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3 Centro Atómico Bariloche Comisión Nacional de
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Abstract

We consider the semiclassical Einstein equations (SEE) in the presence of a quantum scalar field

with self-interaction λφ4. Working in the Hartree truncation of the two-particle irreducible (2PI)

effective action, we compute the vacuum expectation value of the energy-momentum tensor of the

scalar field, which act as a source of the SEE. We obtain the renormalized SEE by implementing a

consistent renormalization procedure. We apply our results to find self-consistent de Sitter solutions

to the SEE in situations with or without spontaneous breaking of the Z2-symmetry.
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I. INTRODUCTION

Quantum field theory in curved spacetimes [1–4] is the natural framework for the study

of quantum phenomena in situations where the gravitation itself can be treated classically.

Of special interest is quantum field theory in de Sitter spacetime. In fact, de Sitter space-

time plays a central role in most of inflationary models of the early Universe [5–7], where

the energy density and pressure of the inflaton field act approximately as a cosmological

constant. Moreover, the amplification of quantum fluctuation during an inflationary period

with an approximately de Sitter background metric, gives a natural mechanism for gener-

ating nearly scale-invariant spectrum of primordial inhomogeneities, which can successfully

explain the observed CMB anisotropies [8, 9]. De Sitter spacetime is also potentially im-

portant for understanding the final fate of the Universe if the current accelerated expansion

is due to a small cosmological constant, which nowadays is a possibility that is compati-

ble with observations [9–12]. On the other hand, previous studies of interacting quantum

scalar fields in de Sitter spacetime have revealed that the standard perturbative expansion

gives rise to corrections that secularly grow with time and/or infrared divergences [13–20],

signaling a possible deficiency of the perturbative approach. This has motivated several

authors to consider alternative techniques (see for instance [18–27]) and in particular, to use

nonperturbative resummation schemes [28–34].

In the above situations, it is important to study not only test fields evolving on a fixed

background, but also to take into account the backreaction of the quantum fields on the

dynamics of the spacetime geometry. The backreaction problem has been explored by a

number of authors in the context of semiclassical gravity (see for instance [35–39]), where the

dynamics of the classical metric is governed by the so-called Semiclasical Einstein Equations

(SEE). The SEE are a generalization of the Einstein equations that contain as a source

the expectation value of the energy-momentum tensor of the quantum matter fields, 〈Tµν〉

[1–4]. Self-consistent de Sitter solutions have been found for the case of free quantum fields

[40–44]. The influence of the initial state of the quantum field on the semiclassical solutions

has been studied in Refs. [45, 46].

Since 〈Tµν〉 is formally a divergent quantity, in order to address the backreaction problem

it is necessary to analyze the renormalization process. For free and interacting quantum

fields in the one-loop approximation, there are well known covariant renormalization meth-
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ods [1–4]. Our main goal in this work is to improve the current understanding of these

methods in the case in which the quantum effects are taken into account nonperturbatively.

For this, we consider a quantum self-interacting scalar field in the Hartree approximation,

which corresponds to the simplest nonperturbative truncation to the two-particle irreducible

effective action (2PI EA), introduced by Cornwall, Jackiw and Tomboulis [47]. The Hartree

(or Gaussian) approximation involves the resummation of a particular type of Feynman

diagrams which are called superdaisy (see for instance [48]) to an infinite perturbative or-

der. This approximation can also be introduced by means of a variational principle [49, 50].

However, the use of the 2PI EA is advantageous for at least two reasons. First, it provides

a framework for resumming classes of diagrams that can be systematically improved. Sec-

ond, for any truncation of the EA, it implies certain consistency relations between different

counterterms that allow a renormalization procedure that is consistent with the standard

perturbative (loop-by-loop) renormalization of the bare coupling constants [51]. The latter

is crucial for the consistent renormalization procedure developed in Ref. [51] for Minkowski

spacetime, which in [34] (from now on paper I), using the same model considered here, we

have extended to general curved background metrics.

The renormalization problem of the SEE in the Hartree approximation has been consid-

ered previously in [32, 52]. However, it has not been analyzed using the consistent renor-

malization procedure [51] that we extended to curved spacetimes in paper I in order to

renormalize the field and gap equations. Our focus in this paper is to prove that the same

set of renormalized parameters leads to SEE that can be made finite, and independent on the

arbitrary scale introduced by the regularization scheme (which for the field and gap equa-

tions was explicitly shown in paper I), by suitable renormalizations of the bare gravitational

constants.

The paper is organized as follows. In Sec. II we introduce the 2PI EA in curved space-

times. In Sec. III we present our model and summarize the main relevant results of paper I

for the renormalization of the mass and coupling constant of the field. The reader acquainted

with paper I may skip this section. In Sec. IV we show that the same counterterms that

make finite the field and gap equations can also be used to absorb the non-geometric diver-

gences in the SEE, extending the consistent renormalization procedure to the gravitational

sector. The geometric divergences can be absorbed into the usual gravitational countert-

erms. In Sec. V we analyze the field, gap and SEE in de Sitter spacetimes. The high
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symmetry of these spacetimes allows us to compute explicitly the two point function and

the energy-momentum tensor, to end with a set of algebraic equations that determine self-

consistently the mean value of the field and the de Sitter curvature. We will present some

numerical solutions to these equations. In Sec. VI we include our conclusions. Throughout

the paper we set c = ~ = 1 and adopt the mostly plus sign convention.

II. THE 2PI EFFECTIVE ACTION

A detailed description to the 2PI EA formalism can be found in several papers and

textbooks, such as [47, 53, 54]. In this section, in order to make this work as self-contained

as possible and to set the notation, we briefly summarize the main relevant aspects of the

formalism applied to a self-interacting scalar field φ in a general curved spacetime.

The 2PI generating functional can be written as [51]

Γ2PI [φ0, G, g
µν ] = S0[φ0, g

µν ] +
i

2
Tr ln(G−1) +

i

2
Tr(G−1

0 G) + Γint[φ0, G, g
µν ], (1)

where S0 is quadratic part of the classical action S without any counterterms,

iGab
0 (x, x′) =

1√
−g

δ2S0[φ0, g
µν ]

δφa(x)δφb(x′)

1√
−g′

, (2)

and

Γint[φ0, G, g
µν ] = Sint[φ0, g

µν ] +
1

2
Tr

[
δ2Sint
δφ0δφ0

G

]
+ Γ2[φ0, G, g

µν ], (3)

where the functional Γ2 is −i times the sum of all two-particle-irreducible vacuum-to-vacuum

diagrams with lines given by G and vertices obtained from the shifted action SFint, which

comes from expanding Sint[φ0 + ϕ] and collecting all terms higher than quadratic in the

fluctuating field ϕ. Here a, b are time branch indices (with index set {+,−} in the usual

notation) corresponding to the ordering on the contour in the “closed-time-path”(CTP) or

Schwinger-Keldysh [53] formalism.

The equations of motion for the field and propagator are obtained by

δΓ2PI

δφ0

∣∣∣
φ+=φ−=φ;gµν+ =gµν− =gµν

= 0, (4a)

δΓ2PI

δG

∣∣∣
φ+=φ−=φ;gµν+ =gµν− =gµν

= 0. (4b)
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Figure 1: 2PI “double-bubble” diagram .

To arrive at the SEE we extremize the combination Sg[g
µν ] + Γ2PI [φ0, G, g

µν ] with respect

to the metric,

δ (Sg[g
µν ] + Γ2PI [φ0, G, g

µν ])

δgµν

∣∣∣
φ+=φ−=φ;gµν+ =gµν− =gµν

= 0, (5)

where Sg is the gravitational action. As it is well known [1–3], this equation is formally

divergent, with the divergences contained in the vacuum expectation value of the energy-

momentum tensor 〈Tµν〉, defined by

〈Tµν〉 = − 2√
−g

δΓ2PI [φ0, G, g
µν ]

δgµν

∣∣∣
φ+=φ−=φ;gµν+ =gµν− =gµν

. (6)

It is also well known [1–3] that the renormalization procedure requires the inclusion of terms

quadratic in the curvature in the gravitational action, so that

Sg =
1

2

∫
d4x
√
−g
{
κ−1
B (R− 2ΛB)− α1BR

2 − α2BRµνR
µν − α3BRµνρσR

µνρσ
}
, (7)

where Rµνρσ is the curvature tensor, Rµν = Rρ
µρν , and κB = 8πGB

N , ΛB, αiB (i = 1, 2, 3) are

bare parameters which are to be appropriately chosen to cancel the divergences in 〈Tµν〉.

III. λφ4 THEORY IN THE HARTREE APPROXIMATION: RENORMALIZA-

TION OF THE FIELD AND GAP EQUATIONS

We consider a nonminimally coupled scalar field with quartic self-coupling in a curved

background with metric gµν . The corresponding classical action reads

Sm[φ, gµν ] = −
∫
d4x
√
−g
[

1

2
φ
(
−� +m2

B + ξBR
)
φ+

1

4!
λBφ

4

]
, (8)

where � = 1√
−g∂µ (

√
−ggµν∂ν), g ≡ det(gµν). In the Hartree approximation, which corre-

sponds to the inclusion of only the double-bubble diagram shown in Fig. 1, the 2PI effective
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action is given by

Γ2PI [φ0, G, gµν ] = −
∫
d4x
√
−g
[

1

2
φ0

(
−� +m2

B2 + ξB2R
)
φ0 +

1

4!
λB4φ

4
0

]
+
i

2
Tr ln(G−1)

−1

2

∫
d4x
√
−g
[
−� +m2

B0 + ξB0R +
1

2
λB2φ

2
0

]
G(x, x) (9)

−λB0

8

∫
d4x
√
−g G2(x, x),

where, for the sake of simplicity, we drop the time branch indices, since for the Hartree

approximation it is known that the CTP formalism gives the same equations of motion than

the usual in-out formalism [54].

Taking the variation with respect to φ0 and G we obtain equations of motion for the

mean field and the propagator:(
−� +m2

B2 + ξB2R +
λB4

6
φ2

0 +
λB2

2
[G]

)
φ0(x) = 0, (10)(

−� +m2
B0 + ξB0R +

λB2

2
φ2

0 +
λB0

2
[G]

)
G(x, x′) = −iδ(x− x

′)√
−g′

, (11)

with [G] the coincidence limit of the propagator G(x, x′).

It is important to note that here we are taking into account the possibility of having

different counterterms for a given parameter of the classical action Eq. (8). These are

denoted using different subscripts in the bare parameters that refer to the power of φ0 in the

corresponding term of the action. In the Hartree approximation, this point turns out to be

crucial for the implementation of the consistent renormalization procedure described in [51] .

Indeed, as shown in [51] (see also Appendix A of paper I), there are various possible n-point

functions that can be obtained from functionally differentiating Γ2PI [φ0, G, g
µν ] with respect

to φa and Gab, which in the exact theory must satisfy certain consistency conditions. On

the other hand, for any truncation of the 2PI EA, the validity of such consistency conditions

is not guarantee. However, one can find a relation between the different counterterms

by imposing the consistency conditions at a given renormalization point. Doing this, any

possible deviation of the consistency conditions is finite and under perturbative control. In

other words, had we not allowed for different counterterms, the diagrams contributing to

the consistency conditions could contain perturbative divergent contributions which could

not be absorbed anywhere.

In our case, the consistency conditions for the two- and four-point functions, evaluated

at φ0 = 0, are given by

6



δ2Γint
δφ1δφ2

∣∣∣∣∣
φ=0

= 2
δΓint
δG12

∣∣∣∣∣
φ=0

, (12)

and

δ4Γ1PI [φ0]

δφ1δφ2δφ3δφ4

∣∣∣∣∣
φ0=0

= 2

 δ2Γint
δG12δG34

∣∣∣∣∣
Ḡ,φ0=0

+ perms(2, 3, 4)

− 1

2

δ4Γint
δφ1δφ2δφ3δφ4

∣∣∣∣∣
Ḡ,φ0=0

,(13)

where

Γ1PI [φ0, g
µν ] = Γ2PI [φ0, Ḡ[φ0], gµν ]. (14)

In what follows we consider two different parametrizations of the bare couplings:

m2
Bi = m2 + δm2

i = m2
R + δm̃2

i (i = 0, 2), (15a)

ξBi = ξ + δξi = ξR + δξ̃i (i = 0, 2), (15b)

λBi = λ+ δλi = λR + δλ̃i, (i = 0, 2, 4). (15c)

The first separation corresponds to the MS scheme (i.e., the counterterms δm2
i , δξi and

δλj (i = 0, 2,j = 0, 2, 4) contain only divergences and no finite part), while in the second

separation m2
R, ξR and λR are chosen to be the renormalized parameters as defined from the

effective potential (see below).

By imposing the conditions (12) and (13), one can obtain the following relation between

the different counterterms [34]:

δm2
0 = δm2

2 ≡ δm2, (16a)

δξ0 = δξ2 ≡ δξ, (16b)

δλ0 = δλ2, (16c)

δλ4 − 3δλ2 = 2(λ− λR), (16d)

with
δ4Γ1PI [φ0]

δφ1δφ2δφ3δφ4

∣∣∣∣∣
φ0=0

= −λRδ12δ13δ14, (17)

where we used φi ≡ φ0(xi) as a notational shorthand. Recalling that the effective potential is

proportional to the effective action at a constant value of φ0, the renormalized self-interaction

coupling λR can be also written as

λR =
d4Veff
dφ4

0

∣∣∣∣∣
0

. (18)
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With the use of these relations, one can recast Eqs. (10) and (11) as(
−� +m2

ph + ξRR−
1

3
λRφ

2
0

)
φ0(x) = 0, (19)(

−� +m2
ph + ξRR

)
G1(x, x′) = 0, (20)

where m2
ph is identified with the physical mass of the fluctuations and satisfies a self-

consistent equation (i.e., the gap equation) that reads

m2
ph + ξRR = m2 + δm2 + (ξ + δξ)R +

1

2
(λ+ δλ2)φ2

0 +
1

4
(λ+ δλ2)[G1]. (21)

A point that is worth emphasizing here is that these relations cannot be imposed in

an arbitrary spacetime metric, since the renormalized parameters must be constant, while

the fourth derivative of 1PI EA in Eq. (17) might not. However, in order to define the

renormalized parameters, one can choose a particular fixed background metric with constant

curvature invariants as the renormalization point at which the consistency conditions are

imposed. In paper I we considered both Minkowski and de Sitter spacetimes. Here, for the

sake of generality, we will also consider both renormalization points. Therefore, we define

the renormalized parameters as those derived from the effective potential and evaluated for

a fixed de Sitter spacetime with R = R0,

M2
R ≡

d2Veff
dφ2

0

∣∣∣∣∣
φ0=0,R=R0

=M2
ph(φ0 = 0, R = R0), (22a)

ξR ≡
d3Veff
dR dφ2

0

∣∣∣∣∣
φ0=0,R=R0

=
dM2

ph

dR

∣∣∣∣∣
φ0=0,R=R0

, (22b)

λR ≡
d4Veff
dφ4

0

∣∣∣∣∣
φ0=0,R=R0

= 3
d2M2

ph

dφ2
0

∣∣∣∣∣
φ0=0,R=R0

− 2λR, (22c)

where we are using the notation M2
R = m2

R + ξRR. In particular, the limit R0 → 0 could

be taken to recover the usual renormalized parameters defined in Minkowski spacetime.

In order to obtain the renormalized gap equation it is useful to consider the adiabatic

expansion of the propagator at the coincidence limit:

[G1] =
1

8π2

(
m2
ph

µ2

)ε/2∑
j≥0

[Ωj](m
2
ph)

1−j Γ
(
j − 1− ε

2

)
≡ 1

4π2ε

[
m2
ph +

(
ξR −

1

6

)
R

]
+ 2TF (m2

ph, ξR, R, µ̃), (23)
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where ε = n − 4, Γ(x) is the Gamma function, and the Schwinger-DeWitt coefficients

[Ωj] are scalars of adiabatic order 2j built from the metric and its derivatives and satisfy

certain recurrence relations. In the second line, we have used the explicit expressions for the

coefficients [Ω0] = 1 and [Ω1] = −(ξR − 1/6)R, given in [55], we have expanded for ε → 0

and we have redefined µ→ µ̃ to absorb some constant terms, defining

TF (m2
ph, ξR, R, µ̃) =

1

16π2

{[
m2
ph +

(
ξR −

1

6

)
R

]
ln

(
m2
ph

µ̃2

)
+

(
ξR −

1

6

)
R

− 2F (m2
ph, {R})

}
, (24)

where the function F (m2
ph, {R}) contains the adiabatic orders higher than two, is indepen-

dent of ε and µ, and satisfies the following properties:

F (m2
ph, {R})

∣∣∣∣
Rµνρσ=0

= 0, (25a)

dF (m2
ph, {R})

dm2
ph

∣∣∣∣∣
Rµνρσ=0

= 0, (25b)

dF (m2
ph, {R})
dR

∣∣∣∣∣
Rµνρσ=0,φ0=0

= 0. (25c)

Taking into account the relations in Eq. (16) between the counterterms, the gap equation

can be made finite with the use of the following MS counterterms:

δm2 = − λ

16π2ε

m2

1 + λ
16π2ε

, (26a)

δξ = − λ

16π2ε

(
ξ − 1

6

)
1 + λ

16π2ε

, (26b)

δλ2 = − λ

16π2ε

λ

1 + λ
16π2ε

. (26c)

Once made finite and written in terms of the MS parameters, it reads

m2
ph + ξRR = m2 + ξR +

1

2
λφ2

0 +
λ

32π2

{[
m2
ph +

(
ξR −

1

6

)
R

]
ln

(
m2
ph

µ̃2

)
+

(
ξR −

1

6

)
R− 2F (m2

ph, {R})
}
. (27)

Here, the explicit dependence on the renormalization scale µ̃ should be compensated with

an implicit µ̃-dependence on the finite MS parameters m2(µ̃), ξ(µ̃) and λ(µ̃). Indeed, the
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invariance of this equation under changes of µ̃ becomes manifest when we express it in terms

of the renormalized quantities m2
R, ξR and λR. The latter are related to the former ones by

m2
R =

m2 + λ
16π2

[
R0

dFdS
dR

∣∣∣
m2
R,R0

− FdS(m2
R, R0)

]
[
1− λ

32π2 ln
(
m2
R

µ̃2

)] , (28a)

(
ξR −

1

6

)
=

(
ξ − 1

6

)
− λ

16π2
dFdS
dR

∣∣∣
m2
R,R0[

1− λ
32π2 − λ

32π2 ln
(
m2
R

µ̃2

)] , (28b)

λR =
λ[

1− λ
32π2 − λ

32π2 ln
(
m2
R

µ̃2

)
− λ

32π2

(
(ξR− 1

6
)R0

m2
R
− 2 dFdS

dm2
ph

∣∣∣
m2
R,R0

)] . (28c)

Two useful µ̃-independent combinations follow immediately from these relations:

m2
B

λB2

=
m2

λ
=
m2
R

λ∗R
+

(
ξR − 1

6

)
R0

32π2
(29)

and(
ξB − 1

6

)
λB

=

(
ξ − 1

6

)
λ

(30)

=

(
ξR − 1

6

)
λR

+

(
ξR − 1

6

)
32π2

[(
ξR −

1

6

)
R0

m2
R

− 2
dFdS
dm2

ph

∣∣∣
m2
R,R0

]
+

1

16π2

dFdS
dR

∣∣∣
m2
R,R0

≡
(
ξR − 1

6

)
λR

+ J(R0,m
2
R, ξR).

where λ∗R is defined by
1

λ∗R
≡ 1

λR
+

1

32π2
. (31)

Using these parameters, the self-consistent equation for m2
ph can be written as

m2
ph = m2

R +
λ∗R
2
φ2

0 +
λ∗R

32π2

{[
m2
ph +

(
ξR −

1

6

)
R

]
ln

(
m2
ph

m2
R

)

+
(
m2
ph −m2

R

) [
2
dFdS
dm2

ph

∣∣∣
m2
R,R0

−
(ξR − 1

6
)R0

m2
R

]
(32)

+ 2

[
FdS(m2

R, R0) +
dFdS
dR

∣∣∣
m2
R,R0

(R−R0)− F (m2
ph, R)

]}
.

Finally, as will be needed for the renormalization of the energy-momentum tensor in next

section, we write the results for the counterterms associated to the non-MS renormalized

10



parameters defined in Eq. (15):

δm̃2 ≡ m2
B −m2

R = − m2
B

32π2

m2
R(

m2
R

λ∗R
+

(ξR− 1
6)R0

32π2

) [2

ε
+ ln

(
m2
R

µ̃2

)
− 2

dFdS
dm2

ph

∣∣∣
m2
R,R0

]
, (33)

δξ̃ ≡ ξB − ξR = −
(
ξB − 1

6

)
32π2

{(
ξR − 1

6

) [
2
ε

+ 1 + ln
(
m2
R

µ̃2

)]
+ 2dFdS

dR

∣∣∣
m2
R,R0

}
[

(ξR− 1
6)

λR
+ J

] , (34)

δλ̃ ≡ λB2 − λR = −λB2λR
32π2

[
2

ε
+ 1 + ln

(
m2
R

µ̃2

)
+

(ξR − 1
6
)R0

m2
R

− 2
dFdS
dm2

ph

∣∣∣
m2
R,R0

]
. (35)

Note that the well known one-loop results can be recovered from these expressions, making

the replacements m2
B → m2

R, ξB → ξR, λB2 → λR, and R0 → 0 on the right-hand-sides.

IV. RENORMALIZATION OF THE SEMICLASSICAL EINSTEIN EQUATIONS

So far we have dealt with Eqs. (19) and (20), that give the dynamics of φ0 and G for a

given choice of metric gµν . However these equations do not take into account the effect of

the quantum field on the background geometry. In order to assess whether this backreaction

is important or not, we must deal with the SEE, obtained from the stationarity condition

given in Eq. (5) with the gravitational action Eq. (7) and the definition of the vacuum

expectation value of the energy-momentum tensor given in Eq. (6). The resulting equations

are

κ−1
B Gµν + ΛBκ

−1
B gµν + α1B

(1)Hµν + α2B
(2)Hµν + α3BHµν = 〈Tµν〉, (36)

where κB = 8πGB. An explicit expression for the tensors (1,2)Hµν and Hµν can be found for

instance in [55].

The renormalization procedure then involves the calculation of 〈Tµν〉 and the regulariza-

tion of its divergences. The divergences can be of either one of two types, independent of the

field φ0 and therefore only geometrical, or otherwise φ0-dependent either explicitly or implic-

itly through m2
ph(φ0). The SEE are renormalizable if, with the same choice of counterterms

as for the field and gap equations, the non-geometrical divergences can be completely dealt

with. In order to absorb the geometrical divergences in the renormalization of the param-

eters of the gravitational part of the action, κ−1
B , ΛB and αiB, these divergences must be

11



proportional to the tensors that appear on the left-hand side of Eq. (36) (note that in four

spacetime dimensions the tensors (1,2)Hµν and Hµν are not all independent).

We will follow the usual procedure and define the renormalized energy-momentum tensor

as

〈Tµν〉ren = 〈Tµν〉 − 〈Tµν〉ad4 , (37)

where the fourth adiabatic order is understood as the expansion containing up to four

derivatives of the metric and up to two derivatives of the mean field [55]. Our goal in this

section is to show that with the choice of the counterterms for the field and gap equations,

〈Tµν〉ad4 only contains geometric divergences, that can be absorbed into the bare gravitational

constants.

The expectation value 〈Tµν〉 can be formally computed from the definition Eq. (6). One

can show that [54]

〈Tµν〉 = Tµν(φ0) + 〈T fµν〉+
λB2

32
[G1]2gµν , (38)

where the first term is the classical energy-momentum tensor evaluated at φ0

Tµν(φ0) = − 2√
−g

δSm
δgµν

= (1− 2ξB)φ0,µφ0,ν − 2ξBφ0;µνφ0 + 2ξBgµνφ0�φ0 + ξBφ
2
0Gµν

+

(
2ξB −

1

2

)
gµνφ

,λ
0 φ0,λ −

m2
B

2
gµνφ

2
0 −

λB4

4!
gµνφ

4
0. (39)

The second term is formally the mean value of the energy-momentum tensor of a free field,

constructed with the two-point function G1. More explicitly, it can be written as [55, 56]

〈T fµν〉 = −1

2
[G1;µν ] +

(1− 2ξB)

4
[G1];µν +

(
ξB −

1

4

)
gµν
2

�[G1] + ξBRµν
[G1]

2
. (40)

As a side point, we mention that one could also derive Eq. (38) using a different approach:

take the classical energy-momentum tensor for the action Eq. (8), evaluate for φ = φ0 + ϕ

and then expand on the fluctuation ϕ. Afterwards take the expectation value 〈. . . 〉 and

recall that in the Hartree approximation one can write the expectation values of products

of fields in terms of φ0 and 〈ϕ2〉 = [G1]/2 (and derivatives), using that

〈ϕ3〉 = 0, (41a)

〈ϕ4〉 =
3

4
[G1]2. (41b)

12



For the renormalization it is useful to separate, in the expressions for Tµν(φ0) and 〈T fµν〉,

the bare couplings into the corresponding renormalized parts and the nonminimal subtrac-

tion counterterms

Tµν(φ0) = Tµν(φ0)

∣∣∣∣∣
B=R

+ δξ̃
(
−φ2

0;µν + gµν�φ
2
0 + φ2

0Gµν

)
− δm̃2

2
φ2

0gµν (42)

〈T fµν〉 = 〈T fµν〉

∣∣∣∣∣
B=R

+
δξ̃

2

(
−[G1];µν + gµν�[G1] +Rµν [G1]

)
, (43)

where B = R is a notational shorthand to indicate a replacement of the bare couplings with

the renormalized ones. It will be also useful to write separately the interaction term in the

classical energy momentum tensor

Tµν(φ0)

∣∣∣∣∣
B=R

= Tµν(φ0)

∣∣∣∣∣
B=R,free

− λB4

4!
φ4

0gµν . (44)

Note that while there are no divergences in Tµν(φ0)|B=R,free, the quantity 〈T fµν〉|B=R still has

divergences that arise from the coincidence limit of G1 and of its derivatives. Recall Eq.

(20), which implies that in our case the two-point function is that of a field of mass m2
ph and

curvature coupling ξR.

We are now ready to show that the counterterms already chosen to renormalize the mean

field and gap equations also cancel the non-geometrical divergences in 〈Tµν〉. The third

term of Eq. (38) as well as the terms that were isolated in Eq. (43) involve [G1] and its

derivatives, and therefore they can be expressed in terms of m2
ph and the bare couplings by

using that the physical mass is defined by the equality of Eqs. (11) and (20), which in a

more convenient form reads

λB2

4
[G1] = m2

ph − δ̃ξR−m2
B −

λB2

2
φ2

0. (45)

With this replacement we have

〈Tµν〉 = Tµν(φ0)

∣∣∣∣∣
B=R,free

+ 〈T fµν〉

∣∣∣∣∣
B=R

+
(3λB2 − λB4)

4!
φ4

0gµν

+
2δξ̃

λB2

[
−m2

ph;µν
+ gµν�m

2
ph +Gµνm

2
ph

]
+
m4
ph

2λB2

gµν −m2
ph

m2
B

λB
gµν

+
δξ̃2

λB2

(1)Hµν − 2δξ̃
m2
B

λB2

Gµν +
m2
B

2

m2
B

λB
gµν

+(m2
R −m2

ph)
φ2

0

2
gµν . (46)
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Here the term proportional to φ4
0 is already finite because of the relation Eq. (16d) between

the counterterms, and thus equal to λRφ
4
0gµν/12. The fourth, fifth and sixth terms contain

the non-geometrical divergences that will have to be cancelled by those from 〈T fµν〉|B=R. The

remaining terms contain purely geometrical divergences.

It is worth to emphasize that the divergences in Eq. (46) are proportional to simple poles

in ε. Indeed, from the definition of δξ̃ = ξB − ξR and the relations (31) it is straightforward

to see that

δξ̃

λB2

=

(
1

λR
− 1

λB2

)(
ξR −

1

6

)
+ J, (47a)

δξ̃2

λB2

= λB2

[(
ξR − 1

6

)
λR

+ J

]2

− 2

(
ξR −

1

6

)[(
ξR − 1

6

)
λR

+ J

]

+

(
ξR − 1

6

)2

λB2

, (47b)

which are exact expressions. Note that λ−1
B2 contains just a simple pole,

1

λB2

=
1

λ
+

1

16π2ε
. (48)

We now expand 〈Tµν〉 up to the fourth adiabatic order. We will use the explicit expressions

for the coincidence limit of G1 and its derivatives that are given in Ref. [55]. The fourth

adiabatic order expansion for 〈T̃µν〉 ≡ 〈T fµν〉|B=R is

〈T̃µν〉ad4 =
1

16π2

(
m2
ph

µ2

)ε/2 [
1

2
m4
ph gµν Γ

(
−2− ε

2

)
+m2

ph

{
1

2
[Ω1]gµν +

(
ξR −

1

6

)
Rµν

}
× Γ

(
−1− ε

2

)
+

{
1

2
[Ω2]gµν +

(
ξR −

1

6

)
Rµν [Ω1]− [Ω1;µν ]

+

(
1

2
− ξR

)
[Ω1];µν +

(
ξR −

1

4

)
gµν �[Ω1]

}
Γ
(
− ε

2

)]
, (49)

where the expressions for [Ω1], [Ω2] and [Ω1;µν ] can be found in the Appendix A of [55].

Notice however that here these contributions are expressed in terms of ξR instead of ξB.

Expanding for ε → 0, regrouping the geometric terms to form the appropriate tensors and

14



separating the divergent part one arrives at

〈T̃µν〉ad4 =
1

16π2ε

{
−1

2
m4
phgµν + 2m2

ph

(
ξR −

1

6

)
Gµν +

1

90

[
(2)Hµν −Hµν

]
−
(
ξR −

1

6

)2
(1)Hµν + 2

(
ξR −

1

6

)(
gµν�m

2
ph −m2

ph;µν

)}

+
m4
ph

64π2
gµν

[
1

2
− ln

(
m2
ph

µ̃2

)]
+
m2
ph

16π2

(
ξR −

1

6

)
Gµν ln

(
m2
ph

µ̃2

)
+

1

32π2

[
1

90

(
(2)Hµν −Hµν

)
−
(
ξR −

1

6

)2
(1)Hµν

+ 2

(
ξR −

1

6

)(
gµν�m

2
ph −m2

ph;µν

)] [
1 + ln

(
m2
ph

µ̃2

)]
. (50)

Replacing Eq. (50) into Eq. (46) one can verify that the non-geometrical divergences in Eq.

(46) cancel out. This result shows the renormalizability of the SEE within the consistent

renormalization approach.

In order to complete the analysis, we write the full expression for the fourth adiabatic

order, which we separate in its divergent and a convergent parts:

〈Tµν〉ad4 = 〈Tµν〉divad4 + 〈Tµν〉conad4 , (51)

with

〈Tµν〉divad4 =
1

90

1

32π2

[
2

ε
+ 1 + ln

(
m2
R

µ̃2

)] (
(2)Hµν −Hµν

)
− 2δξ̃

[
m2
R

λ∗R
+

(
ξR − 1

6

)
R0

32π2

]
Gµν

+ δξ̃

[(
ξR − 1

6

)
λR

+ J

]
(1)Hµν +

δm̃

2

[
m2
R

λ∗R
+

(
ξR − 1

6

)
R0

32π2

]
gµν −

m4
R

64π2
gµν , (52)
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and

〈Tµν〉conad4 = Tµν(φ0)

∣∣∣∣∣
B=R,free

+
λR
12
φ4

0 gµν +

(
m2
R

2
−m2

ph

)[
m2
R

λ∗R
+

(
ξR − 1

6

)
R0

32π2

]
gµν

+
m4
ph

64π2

[
32π2

λ∗R
+

1

2
+

(
ξR −

1

6

)
R0

m2
R

− 2
dFdS
dm2

ph

∣∣∣
m2
R,R0

]
gµν

+
1

16π2

[
2m2

phGµν −
(
ξR −

1

6

)
(1)Hµν + 2gµν�m

2
ph − 2m2

ph;µν

]
dFdS
dR

∣∣∣
m2
R,R0

+
1

32π2

{
−
m4
ph

2
gµν + 2m2

ph

(
ξR −

1

6

)
Gµν +

1

90

(
(2)Hµν −Hµν

)
−
(
ξR −

1

6

)2
(1)Hµν + 2

(
ξR −

1

6

)(
gµν�m

2
ph −m2

ph;µν

)}
ln

(
m2
ph

m2
R

)
−

m2
ph

16π2

(
ξR −

1

6

)
Gµν +

(
m2
R −m2

ph

) φ2
0

2
gµν +

m4
R

64π2
gµν . (53)

As anticipated, the divergent part contains purely geometric divergences. The convergent

part is field dependent, finite, and written in terms of the renormalized parameters (there-

fore independent of µ̃). To ensure the correct one-loop limit of the cosmological constant

counterterm, we included the finite contribution − m4
R

64π2 gµν in 〈Tµν〉divad4.

Now we can add and subtract 〈Tµν〉ad4 in the right-hand side of the SEE

κ−1
B (Gµν + ΛBgµν) + α1B

(1)Hµν + α2B
(2)Hµν + α3BHµν =

[〈Tµν〉 − 〈Tµν〉ad4] + 〈Tµν〉divad4 + 〈Tµν〉conad4 , (54)

where the quantity between square brackets on the right-hand side is defined as 〈Tµν〉ren.

Renormalization is completed by absorbing 〈Tµν〉divad4 into a redefinition of the bare gravita-

tional constants of the left-hand side. Then the renormalized gravitational parameters read

κ−1
B = κ−1

R +
m2
B

8π2

{(
ξR −

1

6

)[
1

ε
+

1

2
+

1

2
ln

(
m2
R

µ̃2

)]
− dFdS

dR

∣∣∣
m2
R,R0

}
, (55a)

ΛBκ
−1
B = ΛRκ

−1
R −

m2
Bm

2
R

32π2

[
1

ε
+

1

2
ln

(
m2
R

µ̃2

)
− dFdS
dm2

ph

∣∣∣
m2
R,R0

]
− m4

R

64π2
, (55b)

α1B = α1R −
(
ξB − 1

6

)
16π2

{(
ξR −

1

6

)[
1

ε
+

1

2
+

1

2
ln

(
m2
R

µ̃2

)]
− dFdS

dR

∣∣∣
m2
R,R0

}
, (55c)

α2B = α2R +
1

1440π2

[
1

ε
+

1

2
+

1

2
ln

(
m2
R

µ̃2

)]
, (55d)

α3B = α3R −
1

1440π2

[
1

ε
+

1

2
+

1

2
ln

(
m2
R

µ̃2

)]
. (55e)
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These are consistent with the well known one-loop results when replacing the bare param-

eters in the right-hand side (in the counterterms) by the renormalized ones and setting

R0 → 0, thus justifying the choice of 〈Tµν〉divad4 in Eq. (52). As it happens for the field

parameters, the relation between the bare and renormalized expressions is µ̃-dependent.

Finally, the renormalized SEE are

κ−1
R Gµν + ΛRκ

−1
R gµν + α1R

(1)Hµν + α2R
(2)Hµν + α3RHµν = 〈Tµν〉ren + 〈Tµν〉conad4, (56)

which, as expected, are expressed only in terms of renormalized parameters.

V. INTERACTING FIELDS IN DE SITTER SPACETIME

In this section we apply the previous results to de Sitter spacetime with ds2 = −dt2 +

e2Htd~x2, and compute explicitly the renormalized energy-momentum tensor, and the SEE.

We then consider both the field equation and the SEE to analyze the existence of self-

consistent solutions.

A. Gap and semiclassical Einstein equations

In de Sitter spacetime, the solution of the Eq. (20) for the propagator, which is the one

of a free field with mass m2
ph, is known exactly for an arbitrary number of dimensions n.

The expression for the coincidence limit [G1] is

[G1] =
2Hn−2

(4πµ2)n/2
Γ
(

1− n

2

) Γ
(
n−1

2
+ νn

)
Γ
(
n−1

2
− νn

)
Γ
(

1
2

+ νn
)

Γ
(

1
2
− νn

) , (57)

where ν2
n = (n−1)2

4
− m2

ph

H2 − ξRn(n− 1) and R = n(n− 1)H2.

To make use of the results of previous sections we need to extract the function FdS(m2
ph, R),

defined in Eq. (23), from this exact expression. For this, we set n = 4 + ε and expand for

ε → 0, holding R fixed. Doing this, as shown in detail in paper I, we obtain the following

expression for the function F (m2
ph, {R}) in de Sitter spacetime

FdS(m2
ph, R) = Rf(m2

ph/R) = −R
2

{(
m2
ph

R
+ ξR −

1

6

)[
ln

(
R

12m2
ph

)
+ g

(
m2
ph/R + ξR

)]

−
(
ξR −

1

6

)
− 1

18

}
(58)
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with

g(y) ≡ ψ+ + ψ− = ψ

(
3

2
+ ν4(y)

)
+ ψ

(
3

2
− ν4(y)

)
, (59)

and R = 12H2, ψ(x) = Γ
′
(x)/Γ(x) is the digamma function and ν4(y) =

√
9/4− 12y. From

this equation one can check that this function has all the expected properties: it is written

only in terms of renormalized parameters, it is independent of ε and µ̃, and it satisfies the

correct limits Eqs. (25a), (25b) and (25c).

Therefore, the renormalized equation for the physical mass m2
ph we are going to solve

self-consistently together with the SEE we calculate below, can be written as:

m2
ph = m2

R +
λ∗R
2
φ2

0 +
λ∗R

32π2

[
m2
ph +

(
ξR −

1

6

)
R

] [
ln

(
R

12m2
R

)
+ g

(
m2
ph/R + ξR

)]
− λ∗R

32π2

(
ξR −

1

9

)
R. (60)

In de Sitter spacetime all geometrical quantities can be written in terms of only R and

gµν . In n dimensions they are:

Rµν =
R

n
gµν , (61a)

Gµν =

(
1

n
− 1

2

)
Rgµν , (61b)

(1)Hµν =
1

2

(
1− 4

n

)
R2 gµν , (61c)

(2)Hµν =
1

2n

(
1− 4

n

)
R2 gµν , (61d)

Hµν =
1

n(n− 1)

(
1− 4

n

)
R2 gµν . (61e)

In fact, any 2nd-rank tensor is proportional to the metric, so that

[G1;µν ] =
1

n
[�G1] gµν . (62)

De Sitter invariance also implies that any scalar function has vanishing derivative, and in

particular that [G1] is independent of spacetime coordinates. The energy-momentum tensor

will also be proportional to gµν . Indeed, from the general expression Eq. (38) together with

Eqs. (39) and (40), and using Eq. (61), we obtain

〈Tµν〉 =

[
−m

2
B

2
φ2

0 −
λB4

4!
φ4

0 + ξBφ
2
0

(
1

n
− 1

2

)
R− 1

2n
[�G1]− m2

B

4
[G1]

+
1

4
[�G1] + ξB

[G1]

2

(
1

n
− 1

2

)
R− λB2

8
φ2

0[G1]− λB2

32
[G1]2

]
gµν . (63)
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Once again we use Eq. (45) to make previous expression simpler, and we put n = 4 + ε,

〈Tµν〉 =

{
−m

2
B

2
φ2

0 −
ξB
4
φ2

0R−
λB4

4!
φ4

0 −
1

8

[
m2
B +

λB2

2
φ2

0

]
[G1]

+
1

4

(
4

4 + ε
− 1

)[
ξBφ

2
0R−

1

2

(
m2
ph − δξ̃R

)
[G1]

]}
gµν . (64)

Here we cannot set ε = 0 in the denominator yet, as it is multiplied by both the bare

parameters and [G1], that contain poles in ε that could give finite terms. After some ma-

nipulations and dropping terms that vanish for ε→ 0, it reads

〈Tµν〉 =

{
1

2

[
δm̃2 +

(
1 +

ε

4 + ε

)
δξ̃R

](
m2
R

λ∗R
+

(
ξR − 1

6

)
R0

32π2

)
(65)

+

(
4

4 + ε

)
ε δξ̃

8

((
ξR − 1

6

)
λR

+ J

)
R2 +

1

2

(
m2
R

λ∗R
+

(
ξR − 1

6

)
R0

32π2

)(
m2
R −m2

ph

)
− 1

4
(m2

ph + ξRR)φ2
0 +

λR
12
φ4

0 +
1

128π2

[
m2
ph +

(
ξR −

1

6

)
R

]2
}
gµν .

To compute the renormalized expectation value, 〈Tµν〉ren = 〈Tµν〉 − 〈Tµν〉ad4, we evaluate

〈Tµν〉ad4 (given in Eq. (51)) in de Sitter spacetime, using the n-dimensional geometrical

expressions Eq. (61). Separating the result again in 〈Tµν〉ad4 = 〈Tµν〉divad4 + 〈Tµν〉conad4, up to

order ε these two terms read

〈Tµν〉divad4 =

{
1

64π2

R2

2160
+

1

2

[
δm̃2 +

(
1 +

ε

4 + ε

)
δξ̃R

](
m2
R

λ∗R
+

(
ξR − 1

6

)
R0

32π2

)

+

(
4

4 + ε

)
ε δξ̃

8

((
ξR − 1

6

)
λR

+ J

)
R2 − m4

R

64π2

}
gµν , (66)

〈Tµν〉conad4 =

{
m2
R

2

[
m2
R

λ∗R
+

(
ξR − 1

6

)
R0

32π2
+

m2
R

32π2

]
+
m2
ph

64π2

(
ξR −

1

6

)
R

+
m4
ph

64π2

[
32π2

λ∗R
+

1

2
+

(ξR − 1
6
)R0

m2
R

− 2
dFdS
dm2

ph

∣∣∣
m2
R,R0

]

−
m2
ph

64π2

[
m2
ph +

(
ξR −

1

6

)
R

]
ln

(
m2
ph

m2
R

)
−
m2
phR

32π2

dFdS
dR

∣∣∣
m2
R,R0

− m2
ph

[
m2
R

λ∗R
+

(
ξR − 1

6

)
R0

32π2

]
−
(
m2
ph +

ξR
2
R

)
φ2

0

2
+
λR
12
φ4

0

}
gµν . (67)
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The first term of Eq. (66) is finite and is the source of the trace anomaly [1]. Then we have

〈Tµν〉ren = − 1

64π2

{
m2
ph

[(
32π2

λ∗R
+

(ξR − 1
6
)R0

m2
R

− 2
dFdS
dm2

ph

∣∣∣
m2
R,R0

)
(m2

ph −m2
R)− 16π2φ2

0

−
[
m2
ph +

(
ξR −

1

6

)
R

]
ln

(
m2
ph

m2
R

)
− 2R

dFdS
dR

∣∣∣
m2
R,R0

− 2m2
R

dFdS
dm2

ph

∣∣∣
m2
R,R0

]

− 1

2

(
ξR −

1

6

)2

R2 +
R2

2160

}
gµν . (68)

To make contact with the known free and one-loop expressions, we use Eq. (32) to arrive

at a more familiar result

〈Tµν〉ren = − 1

64π2

{
2m2

ph

[
FdS(m2

R, R0)−R0
dFdS
dR

∣∣∣
m2
R,R0

−m2
R

dFdS
dm2

ph

∣∣∣
m2
R,R0

− F (m2
ph, R)

]

− 1

2

(
ξR −

1

6

)2

R2 +
R2

2160

}
gµν . (69)

Setting R0 → 0 and using Eq. (58) for FdS, gives an expression that is exactly the same as

in the one-loop calculation [55], provided m2
ph = m2

R + λRφ
2
0/2 instead of being the solution

of the self-consistent Eq. (60). Furthermore, it is straightforward that the usual free field

limit [1] is satisfied, as m2
ph → m2

R when λR → 0.

Turning finally to the SEE, on the right-hand side we have

〈Tµν〉ren + 〈Tµν〉con =

[
−1

4
(m2

ph + ξRR)φ2
0 +

λR
12
φ4

0

]
gµν (70)

− 1

64π2

{
32π2

(
m2
R

λ∗R
+

(
ξR − 1

6

)
R0

32π2

)(
m2
ph −m2

R

)
− m4

R +
R2

2160
− 1

2

[
m2
ph +

(
ξR −

1

6

)
R

]2
}
gµν ,

while on the left-hand side we have Gµν +ΛRgµν = (−R/4+ΛR)gµν , as the quadratic tensors

(1)Hµν ,
(2)Hµν and Hµν vanish for n = 4. Then, canceling the gµν that appears on both sides,

we have:

M2
pl

(
−R

4
+ ΛR

)
= − 1

8π

{
R2

2160
+ 32π2

(
m2
R

λ∗R
+

(
ξR − 1

6

)
R0

32π2

)(
m2
ph −m2

R

)
−m4

R (71)

+ 16π2(m2
ph + ξRR)φ2

0 − 64π2λR
12
φ4

0 −
1

2

[
m2
ph +

(
ξR −

1

6

)
R

]2
}
,

where Mpl is Planck’s mass, and κR = 8π/M2
pl.
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B. Self-consistent de Sitter solutions

The back-reaction problem consists in solving simultaneously the mean field Eq. (19),

the m2
ph Eq. (60) and the SEE (71) self-consistently for the mean field φ0, the physical mass

m2
ph and the scalar curvature of de Sitter spacetime R. This is a closed system of equations

for a given set of parameters m2
R, ξR, λR and ΛR, whose physically interesting solutions in

a cosmological scenario are those with both R and M2
ph = m2

ph + ξRR positive. The second

condition comes from the fact thatM2
ph is the mass of the propagator, and it is a well known

fact that the equation

�G1(x, x′) = 0, (72)

has no de Sitter invariant solutions.

The gap Eq. (60) is in itself a self-consistent equation for m2
ph(φ0, R), at fixed φ0 and

R. Following paper I, in the small mass approximation (y ≡ M2
ph/R � 1) we have g(y) '

−1/4y + 11/6− 2γE + 49y/9 an thus the gap equation becomes a quadratic equation for y,

AdS y
2 +

[
BdS −

λRφ
2
0

2R

]
y + CdS = 0 (73)

where the coefficients are

AdS = 1− λR
32π2

[
a

(
R

R0

)
− g(y0)−

(
y0 −

1

6

)
g′(y0)− 49

54

]
, (74a)

BdS =−
[
R0

R
y0 + ξR

(
1− R0

R

)]
+

λR
32π2

{
1

4
+

1

6

[
a

(
R

R0

)
− g(y0)−

(
y0 −

1

6

)
g′(y0)

]
+

(
1− R0

R

)(
y0 −

1

6

)
−
(
y0 −

1

6

)2

g′(y0)

}
, (74b)

CdS =− λR
768π2

, (74c)

with

a(x) ≡ 11/6− 2γE + ln(x), (75)

and y0 = y(φ0 = 0, R = R0) = m2
R/R0 + ξR. The solution can be expressed analytically

M2
ph(φ0, R) =

−(RBdS − λRφ
2
0

2
) +

√[
RBdS − λRφ

2
0

2

]2

− 4R2AdSCdS

2AdS
. (76)
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Here the “plus” branch was selected as the only real and positive solution (under the as-

sumption that both AdS > 0 and BdS > 0, see paper I). This solution shall then be inserted

into the mean field Eq. (19), which in de Sitter spacetime reads

dVeff
dφ0

∣∣∣∣∣
φ̄0

=

(
M2

ph(φ̄0, R)− 1

3
λRφ̄

2
0

)
φ̄0 = 0. (77)

This equation admits both symmetric solutions with φ̄0 = 0 and solutions that spontaneously

break the Z2 symmetry,

φ̄2
0 =

3

λR
M2

ph(φ̄0, R). (78)

In other words, the effective potential Veff (φ0, R) may have other extrema besides the one

in φ0 = 0. The analysis of the effective potential has been done in paper I.

Studying the full backreaction problem by including the SEE (71) brings a new parameter

into play, namely the cosmological constant ΛR, as well as a new mass scale M2
pl. In paper I,

R was considered fixed (i.e. as a parameter) and the effective potential and its minima were

studied in order to find values of the remaining parameters m2
R, ξR, λR and R0 at which

both symmetric and broken phase solutions exist. In the small mass approximation, this

amounts to analyzing constrains on combinations of the coefficients AdS, BdS and CdS as

functions of the parameters. Considering R to be fixed makes sense under the assumption

that the effect of the quantum field on the background curvature is small, and therefore it

is possible to decouple the SEE from the field and gap equations. If this is indeed the case,

the value of R becomes effectively independent of φ0 and m2
ph, and is simply given by the

parameter ΛR.

The aim of this section is to find some examples of self-consistent solutions involving all

three equations and all three degrees of freedom. To this end, we take as starting point some

sets of values of the parameters m2
R, ξR, λR and R0 that were already shown in paper I to

allow both symmetric and broken phase solutions. Then we look for solutions of φ0, m2
ph

and R for various values of ΛR and analyze how these differ from the classical solution. If

this difference is small, then the backreaction can be indeed ignored, otherwise it should be

taken into account.

One further point of discussion is whether the parameters R0 and ΛR should be related

or not. If this were to be the case, a sensible way of fixing one given the other would be to

use the classical solution R0 = 4ΛR.
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1. Symmetric Phase

As mentioned above, the effective potential always has an extreme in φ0 = 0. Further-

more, it is easily shown that it must be a minimum as a consequence of both the restriction

given by the Hartree approximation that M2
ph > 0, and the fact that

d2Veff
dφ2

0

∣∣∣∣∣
φ̄0=0

=M2
ph(φ̄0 = 0, R) > 0. (79)

We solve the system of equations by setting φ0 = 0 in Eq. (76) to obtain M2
ph as a

function only of R and then substituing into the SEE (71) to obtain an equation of the form

ΛR = Is(R). (80)

where Is depends also on the parameters m2
R, ξR, λR and R0. The subindex s stands for

symmetric.

2. Broken Phase

In this phase, the solution given in Eq. (78) to the field equation already impliesM2
ph > 0.

It is important to note that the reason why the φ̄0 6= 0 solutions are allowed is the presence

of the λR term in Eq. (77), which comes as a consequence of imposing the 2PI consistency

relations. Otherwise, the absence of such term would require that for φ̄0 6= 0 we had

M2
ph = 0, and as mentioned before for that case there is no de Sitter invariant vacuum [52].

Replacing the non vanishing solution to the field Eq. (78) into the gap equation in its

quadratic form Eq. (73) (small mass approximation), we obtain a new quadratic equation

for the non symmetric extrema of the potential φ̄0
2
(R), namely

λR
3
φ̄0

2
(R) =

−(RBdS − λRφ̄0
2

2
)±

√[
RBdS − λRφ̄0

2

2

]2

− 4R2AdSCdS

2AdS
. (81)

Both branches give a solution withM2
ph > 0, the smaller being the maximum and the larger

the minimum of the effective potential. Following the analysis described in paper I, one can

show that the condition for the existence of symmetry breaking solutions is

BdS − 2

√(
3

2
− AdS

)
|CdS| > 0. (82)
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Once again, replacing φ0(R) and M2
ph(R) into the SEE gives an equation of the form

ΛR = Ib(R). (83)

The subindex b stands for broken. Note that in general Ib(R) will be different from Is(R).

3. Results

In what follows we present the results in terms of the relative deviation (R−Rcl)/Rcl of

the backreaction solutions R with respect to the classical solution Rcl = 4ΛR as a function

of ΛR, for both the symmetric and broken phases, when they exist.
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Figure 2: Relative deviation of the backreaction solution for the de Sitter spacetime curvature

with respect to the classical solution, (R − Rcl)/Rcl as a function of ΛR for different values of

the coupling constant λR. The fixed parameters are R0 = 4ΛR, m2
R = 10−5M2

pl. The left panel

corresponds to ξR = 0 and the right panel to ξR = 4×10−3. All curves correspond to the symmetric

phase (which is the only possible phase when R0 = 4ΛR). From bottom up: λR = 0.1 (blue dashed

line), λR = 0.2 (red dotted-dashed line), λR = 0.5 (brown dotted line). Notice that for small

enough values of ΛR the curves are continued by black solid lines, indicating the regions where

M2
ph ≥ R/10.

Let us first analyze the case where R0 = 4ΛR. This means that the renomalized parame-

ters are defined at the value of scalar curvature of the background de Sitter spacetime that

the theory would have had in the absence of backreaction. It is remarkable that in this
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case no broken phase solutions exist. As an example, in Fig. 2 we have plotted the relative

deviation for different values of the coupling constant λR, from bottom up: λR = 0.1, 0.2

and 0.5, with all curves corresponding to the symmetric phase and m2
R = 10−5M2

pl. On

the left panel the coupling to the curvature is minimal ξR = 0, while on the right panel

ξR = 4 × 10−3. It is interesting to see that, due to the quantum corrections, the curvature

R can be both larger or smaller than the classical one depending on the value of ΛR. Notice

that solutions do not exist for all values of ΛR. On the one hand, it can be seen that the

approximationM2
ph � R breaks down for small enough values of ΛR. In order to make this

explicit, in Fig. 2 and in the following, black solid lines are used whenever M2
ph ≥ R/10.

On the other hand, since we are considering only cases where the effective potential for φ0

is well defined, there is a (λR-dependent) lower bound for the sum m2
R/R + ξR [57], which

will be violated for large enough values of ΛR.
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Figure 3: The same as in figure 2, but for different values of the curvature R0 associated to

the renormalization point. Left panel: symmetric phase solutions for R0 = 0 (blue dashed line)

and R0 = 10−3M2
pl (red dotted-dashed line) with fixed parameters m2

R = 10−4M2
pl, ξR = 0,

and λR = 0.1. The curves are practically indistinguishable, illustrating the solutions are quite

independent on R0. Right panel: broken symmetry solutions for R0 = 7× 10−28M2
pl (blue dashed

line), R0 = 10−27M2
pl (red dotted-dashed line), and R0 = 1.25 × 10−27M2

pl (brown dotted line)

where the fixed parameters are m2
R = 5× 10−30M2

pl, ξR = 0, and λR = 0.1. In this case, the values

of R0 where chosen to be in the small range where a broken phase solution exists.

Let us now analyze cases where R0 is considered to be fixed and independent of ΛR.
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In Fig. 3, the left panel corresponds to the symmetric phase, while the right panel to the

broken one. It can be seen that the backreaction is more significant in the broken phase

(e.g. the deviation is about 1% for ΛR ' 0.04M2
pl, R0 ' 10−27M2

pl and m2
R = 5×10−30M2

pl),

while in the symmetric phase the solution stays closer to the classical one. The difference

between the backreaction and classical solutions may become important for larger values

of the cosmological constant (not shown in the figure). Indeed, it can be shown that the

backreaction solution for the curvature R vanishes in the large (superplanckian) ΛR limit.

However, adopting an effective field theory perspective, here we are restricting the parameter

space to subplanckian values.

As in general the broken phase solution is possible only for a suitable choice of the

parameters [34], in the right panel, the values of R0 had to be carefully chosen to be in

the narrow window where broken phase solutions exist, and they disappear below a small

parameter-dependent value of ΛR (under 10−3M2
pl in the shown examples). One can verify

that, depending on the values of the parameters, the approximation M2
ph � R may break

down. For the values considered in left panel of Fig. 3 this happens for small enough values

of ΛR, while for the ones in the right panel the approximation remains valid.
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Figure 4: The deviation (R−Rcl)/Rcl vs. ΛR for the backreaction solutions corresponding to the

symmetric (on the left) and broken (to the right) phases. Upper panels: three curves corresponding

to different values of the coupling to the curvature: ξR = 4 × 10−3 (blue dashed line), ξR = 10−2

(red dotted-dashed line), and ξR = 2 × 10−2 (brown dotted line), where the fixed parameters are

m2
R = 10−7M2

pl, λR = 0.1 and R0 = 10−2M2
pl. Lower panels: four different curves illustrating the

dependence on the value of R0 for m2
R = 10−7M2

pl, ξR = 4 × 10−3, and λR = 0.1: R0 = 10−2M2
pl

(blue dashed line), R0 = 5×10−3M2
pl (red dotted-dashed line), R0 = 10−3M2

pl (brown dotted line),

and R0 = 10−28M2
pl (green dashed line). Notice that for the last two values of R0 no broken phase

solutions exist.

The backreaction for the case of a nonminimal coupling to the curvature is illustrated in

Fig. 4, where the left (right) panels correspond to the symmetric (broken) phase solutions.

The upper panels illustrate the dependence of the solutions on the coupling to the curvature
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ξR, while in the lower panels the coupling ξR is fixed and different values for R0 are consid-

ered. In particular, from the figure on the bottom left, it can be seen that in the symmetric

case, the effect of the quantum corrections may both increase or decrease the value of the de

Sitter spacetime curvature R with respect to the classical one, depending on the value of ΛR.

In the symmetric phase there are self consistent solutions for large values of ΛR, while in the

broken phase they exist only for ΛR below a (parameter-dependent) upper bound. Notice

that there is also an upper bound for R0 bellow which, under our approximations, no broken

phase solution exist regardless the value of ΛR. On the other hand, one can verify that the

approximation M2
ph � R breaks down for small enough values of ΛR in the broken phase,

and also in the symmetric case but only when R0 is smaller than a (parameter-dependent)

critical value. However, as it can be seen from the examples considered in the two figures

on the left panels, for larger values of R0, there are symmetric phase solutions where the

approximation breaks down for large values of ΛR instead, while remaining valid all the way

to ΛR → 0. In these latter cases, we can conclude that there is a divergence of the relative

deviation in this limit, which indicates that as Rcl → 0, the curvature R goes to a finite

positive value. Therefore, for this set of parameters the backreaction is crucial to determine

the spacetime curvature.

VI. CONCLUSIONS

In this paper we have considered a self-interacting scalar field with Z2 symmetry in a

general curved spacetime. In order to include some nonperturbative quantum effects of the

scalar field, we have worked within the Hartree (or Gaussian) approximation to the 2PI EA.

Our first goal has been to show that in this approximation the “consistent renormalization

procedure” described in [51] for flat spacetime can be extended to curved spacetimes to make

finite not only the mean field and gap equations of the matter sector of the theory (which

has been shown in paper I), but also the SEE, which also involve the gravitational sector.

That is, we have shown that the same set of counterterms can be used to renormalize the

SEE (along with the usual gravitational counterterms that are needed even for free fields).

In order to maintain the covariance of the regularized theory, we have used dimensional

regularization.

In Sec. V, we have applied our results to de Sitter spacetimes. We have considered
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the explicit form of the mean value and gap equations, computed in paper I, together

with the SEE for these particular spacetimes, and we have found some self-consistent de

Sitter solutions. The simultaneous solution of the resulting algebraic equations allowed us

to discuss the occurrence of spontaneous symmetry breaking and, at the same time, to

assess the effect of quantum fluctuations on the classical metric. An important conclusion

of our analysis is that the importance of the backreation depends strongly on the value of

the curvature at the renormalization point R0. We have found both self-consistent solutions

where the backreaction is important and solutions where it is not, depending on the values of

the parameters. In particular, we have found self-consistent de Sitter solutions for vanishing

cosmological constant ΛR = 0, where the quantum effects play a crucial role.

I would be interesting to analyze the spontaneous symmetry breaking and existence of self-

consistent solutions beyond the Hartree approximation, including the setting-sun diagram

in the calculation of the effective action. We hope to address these issues in a future work.
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