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Abstract

The aim of this paper is to introduce an alternative definition for
the k-Riemann-Liouville fractional derivative given in [6] and whose ad-
vantage is that it is the left inverse of the corresponding of k-Riemann-
Liouville fractional integral operator introduced by [5]. Its basic prop-
erties are discussed, their Laplace transform, the derivative of the po-
tential function and the derivative of the Mittag-Leffler k-function in-
troduced in [2] is calculated.
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I Introduction and Preliminaries

For further development of this work we need to remember elements of frac-
tional calculus as derivatives and integrals of arbitrary orders. Also remember
the action of integral transforms such as Laplace transformation on fractional
operators.

Definition 1 Let f ∈ L1
loc[a, b] where −∞ ≤ a < t < b ≤ ∞. The Riemann-

Liouville integral of order ν is defined as
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Iνf(t) :=
1

Γ(ν)

∫ t

a

(t− τ)ν−1f(τ)dτ ν > 0. (I.1)

Definition 2 Let f ∈ L1[a, b], −∞ ≤ a < t < b ≤ ∞ and In−νf(t) ∈
W n,1[a, b], n = [ν] + 1, ν > 0

The Riemann-Liouville derivative of order ν, is given by

Dνf(t) :=

(
d

dt

)n
In−νf(t), (I.2)

where W n,1[a, b] = {f ∈ L1[a, b] : f (n) ∈ L1[a, b]} is the Sobolev space.

Definition 3 Let f : R+ → R an exponential order and piecewise continuous
function, then the Laplace transform of f is

L{f(t)}(s) :=

∫ ∞
0

e−stf(t)dt. (I.3)

The integral exist for Re(s) > 0.

In 2012 Mubeen-Habbibulah (cf.[5]) introduced k-Riemann-Liouville frac-
tional integral given by

Definition 4 Let α ∈ R+ and n ∈ N such that n− 1 < α < n, f ∈ L1([0,∞))
then the k-Riemann-Liouville fractional integral of f is

Iαk f(t) =
1

kΓk(α)

∫ t

0

(t− τ)
α
k
−1f(τ)dτ =

t
α
k
−1

kΓk(α)
∗ f(t) (I.4)

where

Γk(α) =

∫ ∞
0

tα−1e−
tk

k dt, k > 0. (I.5)

is the k-Gamma function introduced in [1] and whose relationship with the
classical Gamma function is

Γk(α) = k
α
k
−1Γ

(α
k

)
(I.6)

Is important to note that for k → 1, Γk(α) → Γ(α), thus Iαk → Iα for
k → 1.

The k-integral (I.4) also satisfies the semigroup property

Proposition 1 Let α, β ∈ R+, f ∈ L1([0,∞)) and k > 0, then

Iαk I
β
k f(t) = Iα+βk f(t) = Iβk I

α
k f(t) (I.7)

Cf.[5] formula (10) p. 91.
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Proposition 2 Let f be a sufficiently well-behaved function and let α be a
real number, 0 < α ≤ 1. The Laplace transform of the k-Riemann-Liouville
fractional integral of the function f is given by

L{Iαk f(t)}(s) =
L{f(t)}(s)

(ks)
α
k

, cf.[6]. (I.8)

In 2013 [6] introduced the following

Definition 5 Let β ∈ R such that 0 < β < 1; f ∈ L1([0,∞)) and k > 0 the
k-Riemnnan-Liouville fractional derivative of order β of f is

Dβ
kf(t) =

d

dt
I1−βk f(t) (I.9)

Unfortunately, this derivative is not a left inverse of the corresponding
integral operator of the same order as can be verified easily, since

Dα
k (Iαk f(t)) =

d

dt

[
I1−αk Iαk f(t)

]
=

d

dt
I1kf(t) =

d

dt

(
t
1
k
−1

kΓk(1)
∗ f(t)

)

=
d

dt

(
t
1
k
−1

kΓk(1)

)
∗ f(t)

=
1

k
I1−kk f(t) 6= f(t)

This fact led to an alternative definition according to the development of
the classical fractional calculus.

Suppose we want to solve the following integral equation (which can be
considered as a generalization of the Abel equation of the first kind)

Iαk f(t) = u(t) (I.10)

To solve (I.10), we seek a left inverse operator of the k-Riemann-Liouville
fractional integral of the order α. To do this we note that, using equation (I.6),
we have that the k-Riemann-Liouville fractional integral introduced in [5] it
related to the classical Riemann-Liouville fractional integral by

Iαk f(t) = k−
α
k I

α
k f(t) (I.11)

Therefore, by replacing (I.11) in (I.10) we have
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I
α
k f(t) = k

α
k u(t).

As D
α
k is the inverse operator to the left of I

α
k result

f(t) = D
α
k k

α
k u(t), (I.12)

In terms of the Riemann-Liouville derivative is:

f(t) = k
α
k

(
d

dt

)p
Ip−

α
k u(t), (I.13)

where p = [α/k] + 1.

If we use here once again (I.11)

f(t) = k
α
k

(
d

dt

)p
I
pk−α
k u(t)

=

(
d

dt

)p
k
α
k k

pk−α
k Ipk−αk u(t)

=

(
d

dt

)p
kpIpk−αk u(t)

This leads us to define a k version of the classical Riemann-Liouville frac-
tional derivative in terms of k-Riemann-Liouville fractional integral given in
[5].

II Main results

Definition 6 Let k, α ∈ R+ and n ∈ N such that n = [α
k
] + 1, f ∈ L1([0,∞))

and Ink−αk f(t) ∈ W n,1[a,∞); the modified k-Riemann-Liouville fractional deriva-
tive is given by

kD
α
RLf(t) =

(
d

dt

)n
knInk−αk f(t) (II.1)

We note at first that, using (I.6) and (I.7) obtained
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kD
α
RLI

α
k f(t) =

(
d

dt

)n
knInk−αk (Iαk f(t)) (II.2)

=

(
d

dt

)n
knInkk f(t) (II.3)

= kn
(
d

dt

)n
1

kΓk(nk)

∫ t

0

(t− τ)
nk
k
−1f(τ)dτ (II.4)

= kn
(
d

dt

)n
1

kkn−1Γ(nk/k)

∫ t

0

(t− τ)n−1f(τ)dτ (II.5)

=

(
d

dt

)n
1

Γ(n)

∫ t

0

(t− τ)n−1f(τ)dτ (II.6)

=

(
d

dt

)n
Inf(t) (II.7)

= f(t) (II.8)

This proves that indeed the operator kD
α
RL is a left inverse of their correspond-

ing integral operator Iαk . Note that the above proof also follows that(
d

dt

)n
knInkk f(t) = f(t) (II.9)

As a particular case of k = 1 we have

1D
α
RLf(t) = Dα

RLf(t),

where Dα
RLf(t) is a classic fractional derivative of Riemann-Liouville.

Some basic properties of the modified k-Riemann-Liouville fractional deriva-
tive are presented.

Proposition 3 Let f ∈ L1([0,∞)), k, α, β ∈ R+ and n,m ∈ N such that
n = [α

k
] + 1 and m = [β

k
] + 1; then

• If β > α

kD
α
RLI

β
k f(t) = Iβ−αk f(t) (II.10)

• If β < α

kD
α
RLI

β
k f(t) = kD

α−β
RL f(t) (II.11)

Proof. To prove (II.10), by the semigroup property (I.7)we have

kD
α
RLI

β
k f(t) = kD

α
RL

(
Iαk I

β−α
k f(t)

)
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= Iβ−αk f(t)

To prove the case (II.11) by using again the semigroup property and (II.9)
we have

kD
α
RLI

β
k f(t) = kn

(
d

dt

)n
Ink−αk

(
Iβk f(t)

)
= kn−m

(
d

dt

)n−m(
d

dt

)m
kmI

(n−m)k−α
k

(
Imkk Iβk f(t)

)
= kn−m

(
d

dt

)n−m(
d

dt

)m
kmImkk

(
I
(n−m)k−α
k Iβk f(t)

)
= kn−m

(
d

dt

)n−m
I(n−m)k−(α−β)f(t)

= kD
α−β
RL f(t)

Proposition 4 Let k, α ∈ R+ and r, n ∈ N such that n = [α
k
] + 1, f ∈

L1([0,∞)) and Iαk f(t) ∈ ACr−1([0,∞)) = {f ∈ Cr−1([0,∞))/f (r−1) is absolutely continous};
then

• (
d

dt

)r
Iαk f(t) =

1

kr
Iα−rkk f(t), if rk ≤ α. (II.12)

• (
d

dt

)r
Iαk f(t) =

1

kr
kD

rk−α
RL f(t), if rk > α. (II.13)

Proof. To prove (II.12) it is sufficient to derive r-times the integral of
order α.

To prove (II.13), we start with the second member, we take p = [rk−α]+1
and we use (II.9)

1

kr
kD

rk−α
RL f(t) =

kp

kr

(
d

dt

)p
Ipk−rk+αk f(t)

= kp−r
(
d

dt

)p
I
(p−r)k
k Iαk f(t)

=

(
d

dt

)r (
d

dt

)p−r
kp−rI

(p−r)k
k Iαk f(t)

=

(
d

dt

)r
Iαk f(t)
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Proposition 5 Let n ∈ N and α ∈ R+ such that n = [α
k
] + 1, f ∈ L1([0,∞))

and Ink−αk ∈ ACn([0,∞)); then

Iαk kD
α
RLf(t) = f(t)−

n∑
j=1

kD
α−jk
RL f(t)|t=0

t
α
k
−j

kΓk(α− jk + k)
(II.14)

Proof. Making use of (I.6), (II.13) and the derivation rule for a parametric
integral notice that

Iαk kD
α
RLf(t) =

d

dt

 1

k.k
α
k
−1Γ

(
α
k

+ 1
) ∫ t

0

(t− τ)
α
k kD

α
RLf(τ)dτ︸ ︷︷ ︸

(∗)

 (II.15)

By integrating by parts n-fold the expression in brackets and applying (II.1)

(∗) =
1

k.k
α
k
−1Γ

(
α
k
− n+ 1

) ∫ t

0

(t− τ)
α
k
−nknInk−αk f(τ)dτ

−
n∑
j=1

t
α
k
−j+1

k.k
α
k
−1Γ

(
α
k
− j + 2

) ( d

dt

)n−j
knInk−αk f(τ)|τ=0

=
k

kΓk (α− nk + k)

∫ t

0

(t− τ)
α−nk+k

k
−1Ink−αk f(τ)dτ

−
n∑
j=1

kn
(
d

dt

)n−j
Ink−αk f(τ)|τ=0

t
α
k
−j+1

k.k
α
k
−1Γ

(
α−jk
k

+ 2
)

= kIα−nk+kk Ink−αk f(t)−
n∑
j=1

kj−1kD
α−jk
RL f(τ)|τ=0

t
α−jk
k

+1

k
α
k
−1Γ

(
α−jk
k

+ 2
)

= kIkkf(t)−
n∑
j=1

kD
α−jk
RL f(τ)|τ=0

kj−1t
α−jk
k

+1

k
α
k
−1Γ

(
α−jk
k

+ 2
) (II.16)

Replacing (II.16) in (II.15) result

Iαk kD
α
RLf(t) =

d

dt
kIkkf(t)−

n∑
j=1

kD
α−jk
RL f(τ)|τ=0

kj−1

k
α
k
−1Γ

(
α−jk
k

+ 2
) ( d

dt

)
t
α−jk
k

+1

= f(t)−
n∑
j=1

kD
α−jk
RL f(0)

kj−1

k
α
k
−1Γ

(
α−jk
k

+ 1
)tαk−j
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= f(t)−
n∑
j=1

kD
α−jk
RL f(0)

kj−1

Γk (α− jk + k)
t
α
k
−j

Proposition 6 Let r, n ∈ N and α ∈ R+ such that n = [α
k
]+1; f ∈ L1([0,∞))

and Ink−αk f(t) ∈ ACn+r−1([0,∞)), then(
d

dt

)r
(kD

α
RLf(t)) =

1

kr
kD

rk+α
RL f(t) (II.17)

Proof. From the first member and using (II.13) and (II.1) one has(
d

dt

)r
(kD

α
RLf(t)) =

(
d

dt

)r [(
d

dt

)n
knInk−αk f(t)

]
(II.18)

= kn
(
d

dt

)n+r
Ink−αk f(t) (II.19)

= kn
1

kr+n
kD

(n+r)k−nk+α
RL f(t) (II.20)

=
1

kr
kD

rk+α
RL f(t) (II.21)

Proposition 7 Let r, n ∈ N, and α ∈ R+ such that n = [α
k
] + 1 and

f ∈ Cn+r−1([0,∞)); then

kD
α
RLf

(r)(t) =
1

kr
kD

rk+α
RL f(t)−

r∑
j=1

kn−j−1f (r−j)(0)
t−

α
k
−j

Γk(k − jk − α)
(II.22)

Proof. From (II.1), it result

kD
α
RLf

(r)(t) =

(
d

dt

)n
knInk−αk f (r)(t) (II.23)

Calculating the integral Ink−αk f (r)(t) via integration by parts r-times has

Ink−αk f (r)(t) =
1

kr+1Γk(nk − α− rk)

∫ t

0

(t− τ)
nk−α−rk

k
−1f(τ)dτ

−
r∑
j=1

f (r−j)(0)

kj+1

t
nk−α
k
−j

Γk(nk − α− jk + k)

=
1

kr
Ink−α−rkk f(t)−

r∑
j=1

f (r−j)(0)

kj+1

t
nk−α
k
−j

Γk(nk − α− jk + k)
(II.24)
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Substituting (II.24) into (II.23)

kD
α
RLf

(r)(t) =

(
d

dt

)n
kn

1

kr
Ink−α−rkk f(t)−

r∑
j=1

f (r−j)(0)

kj+1

(
d

dt

)n
t
nk−α
k
−j

Γk(nk − α− jk + k)

Applying (II.13) result finally

kD
α
RLf

(r)(t) =
1

kr
kD

rk+α
RL f(t)−

r∑
j=1

kn−j−1f (r−j)(0)
t−

α
k
−j

Γk(k − jk − α)

Proposition 8 Let f and kD
α
RLf(t) be piecewise continuous and of exponen-

tial order, then the Laplace transform of the k-Riemann-Liouville fractional
derivative of f is given by

L{kDα
RLf(t)}(s) = (ks)

α
kL{f(t)}(s)−

n−1∑
j=0

k(ks)jkD
α−jk−k
RL f(0) (II.25)

Proof. Applying Laplace transform in the definition (II.1)) and using
equations (I.8) and (II.13) is

L{kDα
RLf(t)}(s) = L{

(
d

dt

)n
knInk−αk f(t)}(s)

= snL{knInk−αk f(t)}(s)−
n−1∑
j=0

sj
(
d

dt

)n−j−1
knInk−αk f(t)|t=0

= kn

[
snL{Ink−αk f(t)}(s)−

n−1∑
j=0

sj
(
d

dt

)n−j−1
Ink−αk f(t) |t=0

]

= kn

[
sn(ks)−

nk−α
k L{f(t)}(s)−

n−1∑
j=0

sjk−n+j+1
k Dα−jk−k

RL f(t) |t=0

]

= (ks)n(ks)−
nk−α
k L{f(t)}(s)−

n−1∑
j=0

sjkj+1
k Dα−jk−k

RL f(t) |t=0

= (ks)
α
kL{f(t)}(s)−

n−1∑
j=0

k(ks)jkD
α−jk−k
RL f(t) |t=0
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III Application Examples

Proposition 9 Let k, α, γ ∈ R+ and n ∈ N such that n = [α
k
] + 1 then

kD
α
RL

(
t
γ
k
−1
)

=
knΓk(γ)

Γk(γ − α)
t
γ−α
k
−1 (III.1)

Proof.
The simple proof is done using definition 6 and formula (11) of [5].
From the above property follows that for γ = k

kD
α
RL (1) =

knΓk(k)

Γk(k − α)
t−

α
k =

kn

Γk(k − α)
t−

α
k (III.2)

That is, the k-Riemann-Liouville derivative of a constant function is not
zero unless α = pk for p ∈ R+.

Proposition 10 Let ν, α, β, γ, k ∈ R+ and n ∈ N such that n = [ν
k
] + 1; then

kD
ν
RL

(
t
β
k
−1Eγ

k,α,β(t
α
k )
)

= knt
β−ν
k
−1Eγ

k,α,β−ν(t
α
k ) (III.3)

Where

Eγ
k,α,β(z) =

∞∑
j=0

zj(γ)j,k
j!Γk(αj + β)

(III.4)

is the k-Mittag-Leffler function introduced in [2]
Proof. The simple proof is done using (II.1), the formula (III.1) and the

uniform convergence of the serie (III.4).
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