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Abstract The present article comments on the article of Ste-
phen Fletcher (Journal of Solid State Electrochemistry Vol-
ume 18, Issue 5, pp 1231–1238). The analysis deals with the
validity of equation (31 or 40) of the latter for an ideally
polarisable interface.

Stephen Fletcher presents [1] a theoretical work concerning
surface thermodynamics. The article deals with a subject that
has generated vivid discussions in the literature, concerning
the validity of Gokhshtein relations and their derivation. In the
present approach, the author proposes a derivation from the
Gibbs potential, in the special case where the electrode/
solution interface is ideally polarizable. Leaving aside the
problem of stress, which is out of our expertise field, the
present comment is related to equation1 (F31)–(F40) in this
article that reads:

∂μ̄i ¼ zie0∂E ð1Þ

where μi is the electrochemical potential of the i-specie, zi
and e0 are the charge number (dimensionless) of i-specie
and the elementary charge, respectively, and E is the
electrode potential. Equations (F31)–(F40) is applied to
an ideally polarizable electrode/solution interface model.

Our main concern is that Eq. (1) is not generally valid for
an ideally polarisable interface, as shown below. With this
purpose, we start from equation (4.3.5) of Trasatti and
Parsons2 that states:

e0ε ¼ μ�α
B=zB

� �
− μ�β

C=zC
� �

ð2Þ

where ε is the generalized potential, μ�i
j is the electro-

chemical potential of the j-specie in the i-phase, and zj is
the charge of the j-specie. ε is related to the measurable
potential difference via an additive constant, which de-
pends on the nature of the reference electrode chosen.
Note that we have defined the electrochemical potential
in terms of the free energy per particle and not per mole
of particles, so that the elementary charge e0 is used on
the lhs of Eq. (2) instead of Faraday constant. B and C
correspond to charged species located in phases α and β,
respectively. If α and β are chosen to be the solution (S)
and the metal (M) phases, respectively, then C and B may
be chosen to be the electrons and some ionic species of
interest, respectively, that we denote with the subindices e
and i, respectively.

Thus, Eq. (2) may be rewritten by:

e0ε ¼ μS
i =zi

� �þ μM
e

� �þ e0 φS−φM
� �� � ð3Þ

where φM and φS are the Galvani potentials in the bulk metal
and solution phases, respectively. If we consider an increment
in Eq. (3), assuming that the activities in the bulk phases
remain constant, we get:

∂ε ¼ ∂ φS−φM
� � ð4Þ
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That reminds us the well-known fact that changes in the
inner potential difference at the metal/solution interface can be
measured.

On the other hand, from the definition of the electrochem-
ical potential of species, μi :

μ�i ¼ μþ zie0φ ð5Þ

we get:

∂μ�S
i ¼ zie0∂φS ð6Þ

That is the change of the electrochemical potential of the i-
species will be given by the change of the inner potential of
the solution. There is in principle no straightforward argument
justifying that the condition of Eq. (4) does necessarily in-
volve Eq. (6).

We now concentrate to analyze the change of φS for two
different conditions of the metal/solution interphases. In order
to change the potential difference (φS−φM) in the amount ∂ε,
some charge ∂Q must be added to the metal. Since the metal/
solution interphase is assumed to be ideally polarizable, nei-
ther electronic nor ionic charge will flow across it. To screen
the field generated by the metal in the solution, a net ionic
charge −∂Q ′ will flow to the neighborhood of the metal
surface, involving anion (cation) accumulation (depletion)
on the solution side of the interface, so as to get a zero field
inside the solution phase. Let us introduce the first modeling
for the solution. We will assume that the solution is connected
to an infinite reservoir of anions/cations with constant electro-
chemical potential (Grand Canonical conditions). Under these
conditions, anions (cations) will flow to (from) the reservoir to
the interphase, keeping the rest of the solution neutral. Under
these conditions, and if we assume as zero for the electrostatic
potential a point located far from the electrochemical cell, the
change φSwill be zero, and ∂μSi ¼ 0 . In other words, if we can

put/take away ions from an infinite reservoir, nothing will
change in the solution far away from the electrode surface,
and the electrostatic work to bring a charge inside it will
remain unchanged with respect to the point previous to the
addition of the charge ∂Q. Thus, under Grand Canonical
conditions, we conclude that ∂μSi ¼ 0 for a finite ∂ε, some-
thing that it is in contradiction with Eq. (1).

We turn now to analyze the Canonical condition for the
electrolyte solution. Here, if an electrolyte charge −∂Q ′ flows
to the metal/solution interphase, an equivalent charge ∂Q ′
must appear somewhere else on the surface of the solution
phase, because the ionic charges are mobile in the solution.
Since the charge distribution will certainly depend on the
geometry of the system, we have adopted the model shown
in Fig. 1. We have taken an spherical metal electrode of radius
RM, surrounded by an also spherical solution phase of radius
RS. Here, the charge on the metal isQ. This generates a charge
−Q on the solution side close to the metal and a charge Q at
the metal/vacuum interphase. The potential difference be-
tween a point at infinity and a point inside the metal can be
written as:

φM−φ∞ ¼ φM ¼ Q

RS
þ gSvac dipð Þ þ gMS dipð Þ þ gMS ionð Þ ð7Þ

where gα
β(dip) denote dipole potentials arising due to the

contact between phases α and β, and gα
β(ion) is the corre-

sponding potential drop associated with free charges on the
phases when the solvent molecules in the interphase are
regarded as non-polarizable particles. We will assume that
the latter is given by that arising due to a compact ionic double
layer. Thus, gMS ionð Þ≈− Q

R2
M
Δx , where Δx is the thickness of

the compact double layer, which is of the order of the diameter
of a solvent molecule. In principle, gα

β(dip) depends on Q, but
we will neglect below this dependence to make an estimation
of the relationship between ∂(φS−φM) and ∂φS, the quantities
involved above in Eqs. (4) and (6). Within the present model,
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Fig. 1 Schematic representation
of a metal electrode immersed in
an electrolytic solution and the
different potentials defined in the
text
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φS is given by:

φS ¼ Q

RS
þ gSvac dipð Þ ð8Þ

So φS−φM will be:

φS−φM ¼ Q

R2
M

Δx−gMS dipð Þ ð9Þ

Taking increments in Eqs. (8) and (9), we can get ∂φS as a
function of ∂(φS−φM) according to:

∂φS ¼ R2
M

RSΔx
∂ φS−φM
� � ð10Þ

which shows that in general ∂φS≠∂(φS−φM). If RS→∞, then
∂φS will drop to zero, as discussed above under Grand Ca-
nonical conditions, that is the infinitely large solution phase
will be able to deal with any finite changes in the charge of the
system without altering the Galvani potential inside it. Thus,
Eq. (1) remains unjustified.

Saving the derivation of Gokhshteins equation following
Fletcher’s proposal

Aswe have seen above, Eq. (1) cannot shown to be valid, so it
appears that Eq. (FM1) cannot be demonstrated from
Eq. (F38). However, we will see that this is possible with a
slight modification to it. With this purpose, we will rewrite
Eq. (F32) as:

dU ¼ TdS−PdV þ γdAþ μ�i dN i þ μ�e dNe ð11Þ

where besides the ions of i-type, we have also considered the
electrons of the metal as a component of the system.

Using now the definition of Gibbs free energy,G =U−TS+
PV and Eq. (11), we arrive at:

dG ¼ −SdT þ VdP þ γdAþ μ�i dNi þ μ�e dNe ð12Þ

If we now assume that the only charged species participat-
ing are electrons and i type species (dNe=zidNi), and constant
temperature and pressure conditions we arrive at:

dG ¼ γdAþ μ�i

zi
þ μ�e

� 	
zi dNi ¼ γdAþ μ�i

zi
þ μ�e

� 	
dQ

ð13Þ

Note that this equation is very similar to Eq. (F39), but
instead of the electrochemical potential of the species i, we
have a parenthesis which is identical with the rhs of Eq. (2), that
is a quantity that is directly related to the measurable potential
difference. From Eq. (13), which has been proposed by Valicius
in reference [2], Eq. (FM1) follows directly using Maxwell
relations.

However, the previous derivation remains arbitrarily re-
stricted to a fixed number of charged species (2) and makes
no explicit mention of other charged species.
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