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HIGHLIGHTS

We introduced two mapping rules for building discrete time series from a set of chess games.
We found long range correlations in an extensive chess database.

The extent of long range correlations depends on the level of the players.

Depending on the level of expertise the players use different strategies.

ARTICLE INFO ABSTRACT

Am'df—’ history: In this paper we report the existence of long-range memory in the opening moves of a
Received 2 July 2013 chronologically ordered set of chess games using an extensive chess database. We used
Received in revised form 21 August 2013 two mapping rules to build discrete time series and analyzed them using two methods

Available online 27 September 2013 for detecting long-range correlations; rescaled range analysis and detrended fluctuation

analysis. We found that long-range memory is related to the level of the players. When the

IL(gl W_Or;‘:ls"e correlations database is filtered according to player levels we found differences in the persistence of
Zipfgs lawg the different subsets. For high level players, correlations are stronger at long time scales;

whereas in intermediate and low level players they reach the maximum value at shorter
time scales. This can be interpreted as a signature of the different strategies used by players
with different levels of expertise. These results are robust against the assignation rules and
the method employed in the analysis of the time series.

© 2013 Elsevier B.V. All rights reserved.

Interdisciplinary physics

1. Introduction

Some games are complex systems which provide information about social and biological processes [1-12]. They are
currently being studied because of the existence of very well documented registers of games which are useful for statistical
analysis. In particular, recent works have tried to understand the statistics of wins and losses in baseball teams [6], the final
standing in basketball leagues [7], the distribution of career longevity in baseball [8], the football goal distribution [9], and
face to face game rank distributions [10]. The time evolution of the table during a season, for instance, can be interpreted
as a random walk [11], and long-range correlations have been found in the score evolution of the game of cricket [12].
Among them, the game of chess has a main place in occidental culture because its intrinsic complexity is viewed as a symbol
of intellectual prowess. Since the skill level of chess players can be correctly identified [13] chess has contributed to the
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scientific understanding of expertise [5]. In addition, nowadays, there is a big world-wide community of chess players which
makes the game a benchmark for studying, for instance, decision making processes [4] and population level learning [3].

Exploring a chess database Blasius and Tonjes [2] observed that the pooled distribution of all opening weights follows a
Zipf law with universal exponent. This is a remarkable result [ 14,15] since the Zipf law is followed in a range that comprises
six orders of magnitude. In their work, the authors explain the results using a multiplicative process with a branching ratio
distribution which resembles the real branching distribution measured in the database. Beyond the very good agreement
between their empirical observations and the proposed model to explain Zipf's law, they do not provide an explanation
of the evolution of the pool of games; disregarding for instance, the question of possible memory effects between different
games. The development of a given chess game should depend on the expertise of the players because the first moves (game
opening) are usually known in advance by high level players as a result of their theoretical background. Other aspects
can influence the development of a chess game according to the level of expertise. It has been established that skillful
players develop outstanding rapid object recognition abilities that differentiate them from the non-expert players [16,17].
In particular, Gobet and Simon [ 17] suggested that chess players, like experts in other fields, use long-term memory retrieval
structures or templates in addition to chunks [18,19] in short-term memory in order to store information rapidly. Then, it
can be expected that the differences in the level of expertise of chess players are reflected in the historical development of
chess databases introducing correlations between games through memory effects.

Currently there is a big corpus of digitized texts which allows the study of cultural trends tracing memory effects [20],
opening a new branch in science known as culturomics [21]. In particular, long-range correlations have been observed
in literary corpora [22,23] where Zipf's law was also studied using extensive databases [24]. Testing signatures of memory
effects is important because it has been shown that systems which exhibit Zipf's law need a certain degree of coherence [25]
for its emergence. Therefore, the detection of long-range memory effects can be useful to shed light on the general
mechanism behind the Zipf law.

In this work we explored the existence of long-range correlations in game sequences. To that end, time-series are
constructed using a chronological ordered chess database similar to the one used by Blasius and Ténjes. In order to support
the reliability of our results, we used two mapping rules to build the discrete time series. We also used different techniques
to detect long-range correlations, namely the rescaled range analysis and the detrended fluctuation analysis [26].

2. Long-range correlation analysis

Rescaled range analysis (R/S) and detrended fluctuation analysis (DFA) are two useful tools for detecting long-range
correlations in discrete time series. The R/S analysis was introduced by Hurst when studying the regularization problem
of the Nile River [26], whereas DFA was introduced by Peng et al. [27] for detecting long-range (auto-) correlations in time
series with non-stationarities. Both methods use the accumulated time series which can be thought as the displacement of
a one dimensional random walker whose steps are dictated by the values of the temporal series.

As a general procedure, the discrete time series X (t) is first centered and normalized,

)~((t) — M (1)

~ 2 . . . N .
where ¢ = /(X(t)2) — ((X(t))) and {...) means arithmetic averages over the complete series. Normalization is useful in
order to compare different assignation rules [22]. Then the accumulated series Y (t) is constructed,

Y(6) = X(). 2)
u=1

Once the series Y(t) is obtained, we applied the rescaled range analysis [22,26] and the detrended fluctuation

analysis [28-30]. In the R/S method the time series X (t) is divided into non-overlapping intervals of size n. The range of
each interval is computed,

R(n) = max[Y (1), Y(2), ..., Y(n)] — min[Y (1), Y(2), ..., Y(0)], (3)

and the corresponding standard deviation,

S(n) = ! i(x —m)2 (4)
n - 1 )

where m is the average of X(t) in the interval of size n. Then the average of the rescaled range E[R(n)/S(n)] over all the
intervals of size n is calculated. The Hurst exponent H is obtained by varying the size of the intervals and fitting the data to
the expression Cn'" where H is the Hurst exponent.



306 A.L Schaigorodsky et al. / Physica A 394 (2014) 304-311

In the DFA method, the Y (t) series is also segmented into intervals of size n. At each segment the cumulated series is
fitted to a polynomial y, (t) and the fluctuation F(n) is obtained:

1 N
Fiy = |52 0 —y@F, (5)
i=1

where N is the total number of data points. A log-log plot of F (n) is expected to be linear and if the slope is less than unity it
corresponds to the Hurst exponent. When H = 0.5 the time series resembles a memoryless random walker, and for H > 0.5
(H < 0.5) arandom walker with persistent (antipersistent) long-range correlations.

3. Results

In our work we use the ChessDB database! which has 3.5 x 108 registered games; however, all our analysis is based on
a subset of 1.4 x 10° obtained by filtering corrupted data. The total time spanned in the database is about 10 years, from
1998 to 2007. The first step in our analysis consists in mapping the chronologically ordered chess games into a discrete time
series. The database contains approximately 380 games per day uniformly distributed over ~3650 days. The games played
on the same day are not chronologically ordered, hence the minimum time resolution in the studied temporal series is a
day. The mapping for building the time series is far from being unique, but as a general rule it should not introduce spurious
correlations [22,23]. We used two assignation rules. In the first one, given a subset of 7 + 1 consecutive games we evaluate
the similitude of the last of them with the rest. We call this rule the similitude assignation rule (SAR). We chose to compare
the recent tth game against the rest using the following mapping expression,

t—1

X0 = )Y Salt. 1), (6)

t'=t—t

where Sy(t,t') = k € {0, 1,2, 3,...,d}if and only if the tth and t’th games are identical up to move k included, and d is
the maximum number of moves to be considered. In this work we considered full length games, i.e. d is the length of the
shortest game to be compared. In our database the mean value of a game length is 260 and the longest game corresponds
to 400 moves. According to Eq. (6) when 7 = 1 then X(t) = Sy4(t, t — 1), meaning that each point of the time series uses
two consecutive games. For instance, if the sequences of moves of two games at t and t — 1 are - in algebraic notation -
e4, e5; Nf3, Nc6; Bb5, ab; . .. and e4, e5; Nf3, Nc6; d3, d6; . . ., respectively, then X (t) = 4 because these two games have
four common moves. In the second rule, X (t) is the popularity at depth d of the tth game, where the popularity at depth d
of the tth game is equal to the number of games in the database that have the same moves up to depth d. We call this rule
the popularity assignation rule (PAR) and it is similar to the one introduced by Montemurro and Pury [22] for the study of a
literary corpus. The popularity of a given game is computed using its first d moves. Games that evolve in the same way up
to a depth d determine a subset of games with the same popularity. The popularity of a given game is equal to the number
of elements of the subset to which it belongs. Notice that this assignation rule is based on a global characterization of the
database; however, it does not introduce spurious correlations as we will see.

The mapping rules we have chosen are roughly equivalent since games with a popular sequence of moves are likely
to match with other games. Popular games are related to opening lines which develop to different depths. From the chess
opening system classification it is known that the game lines branch at different depths depending on the opening system, for
instance, the Caro-Kann opening has a long sequence of moves before branching. However, in a global characterization [2]
the tree of chess moves has been proved to be self-similar to a certain degree, which means that the topology of the tree is
nearly independent of the depth, supporting the equivalence of both mapping rules.

The upper panels of Fig. 1 show fragments of the time series obtained using the two assignation rules described above.
On the right, we show the PAR using a game depth d = 4 and on the left the SAR using Eq. (6) with T = 1. These parameters
are appropriated for comparing the two assignation rules. As we will see the mean value of the SAR series (with t = 1) is
small, meaning that the SAR is testing the first moves, therefore d = 4 for the PAR is convenient. On the other hand, we
have checked that the Hurst exponent is nearly independent of d up to d = 20. For d > 20 correlations are affected maybe
because the exponent of the power law which controls the distribution of popularities is much greater than 2, therefore
fluctuations in the popularities become relevant [2]. In the SAR series the Hurst exponent is nearly independent of 7 for
T < 500. Beyond that value H drops, and the SAR series do not show long-range correlations. Note that in the SAR case,
increasing t implies a sort of time averaging. The points of the series obtained by the PAR are distributed according to a
scale free distribution as expected. In the corresponding inset we show this distribution, the exponent obtained by fitting
is in agreement with that obtained by Blasius and Ténjes [2] (see caption). SAR series have small values since most of the
matches between games are restricted to the first moves, in fact the distribution of coincidences is exponential and has a
rapid decay (see inset and caption). This means that most of the consecutive games are similar in the very first moves, and a

1 http://chessdb.sourceforge.net/.
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Fig. 1. The top panels show fragments of the temporal series X (t) (2000 points) obtained using the assignation by similitude (a) and popularity (b). The
bottom panels show the complete integrated series, Y (t), similitude (c) and popularity (d). Insets: distribution of similarities (a) and popularities (b). The
straight lines correspond to fits using: f (x) = Ae®* and g(x) = Bx”, insets (a) and (b) respectively, where « = —0.49 and 8 = —1.53.

few of them have coincidences beyond the 10th moves. In the bottom panels we show the complete accumulated series for
both cases, SAR on the left and PAR on the right. Persistence can be appreciated from the monotonic behavior of the curve
over long times.

In Fig. 2, we show data corresponding to the R/S analysis (upper panel) and DFA (medium and lower panels). The left
side panels show the analysis of the SAR series and the right one, that corresponding to the PAR series. In all cases a log-log
plot of the points can be well fitted by a straight line as can be appreciated. The Hurst exponent obtained from both analyses
R/S and DFA are similar; however, the exponent tends to be larger in the PAR series, H >~ 0.75 as compared to the SAR series
~0.67. According to these values both series exhibit long-range correlations. Since SAR is a local assignation rule and PAR is
based on a global characterization of the database, SAR series should be noisier than PAR series. According to this the Hurst
exponent of SAR is expected to be less than that of the PAR series. The fact that both methods give nearly the same value for
the Hurst exponent indicates that non-stationarities are negligible in the time series. When the SAR and PAR time series are
randomly shuffled (lower panels), the Hurst exponent in both analyses becomes close to 0.5, which corresponds to series
without long-range correlations. This means that the assignation rules we used do not introduce artificial correlations.

In order to compare the correlations obtained from different subsets of the total time series we will first study the
dependence of the Hurst exponent on the length of the series. In the upper panel of Fig. 3 we plotted the Hurst exponent
as function of the length N of the PAR (full line) and SAR (dashed line) series. In all this analysis we used the DFA method
and we averaged over all possible sets of consecutive games of length N. A certain correlation can be appreciated between
the Hurst exponent of the two series assignations. The exponent H of the PAR assignation is always greater than that of the
SAR assignation, as in Fig. 2. In both cases H grows as the length of the series increases reaching a maximum value at nearly
2 x 10° and then nearly stabilizes to H ~ 0.75 in the PAR series and H ~~ 0.65 in the SAR series. In the case of the shuffled
series (medium panel) we do not observe size effects and H fluctuates around 0.5 as expected. It is worth noting that in this
analysis, a change in the size of the time series is equivalent to a change in the total time spanned. Finally, in the lower panel
of Fig. 3 we show the effects of reducing the series by pruning them. The error bars are obtained from the fitting errors. In this
case we constructed reduced series by removing points from complete series but keeping nearly constant the total time span.
More specifically, to construct the set of reduced series we pick up one point from the complete series every s points, where
s =2,4,8, ....The result after pruning is similar to that observed in the upper panel. In both cases, the exponent grows as
the size of the series increases. However, in the pruned series H seems not to be stabilized even in the larger series. Since
the level of the players can be ranked according to their ELOs, a rating system introduced by the physicist Arpad Elo [13],
we repeated the analysis filtering the database according to different ELO intervals. We used the following ELO ranges [5]:
[1, 2199], [2200, 2399] and above 2400. These intervals nearly correspond to: non-experts and master candidates, masters,
and grand masters, respectively. In particular, this partition also ensures each interval contains nearly the same number of
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Fig. 2. R/S analysis (top panel) and DFA analysis (medium and lower panels) for the similitude (left) and popularity (right) assignation rules. The straight
dashed lines are linear fits of the data. The R/S error points (black crosses) correspond to the maximum and minimum point of the averaged data.

games. In Fig. 4, we show the Hurst exponent as function of the length of the time series associated to the ELO intervals
defined above. In the upper panel, we show the distribution of ELO rank of our database. As expected it is well described by

a Gaussian function exp(_(’%‘))z) (continuous line), with the fitted values, x = 2303 and a = 203. On the left we show the
SAR series; and on the right, the PAR series. As in Fig. 3, the behavior of the two assignation rules is similar and the exponents
of PAR series are slightly greater than in the SAR series. At short times the Hurst exponent in the three ELO intervals is close
to 0.5, i.e. at this time scale games are uncorrelated and no persistence can be detected. At intermediate times, the lower
ELO intervals show stronger correlations; and at the longest times, the order reverses and the games of high level players
are the most correlated.

When a pruning is implemented in series filtered according to ELO ranks, the Hurst exponent decreases as the length of
the series decreases, as in the complete database (see Fig. 5). The error bars are obtained from the fitting errors. At variance
with the results of Fig. 4 the series of higher ELOs are always more correlated, suggesting a different origin of this behavior.

4. Summary and discussion

The Hurst exponents obtained through R/S and DFA analysis are similar, indicating that the time series analyzed are
stationary for both assignation rules, SAR and PAR. For the case of PAR and the R/S analysis our results are similar to that
reported in literary corpora [22]. The value H >~ 0.5 that emerges from the shuffled series implies that the assignation rules
we used to build the series do not introduce spurious correlations. The analysis of the series as a function of the time spanned
shows that there is a threshold in the length of the time series from which long-range correlations appear. This threshold
depends on the assignation rule and on the level of the players. When the database is filtered by ELO ranks, our results
indicate that long-range correlations observed at large time scales are related to the presence of high level players. The
games corresponding to intermediate and low level players show correlations at shorter times when compared to high level
players. A reduction of the database by pruning indicates that in short series correlations disappear. At variance with the
analysis based on the length of the time spanned, the reduction in correlations by pruning has a similar behavior irrespective
of the ELO ranks analyzed. Therefore, the reduction of correlations in this case should have a different origin.

Size effects in the detection of long-range correlations have been analyzed in the work of Coronado et al. [31] using time
series generated by the Makse algorithm [32]. They observed that when DFA is used, size effects are negligible even in series
containing as few as 103 points. Since we use DFA and in our series size effects were observed in series having more than 103
elements, our results must be reflecting intrinsic properties of the system. However, in our case we have portions of the time
series which are randomly shuffled due to the minimum time resolution of our database, and this is affecting the detection of
persistence in the time series. In long-memory analysis of persistence if missing data are replaced using random data drawn
from the empirical distribution of the time series, the Hurst exponent tends to decrease [33]. Notice that pruning does not
affect the total time spanned in the series. When pruning, the parameter s can go up to s &~ 380 and still have on average
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one game per day in the pruned series with a time series of length ~3650. According to this, the pruned time series we used
should be representative samples of the temporal evolution of the games. However, as was pointed out, in pruned series
correlations decrease. In our case, a possible explanation is that pruning affects the representativity of samples because
persistence is a collective effect. The samples in order to be representative have to include at each time the behavior of a
representative pool of different players. When series are pruned, the number of samples taken at the minimum resolution
time (one day) are reduced hence the behavior of the pool of players is not correctly probed.
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For intermediate and low level players persistence reaches its maximum in two or three years and then nearly stabilizes.
This behavior is independent of the origin of time used for the analysis. In fact, the points shown in Fig. 4 result from the
averaging of equivalent non-overlapping time intervals. For the most specialized players a signature of persistence appears
after one or two years. According to our results, it seems that very high level players use different strategies as compared
to low level players. It seems they vary the lines of play more often at short time scales, maybe because outstanding
players know many opening lines in depth and are less influenced by the opponents. In particular, in high level players
the correlations at large time scale are the strongest.
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