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Abstract A vertex is simplicial if the vertices of its neighborhood are pairwise adja-
cent. It is known that, for every vertex v of a chordal graph, there exists a simplicial
vertex among the vertices at maximum distance from v. Here we prove similar prop-
erties in other classes of graphs related to that of chordal graphs. Those properties will
not be in terms of simplicial vertices, but in terms of other types of vertices that are
used to characterize those classes.
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1 Introduction

Chordal graphs were originally introduced as those without chordless cycles of length
at least four, but they proved later to have diverse characterizations. We focus on the
one which states that a graph is chordal if and only if it has a perfect elimination
ordering of its vertices [5]. The first element of such an ordering is a simplicial vertex
and the following vertices are simplicial in certain induced subgraphs.
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Other types of orderings of vertices can be used to define many classes closely
related to that of chordal graphs: dually chordal, power chordal, doubly chordal and
strongly chordal graphs. These classes are the ones to be studied here.

Our starting point is going to be the fact that, given a vertex v of a chordal graph,
there exists a simplicial vertex among the ones furthest from v [4,6]. Then, some basic
metric properties, mostly involving chordal and dually chordal graphs, are reviewed.
The concept of power of a graph is also used and is important for the development of
the theory below.

At the end, we will have proved that properties similar to the one stated in the
beginning of the previous paragraph are true for the other graphs classes we have
mentioned. That is, we will prove that, given a vertex v of a graph G, we can find
another vertex which is the first of a linear ordering characteristic to the graph class
of G among the vertices furthest from v.

2 Basic Definitions

This paper only deals with graphs without loops or multiple edges. For a graph
G, V (G) denotes the set of its vertices and E(G) denotes the set of its edges. A
set V ′ ⊆ V (G) is complete if its elements are pairwise adjacent in G. The subgraph
induced by A ⊆ V (G), G[A], has A as vertex set and two vertices are adjacent in
G[A] if and only if they are adjacent in G. If v1v2 . . . vn is an order of the vertices of
G, then we define for every 1 ≤ i ≤ n, Gi = G[vi , . . . , vn].

Given two vertices v and w of G, the distance between v and w, or d(v,w), is
the length of a shortest path connecting v and w in G. If there is no path in G con-
necting v and w, then d(v,w) is defined to be infinity. The open neighborhood of
v, N (v), is the set of all the vertices adjacent to v. The closed neighborhood of v,
N [v], is defined by the equality N [v] = N (v) ∪ {v}. The vertex v is said to be a
universal vertex when N [v] = V (G). If v and w are such that N [v] ⊆ N [w], then
we say that w dominates v. The disk centered at vertex v with radius k is the set of
vertices at distance at most k from v and it is denoted by N k[v]. The eccentricity of v

is ecc(v) = max{d(v,w), w ∈ V (G)}. We refer to w as an eccentric vertex of v if
no vertex of G is further away from v than w, that is, if ecc(v) = d(v,w). Another
important concept related to the distance in graphs is the diameter, usually expressed
as diam(G). It is defined as the maximum possible distance between two vertices of
the graph, i.e., diam(G) = max{d(v,w) : v,w ∈ V (G)}.

The kth-power of G, or Gk , is another graph which has the same vertices as G, two
of them being adjacent in Gk if and only if the distance in G between them is at most
k.

A chord of a cycle is an edge joining two nonconsecutive vertices of the cycle.
Chordal graphs are defined as those without chordless cycles of length at least four.

A vertex v is simplicial if N [v] is a complete set. Let v1v2 . . . vn be an ordering
of the vertices of the graph G. It is called a perfect elimination ordering if, for all
1 ≤ i ≤ n, vi is simplicial in Gi .

One of the most classical characterizations of chordal graphs states that a graph is
chordal if and only if it has a perfect elimination ordering [5].
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A vertex w ∈ N [v] is a maximum neighbor of v if N 2[v] ⊆ N [w]. An order-
ing v1 . . . vn of the vertices of G is a maximum neighborhood ordering if, for all
1 ≤ i ≤ n, vi has a maximum neighbor in Gi . Dually chordal graphs are defined as
those possessing a maximum neighborhood ordering.

3 Eccentric Vertices

We can say from the previous definition that vertices with a maximum neighbor are
to dually chordal graphs as simplicial vertices are to chordal graphs.

With regard to chordal graphs and simplicial vertices, the following property is
known:

Theorem 1 [4,6] Let G be a chordal graph and v ∈ V (G). Then, v has an eccentric
vertex which is simplicial.

Theorem 1 is the cornerstone of this paper. It is our interest to ascertain whether we
can find an analogous property about dually chordal graphs. More specifically, given
a dually chordal graph G and v ∈ V (G), we wonder whether v has an eccentric vertex
with a maximum neighbor. The answer to this question is affirmative and we need
some previous results before proving it.

Lemma 1 [1] Let G be a dually chordal graph and A be a subset of V (G) such that
every pair of vertices of A is at a distance not greater than 2. Then, there exists a
vertex w such that A ⊆ N [w].
Lemma 2 [1] Let G be a dually chordal graph. Then, G2 is chordal.

Lemma 3 Let G be a dually chordal graph and v be a simplicial vertex in G2. Then,
v has a maximum neighbor in G.

Proof As v is simplicial in G2, the distance in G between every pair of vertices of
N 2[v] is at most 2. Then, by Lemma 1, there exists a vertex w such that N 2[v] ⊆ N [w].
Therefore, w is a maximum neighbor of v. �	

The first major result can now be proved. From now on, it will always be assumed
that G is a connected graph.

Theorem 2 Let G be a dually chordal graph and v be a vertex of G. Then, there exists
an eccentric vertex of v with a maximum neighbor.

Proof Suppose first that eccG(v) is odd and let v′ be an eccentric vertex of v in G.
As G2 is chordal, Theorem 1 implies that there exists a vertex w which is simplicial
in G2 and is eccentric of v in G2. Hence, by Lemma 3, w has a maximum neighbor
in G. We now prove that w is also eccentric of v in G.

Note first that, by the definition of G2, if two vertices are at distance k in G, then
their distance in G2 is k

2 if k is even or k+1
2 if k is odd. Then, as eccG(v) is odd,

dG2(v, v′) = eccG (v)+1
2 . Furthermore, every eccentric vertex of v in G is also eccen-

tric in G2. Thus, v′ is eccentric of v in G2 and the eccentricity of v in G2 equals
eccG (v)+1

2 . Since w is also eccentric of v in G2, we infer that dG2(v,w) = eccG (v)+1
2 .
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By using the definition of G2 again and that dG2(v,w) = eccG (v)+1
2 , we get two

possible values for dG(v,w), namely, eccG(v) and eccG(v) + 1. Thus, dG(v,w) ≥
eccG(v). Furthermore, the definition of eccentricity implies that dG(v,w) ≤ eccG(v).
Therefore, dG(v,w) = eccG(v) and w is the required vertex.

If eccG(v) is even, let G ′ be the graph obtained from G by adding a new vertex v∗
and making it adjacent to v. Then, v is a maximum neighbor of v∗ in G ′. Furthermore,
for every maximum neighborhood ordering v1 . . . vn of G, v∗v1 . . . vn is a maximum
neighborhood ordering of G ′. Thus, G ′ is dually chordal. It holds that eccG ′(v∗) is
odd and, by the previous case, there exists a vertex u with a maximum neighbor in G ′
such that d(v∗, u) = eccG ′(v∗). It is clear that u is eccentric of v in G. Now we show
that u has a maximum neighbor in G.

Let w be a maximum neighbor of u in G ′. If w = v∗, then u = v. As v∗ is a
maximum neighbor of v, v∗ dominates v. By the construction of G ′, v dominates v∗
as well. Thus, NG ′ [v] = NG ′ [v∗] = {v, v∗}. We infer that v is adjacent to no other
vertex of G and hence is a maximum neighbor of itself in G.

If w �= v∗, then w ∈ V (G). As w is a maximum neighbor of u in G ′, N 2
G ′ [u] ⊆

NG ′ [w]. Furthermore, N 2
G[u] = N 2

G ′ [u]\{v∗} and NG[w] = NG ′ [w]\{v∗}. It follows
that N 2

G[u] ⊆ NG[w]. Therefore, w is a maximum neighbor of u in G. �	
Corollary 1 Let G be a nontrivial, i.e., not composed of just one vertex, dually chordal
graph. Then, there are two vertices v1 and v2, each with a maximum neighbor, such
that d(v1, v2) = diam(G).

Proof Let k = diam(G) and x, y be two vertices such that d(x, y) = k. Then, by
Theorem 2, there exists a vertex v1 with a maximum neighbor which is eccentric of
x . Thus, d(x, v1) = k. Likewise, there exists a vertex v2 with a maximum neighbor
which is eccentric of v1. Consequently, d(v1, v2) = k. �	

As an example of application of Theorem 2, we present the proof of another metric
property.

Lemma 4 Let G be a graph and u, v, w, x be vertices of G such that w is different
from the other three and w is dominated by x. Then, dG−w(u, v) = dG(u, v).

Proof Let P be a path in G from u to v of minimum length. If w is not a vertex of P ,
then P is also a path in G − w and hence dG−w(u, v) = dG(u, v).

If w is a vertex of P , let y1 . . . yiwyi+1 . . . y j be the sequence of vertices of P , with
y1 = u and y j = v. Now we prove that x is not a vertex of P . As w is dominated
by x , we have that yi , yi+1 ∈ N [x]. If there exists k such that k ≤ i and yk = x ,
then y1 . . . yk yi+1 . . . y j is a path from u to v shorter than P , which is a contradiction.
Therefore, yk �= x, 1 ≤ k ≤ i . Similarly, yk �= x, i + 1 ≤ k ≤ j .

We infer that y1 . . . yi xyi+1 . . . y j is a path in G − w from u to v with the same
length as P . Therefore, the equality dG−w(u, v) = dG(u, v) follows. �	
Proposition 1 Let G be a dually chordal graph. Let A be a nonempty set of vertices of
G contained in the closed neighborhood of some vertex x, and w be a vertex such that
w �∈ A and d(y, w) has the same value for all y ∈ A. Then, there exists v ∈ V (G)\ A
such that vy ∈ E(G) for all y ∈ A.
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Fig. 1 A chordal graph for
which Proposition 1 fails to be
true

Proof It will be proved by induction on |V (G)|.
If |V (G)| = 2, then |A| = 1 and w is the only vertex not in A. Let u be the only

element of A. Then, d(u, w) = 1 and we can set v = w.
For the remaining cases, the proof is direct if x �∈ A (set v = x) or w is universal

(set v = w), so let us assume that x ∈ A and that w is not universal.
Suppose now that, given n ≥ 2, the proposition is true for every dually chordal

graph with n vertices (Inductive hypothesis) and that G has n + 1 vertices.
Let u be an eccentric vertex of x such that it has a maximum neighbor. If d(u, x) = 1,

then x is universal and hence d(x, w) = 1. As x ∈ A, the definition of w implies that
d(y, w) = 1 for all y ∈ A. Therefore, w is the desired vertex.

If d(u, x) > 1, then u is not in A and we have the following cases:
Case 1: u �= w.
Since u is dominated by any of its maximum neighbors, Lemma 4 can be applied

and it implies that dG−u(y, w) = dG(y, w) for all y ∈ A. We can get the desired
vertex v by applying the inductive hypothesis on G − u.

Case 2: u = w.
Let u′ be a maximum neighbor of u. Then, u′ �= u because w is not a universal

vertex. Thus, d(u, u′) = 1.
If u′ ∈ A, then the definition of w implies that d(y, u) = 1 for all y ∈ A. Therefore,

u is the desired vertex.
If u′ �∈ A, then it is not difficult to see that d(y, u′) = d(y, u) − 1 for all y ∈ A.

Thus, d(y, u′) has the same value for all y ∈ A. By Lemma 4, the same is true when the
distance is taken on G − u. We can get the desired vertex v by applying the inductive
hypothesis on G − u. �	

It is interesting to note that Proposition 1 is not necessarily true when G is a chordal
graph. For example, consider the chordal graph in the figure and set A = {4, 5, 6} and
w = 1. Then, A ⊆ N [5] and d(y, w) = 2 for every vertex y ∈ A. However, there is
no vertex v �∈ A such that A ⊆ N [v].

Nevertheless, more restrictions can be added to A to make the proposition true for
chordal graphs.

Proposition 2 Let G be a chordal graph, A be a complete set of vertices of G and
w be a vertex such that w �∈ A and d(y, w) has the same value for all y ∈ A. Then,
there exists v ∈ V (G) \ A such that vy ∈ E(G) for all y ∈ A.
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Proof It will be proved by induction on |V (G)|.
If |V (G)| = 2, then |A| = 1 and w is the only vertex not in A. Let u be the only

element of A. Then, d(u, w) = 1 and we can set v = w.
Suppose now that, given n ≥ 2, the proposition is true for every chordal graph with

n vertices (Inductive hypothesis) and that G has n + 1 vertices.
If G is complete, we can set v = w. If G is not complete, then G has two simplicial

vertices which are not adjacent [2].
Suppose that one of those two vertices, call it u, is in A. Let v be a vertex in N [u]

such that d(v,w) = d(u, w) − 1. Then, v �∈ A, and v is adjacent to all the vertices of
A because u is simplicial.

Otherwise, if the two simplicial vertices are not in A, one of them must be different
from w, call it x . By Lemma 4, dG−x (y, w) = dG(y, w) for every y ∈ A. Then, we
can apply the inductive hypothesis on G − x to find a vertex v �∈ A which is adjacent
to all the vertices of A in G − x . Thus, v is the desired vertex. �	

3.1 Power Chordal and Doubly Chordal Graphs

At this moment, it is interesting to determine if similar results are valid for more spe-
cific types of graphs. That is the case for power chordal and doubly chordal graphs,
which are the graphs to be considered in this section.

A graph G is said to be power chordal if all of its powers are chordal. It is true that
a graph is power chordal if and only if G and G2 are chordal [1].

G is doubly chordal if it is chordal and dually chordal.
A vertex is doubly simplicial if it is simplicial and has a maximum neighbor. An

ordering v1v2 . . . vn of the vertices of G is doubly perfect if, for all 1 ≤ i ≤ n, vi is
doubly simplicial in Gi . It holds that a graph is doubly chordal if and only if it has a
doubly perfect ordering [1].

It is known that a power chordal graph G is complete or there are two nonadjacent
vertices which are simplicial in both G and G2. The demonstration can be seen in [1].
A similar technique enables to prove the following result:

Theorem 3 Let G be a power chordal graph and v ∈ V (G). Then, there exists a
vertex w eccentric of v in G2 which is simplicial in both G and G2.

Proof The proof is direct if G2 is complete. Assume that G2 is not complete. Since
G2 is chordal, we can apply Theorem 1 to get a vertex u which is simplicial in G2

and is eccentric of v in G2. If u is also simplicial in G, then we are done. Otherwise,
let x and y be two nonadjacent neighbors of u and S be a minimal xy-separator in G.
Then, S is complete due to the chordality of G [2] and u ∈ S.

Let G[A] and G[B] be the connected components of G − S containing x and y,
respectively. We can assume without loss of generality that v �∈ A. Our next step is to
prove that G[A ∪ S] is power chordal.

It holds that G[A ∪ S] is chordal because it is an induced subgraph of the chordal
graph G.

123



Graphs and Combinatorics (2014) 30:343–352 349

In order to prove the chordality of (G[A ∪ S])2, we show that (G[A ∪ S])2 =
G2[A ∪ S]. It can be done by verifying that these two graphs have the same set of
edges.

Let w1w2 ∈ E(G[A ∪ S]2). Then, the distance between w1 and w2 in G[A ∪ S]
is not greater than 2. As G[A ∪ S] is a subgraph of G, the distance between w1 and
w2 in G is not greater than 2, either. Thus, w1w2 ∈ E(G2). Since w1, w2 ∈ A ∪ S,
w1w2 ∈ E(G2[A ∪ S]) as well.

Conversely, let w1w2 ∈ E(G2[A ∪ S]). Then, the distance between w1 and w2 in
G is not greater than 2. Let P be a path in G from w1 to w2 of minimum length. If the
length of P is 1, then P is clearly a path in G[A ∪ S], making w1 and w2 adjacent in
G[A ∪ S]2.

If the length of P is 2, let w3 be the vertex between w1 and w2 in P . If w3 �∈ A ∪ S,
then w1, w2 ∈ S. As S is complete, we infer that w1 and w2 are adjacent, which
contradicts that P is a minimum length path from w1 to w2. Thus, w3 ∈ A ∪ S and P
is a path in G[A ∪ S]. Therefore, w1 and w2 are adjacent in G[A ∪ S]2.

Thus, the equality (G[A∪S])2 = G2[A∪S] is proven. We conclude that (G[A∪S])2

is chordal because it is an induced subgraph of G2, which is chordal. Therefore,
G[A ∪ S] is power chordal.

Since G[A ∪ S] is power chordal, we have two possibilities: either G[A ∪ S] is
complete or it contains two nonadjacent vertices that are simplicial in both G[A ∪ S]
and (G[A ∪ S])2 [1]. In either case, we conclude that the set A contains a vertex w

which is simplicial in G[A ∪ S] and G2[A ∪ S]. It is evident that w is also simplicial
in G. Now, it will be demonstrated that w is simplicial in G2 as well.

The proof is straightforward if N 2[w] ⊆ A ∪ S.
Otherwise, w is at a distance not greater than 2 from a vertex not in A ∪ S, which

is only possible if w is adjacent to a vertex w′ in S.
Let z ∈ N 2[w]. Now we prove that z ∈ N 2[u]. The proof is divided into two cases.
Case 1: z ∈ N 2[w] ∩ (A ∪ S).
Note that u ∈ N 2[w] because w ∈ N [w′] and w′ ∈ N [u]. Then, both u and z are

adjacent to w in G2[A ∪ S]. Since w is simplicial in G2[A ∪ S], z ∈ N 2
G[u].

Case 2: z ∈ N 2[w] \ (A ∪ S).
In this case, z and w are in different connected components of G − S. Let wt z be

a path in G from w to z of length two. Then, t ∈ S. As S is complete, t ∈ N [u].
Combine this with z ∈ N [t] to conclude that z ∈ N 2[u].

Therefore, N 2[w] ⊆ N 2[u]. Consequently, the fact that u is simplicial in G2 implies
that so is w.

Since v and w are in different connected components of G−S, any path joining them
must have a vertex in S, and hence in N [u]. We infer that dG(v, u) ≤ dG(v,w). Then,
dG2(v, u) ≤ dG2(v,w). As u is eccentric of v in G2, w is also eccentric. Therefore,
w has all the required properties. �	

Theorem 4 Let G be a power chordal graph and v ∈ V (G). Then, there exists an
eccentric vertex of v in G which is simplicial in G and G2.

Proof The proof is very similar to that of Theorem 2, so we just give a sketch of it.
If ecc(v) is odd, then the vertex given by Theorem 3 has the required characteristics.
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If ecc(v) is even, construct G ′ as it was done in the proof of Theorem 2. G ′ is also
power chordal and any eccentric vertex of v∗ in G ′, simplicial both in G ′ and G ′2, has
the required characteristics. �	
Corollary 2 Let G be a doubly chordal graph and v ∈ V (G). Then, there exists an
eccentric vertex of v which is doubly simplicial.

Proof As G is dually chordal, we can use Lemma 2 to infer that G2 is chordal. Thus,
G is power chordal. By Theorem 4, there exists a vertex w which is simplicial in G
and G2 and is eccentric of v in G. By Lemma 3, w has a maximum neighbor in G, so
it is doubly simplicial. �	

3.2 Strongly Chordal Graphs

So far, it was possible to prove the existence of vertices which are eccentric and char-
acteristic to every class that has been discussed. One that was not considered yet is
that of strongly chordal graphs. We finish this paper by showing a similar property
about this class.

Strongly chordal graphs are defined as those chordal graphs for which every cycle
whose length is even and at least 6 has a chord joining two vertices at an odd distance
in the cycle. Strongly chordal graphs can also be characterized in terms of elimination
orderings.

A vertex v of a graph G is simple if the set {N [u] : u ∈ N [v]} is totally ordered
by inclusion. We infer from this definition that simple vertices are doubly simplicial.
To prove it, let u1 and u2 be two vertices in N [v]. We can suppose without loss of
generality that N [u1] ⊆ N [u2]. Then, u1 ∈ N [u2]. Therefore, N [v] is a complete set
and hence v is simplicial.

The definition also implies that there exists a vertex w such that N [u] ⊆ N [w] for
all u ∈ N [v]. Thus, N 2[v] ⊆ N [w] and hence w is a maximum neighbor of v.

An ordering v1v2 . . . vn of V (G) is called a simple elimination ordering if, for all
1 ≤ i ≤ n, vi is simple in Gi . It holds that a graph is strongly chordal if and only if it
has a simple elimination ordering [3].

We can infer from the definition that the class of strongly chordal graphs is hered-
itary. In fact, being a strongly chordal graph is equivalent to being a hereditary dually
chordal graph [1].

In connection with eccentric vertices, we have the following:

Lemma 5 Let G be a graph and u, v and w be three vertices of G such that w is a
maximum neighbor of v, ecc(w) > 1 and d(u, v) ≥ 2. Then, d(u, v) = d(u, w) + 1
and the set of eccentric vertices of w is equal to the set of eccentric vertices of v.

Proof If d(u, v) = 2, then d(u, w) = 1 because of the definition of maximum neigh-
bor. Suppose now that d(u, v) > 2. By the triangle inequality, d(u, v) ≤ d(u, w) +
d(w, v), that is, d(u, v) ≤ d(u, w) + 1.

Let vv1v2 . . . u be a shortest path from v to u. Then, wv2 . . . u is a path from w to u
of length d(u, v) − 1. Thus, d(u, v) − 1 ≥ d(u, w) and hence d(u, v) ≥ d(u, w) + 1.
Therefore, the equality d(u, v) = d(u, w)+1 holds. Combine this with the inequality
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ecc(w) > 1 to deduce that every eccentric vertex of v is at distance greater than or
equal to 3 of v and consequently,

d(v, u) = ecc(v) ⇔ d(v, u) = max{d(v, x) : x ∈ V (G)} ⇔ d(v, u)

= max{d(v, x) : x ∈ V (G), d(v, x) ≥ 3} ⇔ d(w, u) + 1

= max{d(w, x) + 1 : x ∈ V (G), d(w, x) ≥ 2} ⇔ d(w, u)

= max{d(w, x) : x ∈ V (G), d(w, x) ≥ 2} ⇔ d(w, u)

= max{d(w, x) : x ∈ V (G)} ⇔ d(w, u) = ecc(w)

Theorem 5 Let G be a strongly chordal graph and v ∈ V (G). Then, there exists an
eccentric vertex of v which is simple.

Proof The proof will be by induction on n = |V (G)|. The statement of the theorem
is obviously valid when n = 1. Suppose now that it is always true when n = k, where
k ≥ 1, and that G is a strongly chordal graph with k + 1 vertices. The proof will be
divided into cases.

Case 1: G has at least one universal vertex.
Let w be a universal vertex of G. If w is simple, then G is complete because simple

vertices are simplicial. Thus, the existence of an eccentric simple vertex is evident.
If w is not simple and v = w, then the fact that w is universal implies that any

simple vertex of G is an eccentric vertex of v.
Now assume that v �= w and that w is not simple. Then, we consider the strongly

chordal graph G −w. In case that G −w is not connected, any simple vertex of G −w

located in a connected component different from that of v is an eccentric simple vertex
for v in G. If G − w is connected, applying the inductive hypothesis to it yields an
eccentric simple vertex u for v in G − w. It is not difficult to see that u is simple and
eccentric of v in G.

Case 2: G has no universal vertices.
Case 2a: v is simple.
Let v′ be a maximum neighbor of v. Then, v �= v′ because v is not universal. By the

inductive hypothesis, there exists a vertexw which is simple and eccentric ofv′ in G−v.
Note that d(v′, w) ≥ 2 because otherwise v′ would be universal in G. As v′ is a max-
imum neighbor of v in G, and hence N 2[v] ⊆ N [v′], we conclude that d(v,w) ≥ 3.
Thus, the closed neighborhoods of vertices in N [w] are coincident in G and G − v,
which implies that w is also simple in G. By Lemma 5, w is also eccentric of v in G.

Case 2b: v is not simple and there is a simple vertex which is not adjacent to v.
Let w be a simple vertex not adjacent to v. If it is eccentric of v, then we are done.

If not, consider the strongly chordal graph G − w which, by inductive hypothesis,
possesses a simple vertex w′ eccentric of v. Then, as a consequence of Lemma 4, w′
is also eccentric of v in G, so it suffices to prove that w′ is simple in G.

If w′ is not simple in G, we first prove that w ∈ N 2[w′]. As w′ is not simple, there
are vertices u1 and u2 in N [w′] such that N [u1] � N [u2] and N [u2] � N [u1]. If
u1 = w or u2 = w, then w is in N [w′] and so is in N 2[w′].

If u1 �= w and u2 �= w, then u1 and u2 are in the closed neighborhood of w′ in
G − w. Since w′ is simple in G − w, we can suppose without loss of generality that
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NG−w[u1] ⊆ NG−w[u2]. If w �∈ N [u1], then N [u1] ⊆ N [u2], which contradicts our
previous assumption. Therefore, w ∈ N [u1]. Add this to the fact that u1 ∈ N [w′] to
conclude that w ∈ N 2[w′].

Let u be a maximum neighbor of w in G. Then, u ∈ N [w′] and hence d(v,w′) ≤
d(v, u) + 1. Combine this with Lemma 5 to get that d(v,w′) ≤ d(v,w), thus con-
tradicting that w is not an eccentric vertex of v.

Therefore, w′ is necessarily simple in G.
Case 2c: v is not simple and v is adjacent to all the simple vertices of G.
We prove that diam(G) ≤ 2. Suppose on the contrary that diam(G) ≥ 3. Let x and

y be vertices such that d(x, y) = diam(G). Thus, {x, y} � N [v], so we can assume
without loss of generality that x �∈ N [v]. Since all the simple vertices are simplicial
and adjacent to v, we conclude that none of them is adjacent to x . Then, by case 2b, x
has a simple eccentric vertex x ′ and hence d(x, x ′) = diam(G). By case 2a, we know
that x ′ has a simple eccentric vertex x ′′, so d(x ′, x ′′) = diam(G). Since both x ′ and
x ′′ are adjacent to v, we conclude that d(x ′, x ′′) ≤ 2, contradicting that diam(G) ≥ 3.
Therefore, diam(G) ≤ 2.

Since G is dually chordal, we can apply Lemma 1 to conclude that G has a universal
vertex, contradicting the initial assumption of case 2. Therefore, it is not possible that
G has no universal vertices, that v is not simple and that v is adjacent to all the simple
vertices of G.

As all the possible cases have been considered, the proof is complete.

We have the following as corollaries of the last sections:

Corollary 3 – Let G be a nontrivial power chordal graph. Then, there are two ver-
tices v1 and v2 such that they are simplicial in both G and G2 and d(v1, v2) =
diam(G).

– Let G be a nontrivial doubly/strongly chordal graph. Then, there are two doubly
simplicial/simple vertices v1 and v2 such that d(v1, v2) = diam(G).

As a final remark, note that the proofs of Theorems 2, 4, 5 and their corollaries
are trivial for nonconnected graphs. For the case of a nonconnected strongly chordal
graph G, each of its connected components is also strongly chordal. If v ∈ V (G), then
any simple vertex in a connected component different from that of v is eccentric. Fur-
thermore, if we consider two simple vertices in two different connected components
of G, their distance equals the diameter of the graph.

The reasonings are analogous for the other classes.
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