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Purpose of review

Biomarkers of prepubertal testicular function have become widely available only in recent years. The aim of
this review is to update the knowledge on key biomarkers used to assess hypogonadism in boys.

Recent findings

Sertoli cells are the most representative cells of the prepubertal testis. Anti-Müllerian hormone and inhibin B
are essential biomarkers of Sertoli cell function. Also, INSL3 arises as an additional marker of Leydig cell
dysfunction.

Summary

The widespread use of these biomarkers has enhanced our knowledge on the pathophysiology and
diagnosis of prepubertal male hypogonadism. Beyond their well known germ-cell toxicity, oncologic
treatments may also affect Sertoli cell function. Pathophysiology is not the same in all aneuploidies leading
to infertility: while hypogonadism is not evident until mid-puberty in Klinefelter syndrome, it is established in
early infancy in Down syndrome. In Noonan syndrome, the occurrence of primary hypogonadism depends
on the existence of cryptorchidism, and Prader–Willi syndrome may present with either primary or
combined forms of hypogonadism. Prepubertal testicular markers have also provided insights into the
effects of environmental disruptors on gonadal function from early life, and helped dissipate concerns about
testicular function in boys born preterm or small for gestational age or conceived by assisted reproductive
technique procedures.
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INTRODUCTION

In the adult men, serum levels of gonadotropins,
testosterone and inhibin B, and sperm count,
morphology and motility are informative about
interstitial and tubular testicular function. In paedi-
atric patients, the appraisal should be made consid-
ering the developmental physiology context: basal
testosterone and sperm count are not suitable bio-
markers during childhood because the gonadotropes
and testicular Leydig cells become quiescent, and
sperm is not produced. This review will focus on
the key biomarkers used to assess testicular function
in paediatric patients. The underlying rationale will
be introduced first, by reviewing the essentials of the
hypothalamic–pituitary–testicular ontogeny.
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ONTOGENY OF THE HYPOTHALAMIC–
PITUITARY–TESTICULAR AXIS
PHYSIOLOGY

The changing functional activity of the hypothala-
mic–pituitary–testicular axis throughout develop-
ment depends on changes in hormone secretion and
receptor expression.
illiams & Wilkins. Unaut
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Ontogeny of hormone production

In the foetus, the testis differentiates before the
hypothalamic-pituitary axis is functional: in the
seminiferous cords, Sertoli cells secrete anti-
Müllerian hormone (AMH), responsible for the
regression of the anlagen of the uterus and Fallopian
tubes [1], and germ cells proliferate by mitosis, but
do not enter meiosis. In the interstitial tissue, Leydig
cells secrete androgens and the insulin-like peptide
3 (INSL3) (Fig. 1). Androgens drive internal and
external genital virilization [2,3], while both testos-
terone and INSL3 are involved in testicular descent
[4

&

,5
&

]. Foetal pituitary gonadotropins become
horized reproduction of this article is prohibited.
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KEY POINTS

� In the first 3–6 months of life, basal gonadotropin
levels are useful markers of pituitary function,
testosterone and INSL3 reflect testicular Leydig cell
function (interstitial tissue) and AMH and inhibin B are
indicative of testicular Sertoli cell function (seminiferous
tubules).

� During the rest of infancy and childhood, basal
gonadotropins, testosterone and INSL3 are very low or
undetectable with routine methods in normal boys, so
they are not useful markers of the pituitary–Leydig cell
axis unless stimulation tests are used. Basal AMH and
inhibin B are normally high, and represent excellent
markers of Sertoli cell function.

� Low AMH and inhibin B, but not elevated FSH, should
be sought for the diagnosis of primary hypogonadism
in prepubertal boys.

� During childhood, AMH and inhibin B are low in
congenital central hypogonadism, but normal in
acquired central hypogonadism.

� At pubertal age, low testicular hormones associated
with ‘normal’ gonadotropins are suggestive of
combined hypogonadism.
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FIGURE 1. The pituitary–testicular axis. Gonadotropins
luteinizing hormone (LH) and follicle-stimulating hormone
(FSH) are secreted by the pituitary gonadotropes. LH induces
testosterone (T) synthesis by the Leydig cell of the testicular
interstitial tissue. T acts within the testis as an autocrine
regulator and as a paracrine factor on neighbouring Sertoli
cells of the seminiferous tubules. T is also secreted to the
circulation, having actions on many distant organs, including
a negative feedback on LH secretion. Leydig cells also
secrete insulin-like peptide 3 (INSL3). FSH acts on Sertoli
cells, regulating inhibin B and anti-Müllerian hormone (AMH)
secretion. Inhibin B is the main negative feedback signal for
FSH at the pituitary level.

Androgens
physiologically relevant in the second half of intra-
uterine life: luteinizing hormone (LH) takes over
placental human chorionic gonadotropin (hCG)
to regulate Leydig cell proliferation and androgen
and INSL3 secretion, whereas follicle-stimulating
hormone (FSH) plays a major role in Sertoli cell
proliferation and AMH and inhibin B secretion [6,7].

After a transient perinatal decline (Fig. 2), all
pituitary–testicular axis hormone levels increase
during the first month of life [4

&

,8]. FSH, LH, tes-
tosterone and INSL3 peak in the 2nd to 3rd months
and subsequently decline to very low levels after
the 6th month [4

&

,9,10
&

]. Conversely, Sertoli cells
remain functionally active as reflected by the elev-
ated serum levels of AMH [11,12

&

] and inhibin B
[13]. The decrease in gonadotrope activity during
childhood does not seem to be dependent on a
negative feedback by testicular factors, as it also
occurs in anorchid boys [14

&

].
Pubertal development of the testes occurs fol-

lowing the progressive increase in gonadotropin
pulse amplitude and frequency. Androgen concen-
tration increases within the testis long before it does
in serum [15,16

&&

] and provokes Sertoli cell matu-
ration. Germ cells enter meiosis, giving rise to sperm
production. Spermatogenic development is the
main responsible factor for testis volume increase
during puberty. FSH and germ cells induce an
increase in inhibin B, the major negative feedback
pyright © Lippincott Williams & Wilkins. Unautho
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regulator of pituitary FSH secretion (Fig. 1). INSL3
secretion also increases during puberty but becomes
gonadotropin-independent once adult Leydig cells
become fully differentiated [4

&

,17].

Ontogeny of hormone receptor expression
in the testis
The FSH receptor is present in Sertoli cells, whereas
the LH/chorionic gonadotropin receptor is expres-
sed in Leydig cells. Steroid hormone receptors have a
variable expression pattern in the different cell
populations of the testes throughout development.
The androgen receptor is expressed in peritubular
cells and Leydig cells from the early foetal life
through adulthood, but only after mid-infancy in
Sertoli cells [18,19]. Oestrogen receptor a is
expressed at low levels in Leydig and peritubular
cells throughout life, whereas oestrogen receptor b is
present in germ, Sertoli and peritubular cells, and in
rized reproduction of this article is prohibited.
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FIGURE 2. Schematic ontogeny of circulating levels of
gonadotropins and testicular hormones in men. Modified with
permission from [30]. Copyright 2010, S Karger AG, Basel.
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a lesser amount in interstitial cells of the neonates
[20]. The receptor for INSL3 is expressed in sperma-
tocytes and spermatids and, to a lesser extent, in
Leydig cells [21].

Paracrine regulation of testicular hormones:
developmental aspects
High intratesticular testosterone levels and andro-
gen receptor expression in Sertoli cells are necessary
for Sertoli cell maturation, characterized by prolifer-
ation arrest [22], development of tight junctions
involved in the formation of the blood-testis barrier
[23,24

&

,25
&

] and a decrease in AMH production [26],
as well as for germ cells to enter and achieve full
meiotic divisions [27,28]. Interestingly, this does
not occur in the foetal and neonatal periods owing
to the lack of androgen receptor expression in Sertoli
cells [18–20]. Serum testosterone is not always a
good marker of intratesticular levels. For instance,
at the beginning of puberty, intratesticular testos-
terone levels increase without being immediately
reflected in serum, thus explaining why serum
AMH decline is an early event in puberty [29].
Conversely, treatment with exogenous testosterone
results in elevated serum levels but insufficient
intratesticular androgen concentration, as revealed
by lack of AMH downregulation and of adult sper-
matogenesis induction [30].

Oestrogen receptor signalling is required for
normal spermatogenesis [16

&&

], but excessive oestra-
diol concentration is detrimental for Sertoli cells
and spermatogenesis [16

&&

,31
&

,32] and inhibits
INSL3 expression in foetal Leydig cells [4

&

].
BIOMARKERS OF PAEDIATRIC
TESTICULAR ENDOCRINE DISORDERS

The assessment of the hypothalamic–pituitary–
testicular axis depends on patient’s age. During
Copyright © Lippincott Williams & Wilkins. Unaut
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the first 3–6 postnatal months, basal levels of LH,
testosterone and INSL3 are useful markers of the
pituitary–Leydig cell axis, whereas FSH, AMH and
inhibin B are useful markers of the pituitary–Sertoli
cell axis (Fig. 1). For the rest of infancy and child-
hood, low or undetectable levels of LH, testosterone
and INSL3 are uninformative (Fig. 2); dynamic tests
involving stimulation with hCG or LH are required
to evaluate Leydig cells. Conversely, Sertoli cells
remain active: AMH and inhibin B are most useful
markers of gonadal function in basal conditions
(Fig. 2) [7] and in response to FSH treatment [33,34].

The elevation of serum gonadotropins may be a
reliable sign of primary testicular failure during
childhood; however, it is not always present, mainly
if testicular failure is established after the age of
6 months [14

&

]. After the age of 9 years, basal or
stimulated gonadotropins [35], and basal testoster-
one and INSL3 become useful again. Yet, whereas
testosterone is a marker of acute response to
LH/hCG, INSL3 is no longer responsive to LH/hCG
stimulation in the mature testis [4

&

,5
&

]. The tubular
compartment function can be assessed by inhibin B
levels, which reflect both FSH and germ-cell acti-
vities. AMH should decline to indicate adequate
androgen action on Sertoli cells and spermatogenic
development, it should be noted that the inhibitory
effect of testosterone and germ cells prevails over the
stimulatory effect of FSH [30].
THE DIAGNOSIS OF HYPOGONADISM IN
PAEDIATRIC PATIENTS

As mentioned, the search for low androgen levels is
inadequate for diagnosing hypogonadism in prepu-
bertal boys. A broader definition of male hypogo-
nadism, applicable to paediatric patients, should
consider decreased testicular function, as compared
to what is expected for age (Tables 1 and 2), involv-
ing an impaired hormone secretion by Sertoli cells
(AMH and inhibin B), and/or Leydig cells (andro-
gens and INSL3 in 0–6 months and after pubertal
onset) and/or a disorder of spermatogenesis (which
can only be assessed by testicular biopsy in prepu-
bertal boys). Three aspects need to be considered.
First, the level of the hypothalamic–pituitary–
gonadal axis primarily affected, which leads to the
classical classification of primary hypogonadism
(testicular damage), central (hypothalamic–pituitary
disorder) or combined. A particular aspect that needs
to be considered is that, as opposed to adulthood,
primary hypogonadism is rarely hypergonadotropic
during childhood. Second, according to the testicular
cell population primarily affected, the patient may
present with a whole testicular failure, when there
is a concomitant impairment of all testicular cell
horized reproduction of this article is prohibited.
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Table 1. Primary hypogonadism of known cause in prepubertal men

Early infancy Late infancy – childhood

LH FSH T INSL3 AMH Inh B LH FSH T INSL3 AMH Inh B

Whole gonadal dysfunction

Gonadal dysgenesis

Chromosome defects, gene mutations H H L-ND L-ND L-ND L-ND N-H N-H L-ND L-ND L-ND L-ND

Testicular dysgenesis syndrome

Endocrine disruptors N H L-ND n.a. L-ND L-ND N N N-L n.a. n.a. L

Vanishing testes H H L-ND L-ND L-ND L-ND N N L-ND L-ND L-ND L-ND

Klinefelter syndrome, XX male; Mulibrey
syndrome

N N N N N N N N N N N N

Prader–Willi syndrome n.a. n.a. n.a. n.a. n.a. n.a. N N N n.a. L L

Orchitis, testicular torsion or trauma,
surgery (gonadal, inguinal)

H H L-ND n.a. L-ND L-ND N N L-ND n.a. L-ND L-ND

Down syndrome H H L n.a. L L N-H N-H N-L n.a. N-L N-L

Chronic illnesses:

Granulomatous diseases, renal failure,
neurologic disorders, advanced cancer

n.a. n.a. n.a. n.a. n.a. n.a. N N N n.a. N-L N-L

Dissociated gonadal dysfunction

Leydig cells

LH/CG receptor or steroidogenic
protein mutations

H H L-ND n.a. N-H L-ND N N L-ND n.a. N-H N

INSL3 mutations N N-H N ND N-L N N N ND N N

Sertoli cells

FSH-R mutation N H N n.a. L L N N N n.a. L L

AMH mutation N N N n.a. ND N N N N n.a. ND N

Chemotherapy

Abdomino-pelvic radiotherapy N-H H N-L n.a. L N N N n.a. N-L N-L

L, low; N, normal; H, high as compared to male reference range for age; T, testosterone. FSH, follicle-stimulating hormone; LH, leutenizing hormone; ND:
nondetectable. n.a.: data not available.

Table 2. Central and combined (primary þ central) hypogonadism of known cause in prepubertal men

Early infancy Late infancy – childhood

LH FSH T INSL3 AMH Inh B LH FSH T (�) INSL3 AMH Inh B

Congenital panhypopituitarism

Isolated hypogonadotropic hypogonadism L L L L L L N N L-N L-N L L

Anosmic (Kallmann syndrome)/
normosmic

Acquired panhypopituitarism

CNS tumours, radiotherapy,
surgery, trauma

n.a. n.a. n.a. n.a. n.a. n.a. N N N n.a. N N

Prader–Willi syndrome

X-linked adrenal hypoplasia congenita L L L n.a. L L N N N n.a. L L

Cranial radiotherapy þ chemotherapy

Total body irradiation

Lead intoxication n.a. n.a. n.a. n.a. n.a. n.a. N N N n.a. N N

L, low; N, normal; H, high as compared to male reference range for age; T, testosterone. FSH, follicle-stimulating hormone; LH, leutenizing hormone; ND:
nondetectable. n.a.: data not available.

Androgens
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populations, or with dissociated testicular failure,
when onlyone testicular compartment (seminiferous
tubules or interstitial tissue) is primarily involved,
eventually affecting the other cell populations sec-
ondarily [36

&

]. As Leydig cell function and spermato-
genesis are mostly inactive during childhood, the
Sertoli cell population needs to be particularly
assessed. Finally, the period of life when hypogonad-
ism is established leads to specific clinical features.
For instance, foetal-onset hypogonadism results in
disorders of sex development (DSD) presenting with
ambiguous or female genitalia when established in
the first trimester of gestation, but in micropenis
and cryptorchidism with no genital ambiguity when
established in the last half of gestation, childhood-
onset hypogonadism may go underdiagnosed until
pubertal age. A detailed review with an extended
classification of male hypogonadism, including
paediatric ages, has recently been published [36

&

].
Here, we will first give a general overview of estab-
lished issues concerning paediatric male hypogonad-
ism, with special focus on the biomarkers used for
diagnosis, and then address with more detail recent
relevant findings related to biomarkers of the
prepubertal testis.
Primary hypogonadism with whole gonadal
dysfunction

Congenital primary hypogonadism with whole
gonadal dysfunction is characterised by low Sertoli
(AMH and inhibin B) and Leydig (testosterone and
INSL3) cell hormone levels associated with elevated
gonadotropins in the first months of life (Table 1).
During the rest of childhood, AMH and inhibin B
remain low, and represent the most conspicuous
biomarkers. Well established examples are gonadal
dysgenesis, leading to ambiguous genitalia [2],
and late-foetal testicular regression resulting in
micropenis and hypoplastic scrotum [30]. Although
genetically determined, Klinefelter syndrome is
characterized by normal gonadotropins, AMH,
inhibin B, testosterone and INSL3 until mid-pub-
erty. Then, Sertoli cells deteriorate, resulting in low
or undetectable AMH and inhibin B and high FSH.
Leydig cell dysfunction is milder [37,38

&

]. The situ-
ation is similar in XX males [36

&

,39,40].
Acquired primary hypogonadism may result

from miscellaneous conditions [36
&

]. Orchitis, tes-
ticular trauma or torsion and surgical treatment of
the inguinal or genital regions (e.g. for cryptorchid-
ism), granulomatous diseases, advanced cancer
before chemotherapy, and renal failure can lead
to reduced testicular hormones; an increase in
serum gonadotropins is observed only after the
age of puberty.
Copyright © Lippincott Williams & Wilkins. Unaut
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Primary hypogonadism with dissociated
gonadal dysfunction
LH/CG receptor mutations or defects in steroido-
genic proteins result in Leydig cell-specific primary
insufficiency during foetal life leading to genital
undervirilization (Table 1). However, Sertoli cell
function is not impaired. Serum testosterone is
low, but AMH is within the normal male range or
higher [1,2]. Gonadotropin levels may be slightly
elevated in the first months of life but they are
usually normal during childhood and increase again
at pubertal age [41], providing another example in
which primary hypogonadism is not hypergonado-
tropic in childhood. In primary Sertoli cell-specific
disorders, AMH and/or inhibin B are low. At puber-
tal age, androgen levels increase normally and FSH
may reach abnormally high levels (Table 1).
Central hypogonadism

Congenital central hypogonadism can be detected
in the critical first 3–6 months of life [42]. Gonado-
tropins, testosterone, AMH and inhibin B are low
[34]. During childhood, basal gonadotropins and
testosterone are no longer useful. However, the
persistently low levels of serum AMH and inhibin
B are helpful for the diagnosis (Table 2). These
patients fail to enter puberty by 14 years of age.
Very low basal FSH is diagnostic of central hypogo-
nadism; when FSH is borderline a gonadotropin-
releasing hormone (GnRH) infusion test is helpful
[35]. The association of low gonadotropins with low
testosterone, AMH and inhibin B is also helpful to
distinguish these patients from those with consti-
tutional delay of puberty [43,44].

Acquired central hypogonadism, usually associ-
ated with other pituitary hormone deficiencies, may
result from tumours or infiltrative lesions disrupting
the hypothalamic–pituitary axis, surgical or radiant
therapy of the primary lesions or cranial trauma
(Table 2). AMH and inhibin B are not significantly
affected, and the diagnosis of central hypogonadism
is usually delayed until pubertal age.
Combined hypogonadism

Certain patients with low serum AMH and inhibin B
and defective response to hCG, indicative of a
primary testicular failure, do not show an elevation
of gonadotropins at pubertal age, indicating a con-
comitantly impaired function of the gonadotrope
(Table 2). An example is the X-linked form of adrenal
hypoplasia congenita associated with combined
hypogonadism resulting from mutations in the
DAX1 gene, a transcription factor acting at several
levels of the pituitary–gonadal and adrenal axes [45].
horized reproduction of this article is prohibited.
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BIOMARKERS OF THE PREPUBERTAL
TESTICULAR FUNCTION: RECENT
ADVANCES
The most recent widespread use of Sertoli cell
markers has broadened our knowledge on the
pathophysiology and diagnosis of prepubertal male
hypogonadism.
Effect of oncologic treatment on prepubertal
testicular function

Pituitary-testicular hormone levels are normal in
untreated patients recently diagnosed with leukae-
mia or solid tumours in prepuberty and early pub-
erty, whereas low inhibin B with slightly increased
FSH can be observed in patients diagnosed at
advanced puberty, indicating a tubular dysfunction
[46]. Seminiferous tubules are more sensitive than
Leydig cells to most oncologic treatments, although
Leydig cell function may also be impaired with
high doses [47

&

]. Serum AMH and inhibin B may
be low-to-normal, and testosterone is normal after
pubertal onset. The differences may be due to the
type of radio/chemotherapy used. Gonadotropins
are within the normal range in prepubertal boys
and increase above the normal range only in those
pubertal patients with permanent testicular damage
[47

&

,48,49
&

]. Conditioning for haematopoietic cell
transplantation, using total body irradiation and
cyclophosphamide, busulphan or melphalan,
affects whole gonadal function in approximately
1/3 of the patients and only tubular function, that
is decrease in inhibin B and AMH, in almost half of
the cases. A minor proportion of boys do not show
testicular impairment [50

&

].
Genetic syndromes

Unlike Klinefelter syndrome, the somatic aneu-
ploidy of Trisomy 21 (Down syndrome) results in
early-onset primary hypogonadism in a large pro-
portion of cases. Serum AMH is low from infancy; at
puberty, testosterone reaches low-to-normal levels
but with high LH indicating a compensated Leydig
cell dysfunction [12

&

].
Mulibrey nanism is caused by mutations in

the TRIM37 gene, mapping to 17q22–23. Like in
Klinefelter syndrome, boys have normal FSH, LH,
testosterone and inhibin B until mid-puberty when
inhibin B and testosterone levels decrease and FSH –
and to a lesser extent LH – progressively increase to
hypergonadotropic levels [51].

In Noonan syndrome, cryptorchidism occurs
in approximately two out of three cases. During
childhood, reproductive hormones are within the
expected range. Pubertal onset is delayed, but
pyright © Lippincott Williams & Wilkins. Unautho
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gonadotropins, inhibin B, testosterone and oestra-
diol increase during early puberty. By mid-to-late
puberty, gonadotropin levels increase over the
normal range and AMH and inhibin B decline to
subnormal levels in patients with a history of cryp-
torchidism but remain within normal levels in those
with descended testes [52].

Patients with Prader–Willi syndrome have
hypogonadism leading to small genitalia and
arrested pubertal development, classically attrib-
uted to hypothalamic dysfunction. However, recent
investigations have demonstrated that the disorder
may follow different patterns in prepubertal and
pubertal males: central hypogonadism with low
LH and testosterone associated with low FSH and
inhibin B [53

&&

]; primary hypogonadism, with low
inhibin B, AMH and testosterone levels associated
with normal to moderately elevated gonadotropin
[53

&&

,54,55
&&

]; or a combined form of hypogonad-
ism, with low testicular hormones and inadequately
normal gonadotropins [53

&&

,56].
Boys born preterm or small for gestational
age

Although preterm birth and being born small for
gestational age have been associated with impaired
reproduction rates, recent studies could not evi-
dence abnormalities in serum levels of gonado-
tropins, testosterone, AMH, or inhibin B [57,58],
although the neonatal axis activation seems some-
what delayed and exaggerated [10

&

].
Boys conceived by assisted reproductive
technology

Another issue of concern has been the testicular
function of boys conceived by assisted reproduction
technologies, mainly when used to overcome infer-
tility because of a male factor. Except for a subtle
decrease in serum testosterone observed during the
neonatal activation period [59], no other abnormal-
ities have been observed in testicular hormones or
pubertal development [60–62].
Cryptorchidism

Cryptorchidism is a sign that can be present in many
disorders of different causes, most of which remain
elusive [63,64]. Mutations in INSL3 or its receptor
explain less than 1% of the cases [63].

Dissociated testicular dysfunction primarily
affecting the tubular compartment seems to be
the underlying pathophysiology in cases presenting
with low AMH [65] and inhibin B [66,67] but with
normal testosterone and INSL3 [68] during early
rized reproduction of this article is prohibited.
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infancy and childhood. FSH may be in the upper
normal range or slightly elevated above normal in
the first months after birth [14

&

,66], but decrease to
normal levels during childhood and may increase
again over the normal range from the onset of
puberty [14

&

]. This situation is frequent but the
underlying causes have not been identified. Leydig
cells seem to be less sensitive, but low testosterone
levels associated with elevated LH, has also been
reported in a proportion of cryptorchid infants [66].
Finally, others could not detect significant changes
in hormone levels of cryptorchid boys [69

&&

]. The
apparently contradictory results are most probably
because of the heterogeneity of the cryptorchid
patients with underlying conditions of different
causes and prognoses [70]. Although more invasive,
germ count in testicular biopsies may be a better
predictor. Recent studies have highlighted that
cryptorchid testes with higher germ-cell counts
have better prognosis than those with reduced cell
counts [71] and that germ-cell numbers decline with
the persistence of the gonad in cryptorchid position
[69

&&

].
Bilateral cryptorchidism with nonpalpable

gonads should be distinguished from anorchia.
Newborns with congenital anorchia may have
micropenis, reflecting the lack of testosterone in
late foetal life. AMH, inhibin B, INSL3 and testos-
terone are undetectable, and do not respond to
gonadotropin stimulation. FSH and LH are high
in the first months or years of life, but then decrease
– even to normal prepubertal levels in many cases –
before increasing to extremely high levels at puberty
[14

&

]. In acquired anorchia, gonadotropin levels are
usually within normal levels in childhood, but an
increase response to GnRH stimulation may be
observed.
Testicular dysgenesis syndrome and
endocrine disruptors

Increasing rates of cryptorchidism, hypospadias and
testis cancer, together with a decline in sperm con-
centration are thought to be associated with each
other. The association, named ‘testicular dysgenesis
syndrome’, is considered to originate from a dis-
turbed testicular development in foetal life possibly
due to exposure to environmental chemicals with
endocrine disrupting properties, including oestro-
genic and/or antiandrogenic activities [72].

The original ‘oestrogen hypothesis’ [73] pointed
to an increased oestrogen exposure of the human
foetus or neonate. Although many new environ-
mental oestrogens have been identified in the last
two decades, the vast majority seem to have weak
oestrogenicity, thus arguing against the possibility
Copyright © Lippincott Williams & Wilkins. Unaut
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that they could induce the claimed disorders.
Furthermore, men exposed to massive doses of the
orally active synthetic oestrogen diethystilbestrol
(DES) in utero in the 1950s, though showing a
three-fold increased risk of genital malformations,
were as fertile as other men [74]. The issue remains
controversial, with detractors underscoring the
extremely high doses of the potential endocrine
disruptors used to induce gonadal lesions in experi-
mental conditions, and supporters insisting on
the additive effects of mixtures of environmental
chemicals, present each in low concentrations [75].
We summarize hereafter those recent findings in
which an effect on testicular biomarkers has been
reported in paediatric patients.

Phthalates are used as plasticizers and found in
personal care products (e.g. hair sprays), and certain
dietary supplements, medications, food packaging,
home furnishings and medical equipment [76].
Phtalates affect Sertoli cell [77,78] and Leydig cell
function – including androgen [79,80

&

] and INSL3
production [79] – as well as germ-cell survival [81].
Cryptorchidism, associated with biomarkers of
insufficient foetal androgenization like reduced
anogenital distance and penile length, have been
found in infants in relation to several phthalate
metabolites measured in third-trimester maternal
urine [82,83

&&

]. In line with the potential role of
reduced androgen action as the underlying patho-
genesis in phthalate-associated defects in male
reproductive organs, significant decreases in
serum-free testosterone and Leydig cell function
have been reported in infants exposed to phtha-
late-bearing maternal breast milk [84].

Bisphenol A is used in the manufacture of poly-
carbonate plastics (e.g. water bottles), epoxy resins
(e.g. food cans) and thermal paper. It has a weak
oestrogenic activity [76], inhibits androgen biosyn-
thesis in Leydig cells [85

&

] and has a deleterious
effect on Sertoli cells [86]. Another link between
bisphenol A and testicular disorders may be
explained by recent findings indicating that the
nonclassical membrane G-protein coupled estrogen
receptor (GPER/GPR30) mediates bisphenol effects
in testicular germ cells [87] and that Sertoli cell gap
junctions involved in the formation of the blood–
testis barrier at puberty are perturbed by exposure to
bisphenol A or ethynyloestradiol [25

&

].
Contemporary used pesticides are nonpersistent,

that is designed to break down in hours or days;
however, many of these pesticides can remain for
years if applied in indoor environments protected
from sunlight, moisture and other degradation
mechanisms [76]. Pesticides have been shown to
exert both oestrogenic [88] and antiandrogenic [89]
activities. Sons of women occupationally exposed to
horized reproduction of this article is prohibited.
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nonpersistent pesticides in early pregnancy have an
increased prevalence of congenital cryptorchidism,
lower serum testosterone in the neonatal activation
period in line with smaller penile size, and Sertoli cell
dysfunction markers like lower inhibin B and higher
FSH than boys of unexposed mothers. Low inhibin B
levels persist through prepuberty [90

&&

].
CONCLUSION

The evaluation of the hypothalamic–pituitary–
testicular axis function should be performed
taking into account its normal ontogeny. The first
3–6 months of life are precious for an early diag-
nosis. Thereafter, basal gonadotropins and Leydig
cell hormones are normally very low until the onset
of puberty. Therefore, direct biomarkers of Sertoli
cells, that is serum AMH and inhibin B, are essential
tools in infancy and childhood. When gonadotrope
or Leydig cell function evaluation is required,
dynamic tests are necessary.

The use of prepubertal testicular markers
became widely available in the last decade, and
has produced a substantial increase in our knowl-
edge of the pathophysiology and diagnosis of many
congenital and acquired conditions. For instance,
beyond the well known effect of oncologic treat-
ments on pubertal spermatogenesis, new bio-
markers have shown that Sertoli cell function may
also be affected. In the sex-chromosome, aneu-
ploidy-related Klinefelter syndrome primary hypo-
gonadism is not evident until mid-puberty, whereas
in the autosomal aneuploidy-derived Down syn-
drome primary hypogonadism is present from early
infancy. In Noonan syndrome, the occurrence of
primary hypogonadism depends on the existence of
cryptorchidism, and Prader–Willi syndrome may
result in diverse forms of male hypogonadism.
Prepubertal testicular markers have also provided
insights into the effects of environmental disruptors
on gonadal function from early life, and has also
helped dissipate concerns about testicular function
in boys born preterm or small for gestational age
or conceived by assisted reproductive technique
procedures.
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