHj (n — d))
= 8;p 85, (B @ EX*)((Ha-i d—j(d)Ha—j.d-m(d)) ® (Hij(n — d)H; m(n — d)))
= 8:p 8s.q Brs(E " Hy_i 4-m(d)) ® (EL"PHm(n — d)),
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where §; j is the Kronecker delta; and so
rsTij pq'l}'m = 8rp 55q /3rs rSTim~ (11)
It follows that L("Tj)L(PTj;,) €™ 7. Similarly LPITj )L(PTy) €™ T. O

By (11) we observe that *57P97 = {0} if and only if (r, s) # (p, q). From the construction of M™%, we have
ld/2] |(n—d)/2]

7= By

r=0 s=0

Lemma 4.3. Let "Tj; be as in (9). Then "T; # Oifand only if i,j € {ers, e, s+ 1,..., e s+ drs}.

Proof. Note that i,j € {max(r,s),...,min(d — r,n —d — s)} ifand only if 0 < r < min(i,j,d — i,d — j) and
0 < s < min(i,j,n —d —i,n—d —j).If r or s does not belong to the above ranges, then *T; = 0 by Corollary 3.6.
Since

Hy ;4 j(d) ® Hi;(n—d), reRdd—id—j),seRn—dij)
is a basis of M,|"", we have
dimM?) = (min(i,j,d — i,d —j) + 1) x (min(i,j,n —d —i,n —d —j) + 1.

The set of all matrices "Tj; generate M, ; D "0 the desired result follows. [

Fori,je{e s, ers+1,..., e,s+ drqs}, write
j—i
m=0 <
i—j i

Z( . ) P, iz
m=0

Jj—i —i—m )
( farl )pi,?“’“(sx i<j,

)pﬁ,?""’ r), i<j,

i(i_,m) (-t s), i>].
J

m=0
By Lemma 2.2 we have ("Ty) ("T)" = n; nE44) @ E"4D £ 0. By computing the trace of this matrix, one gets ni >0

and nS > 0.By (11), we may assume that rST,] BTy = Brs(i,j, ) ®Ty. Then B, 5(i, j, i) = n{j nij > 0. Taking the transpose on
both sides of above equation, we obtain g, s(i, j, [) = Br (I, j, i). By Lemma 2.2(i) and Corollary 3.6, we have g, ;(i,j,I) > 0
ifi > j > L Note that

BTy BTy Ty = Brs (i, J, DBrs (i, 1, 1) BTy = Br s, L, 1) Br s (i, 4, 1) " T

BTy BTy Ty = Brs(L i, ) Brs(Lj, D) BTy = Brs(i,§, DBrs(, i, 1) °Ty.
Hence, we have B, s(i,j, ) > Oforanyi,j, | € {max(r,s), ..., min(d —r,n —d —s)}.

By Lemma 2.2 again,
n; nJ ) nﬂ'

(rsTj rST,[)(rST,] rsTﬂ) — ) ” rsTl (rsTl)
il
By (11), we have

s TS nJ’ nél rs
TU jl - 7[, T (12)
nll 1

Let Maty, .1 (C) be the algebra consisting of all matrices whose rows and columns are indexed by {e; 5, e, s+1, ..., e, s+
dr s}. Let E; ; be the matrix in Maty, . 1(C) whose (i, j)-entry is 1 and others are 0.

Theorem 4.4. Suppose 2d < n < 3d. Let T be the Terwilliger algebra of the Johnson scheme J(n, d). Then

ld/2] L(n—d)/2]
T =~ @ @ Matg, .+1(C).
r=0

s=0
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Proof. It suffices to prove that ®7° =~ Maty, .1(C). Define the linear mapping ¢ from *7 to Maty, .,1(C) such that
O(L(°Ty)) = /n}; nsE,] By (12), we have 7" >~ Maty, .11(C). O

5. 7 -algebraof J(2d, d)

Let & be as in ( ). In this section we shall prove that . is the Terwilliger algebra 7 of J (2d, d).
Write Hy_,; 4_; == Hy_; 4_;(d) and H}; := H;;(d) for simplicity.
Theorem 5.1. Let T be the Terwilliger algebra of J(2d, d) and N be the algebra as in (3). Then T = N.
Proof. Since L(N;;) = L(N;;i(Hs—i4—j ® Hij)), by [10, Proposition 5.2] it is sufficient to prove that,for 0 < r < s <
min(d, d — i),
Er(d,d—i) ® Es(d,i) + Es(d,d—i) ® Er(dﬁi) c {‘T\Q,‘XQ," (13)

We shall prove (13) by induction on i (i decreases from d to 0). For i = d, it is trivial.
Case 1. [5] <i<d-1.
For0<s<d-i—1and0<r <s, byLemma35

E(dd i) ®E(d i) +E(dd ) @ E(d i _ ldd -~ lrpd L H](E(d,d—i—l) ®E(d,i+1) + Es(d,d—i—l) ® Er(d,i+1))’

which implies that E*"" @ E” + E" @ E*” € Tig,xq,. Write A, = p\*?(r). By Lemma 3.4, we have

d—i—1d—i—1
1
A+ al) g xa — Z Z ,()\ + s —i—a)(E(dd 1)®E(dl)+E(dd z)®E(dl))
s=0 r=0
d—i—1
Z()\d i+ A+ QEST @ B 4 BG4 @ By 4+ 20 + 0EST) @ B
q=

Then the right hand side of the equality belongs to 7}, « ;. Moreover, its coefficients are pairwise distinct, so (13) holds.
Case2.0 <i<T[4]-1.
By Lemma 3.5 again, (13) holds. O

Next we shall decompose 7 as a direct sum of some simple ideals.
ForO0<r < gandO <s< g,define

es = min{i | 0 # E¢4 @ E4) 4 E@4D @ @D ¢ N, ),
drs = {i | 0% E4"D @ E@) 4 E@4D @ E@D e N, )| — 1.

Note that e, = max(r,s) and e, s + d, s = min(d —r,d — s).
Forr,s € {0, 1, ..., min(d — i, i)}, define

5Ty = (B Hy_i g ) ® (ESVHj) + (B Hy i a ) ® (E*VH;j), (14)
BT = <{L( le)}0<lj<d> (]5)

Proposition 5.2. Let *T be as in (15). Then "7 is an ideal of T

Proof. It suffices to show that L(*T;)L(PTj,) €™ T and L(PTy, )L("Ty) €™ T
Ifj # I, then L("T;)L(*'T,) = 0. Suppose j = I Since Hy_j4—j ® Hij € Nij and Hg_j4-m @ Hjm € Njm, we obtain
(Hg-i,d—jHa—j d—m) ® (H;jHjm) € N m. It follows that there exist scalars §, , such that

min(i,d—i) v

(Haid—Hajam) ® HigHim) = Y Y BuoE @ B + ES ™) @ E*) (Hy_ig—m ® Him)-
v=0 u=0

By Corollary 3.6,
BTy MTim = 8r.p 85" @ B4 + E @ EY) ((Hy-ia-jHa-ja-m) ® (HijHjm))
= 81.p 85.q Brs(EC " Hy—ia-m) ® B Hym) + (B Hy i a-m) @ (Ef*"Him)),
so we have
BT P Tjm = 8rp 85,9 Br.s " Tim- (16)
It follows that L("T)L(PTj,) €™ 7. Similarly LPITjn)L(PTy) €™ 7. O
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By (16) we observe that 7 P45 = {0} if and only if (r, s) # (p, q). From the construction of ./, we have

ld/2] s
T T
s=0 r=0
Lemma 5.3. Let *Tj; be as in (14). Then *T;; # O ifand only if i,j € {ers, ..., er s+ drs}.
Proof. The proof is similar to that of Lemma 4.3 and will be omitted. O
Fori,j € {max(r,s), ..., min(d —r,d — s)}, write
Zrd—i—m . .
( p )p,ﬁf*”(s), i<j,
1 =\j—i—-m
n =
S oi—m :
Z( . )p,ﬂ?”(s), i>].
m=0 J

Similarly to the proof of (12), we have

g gl
TS TS nr Ns nlr nls rs
T,‘j jl = —_— T,‘l. (17)
ni' nil
Let ¢ be the linear mapping from *J to Maty, .41 (C) satisfying ¢ (L("Ty)) = ny n;jE,-.j. By (17), we obtain the following

result.

Theorem 5.4. Let T be the Terwilliger algebra of the Johnson scheme ] (2d, d). Then

S

ld/2]
J ~ @ Matdr_5+1(((:).
s=0 r=0
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