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Abstract. We make a unifying approach to the study of mapping properties

of fractional integrals and Riesz transforms acting on spaces of functions f
verifying

sup
B

(
1

w(a, r)

(
1

|B|

ˆ
B
|f −mBf |q

)1/q
)

<∞ ,

where w is a non negative functional defined on the family of balls B ⊂ Rn
with center a and radius r. So, at the same time, we are able to treat such cases

as BMO, Lipschitz spaces and spaces of functions with variable smoothness
among others. Results about pointwise smoothness related to these spaces are

included as well.

1. Introduction

Let w : Rn × R+ → R+ be a measurable function. For 1 ≤ q <∞ given we define
the space BMOw,q as the set of locally integrable functions f on Rn such that

(1.1)
1

w(a, r)

(
1

|B|

ˆ
B

|f(x)−mBf |q dx
) 1
q

≤ C ,

for some C > 0 and for every ball B ⊂ Rn with center a and radius r, where mBf
is the average of f over B, namely mBf = |B|−1

´
B
f(y)dy. As it can be easily

seen the expression

‖f‖w,q = sup
B⊂Rn

{
1

w(a, r)

(
1

|B|

ˆ
B

|f(x)−mBf |q dx
) 1
q

}
,

turns out to be a seminorm for this space. Then, BMOw,q modulo constants is a
Banach space. The space BMOw,1 was introduced by E. Nakai and K. Yabuta ([20],
although a version defined on the n−dimensional torus had already appeared in [15],
due to S. Janson) in connection with the identification of pointwise multipliers of
the space of functions with mean oscillation controlled by a positive, non-decreasing
function ϕ, i.e. BMOϕ (see [24]). The general case BMOw,q, 1 ≤ q < ∞ was
introduced in [21], where a complete study on their pointwise multiplier is done.

As in [21], the following properties will be supposed on w. We assume that there
exists a positive constant C such that

(1.2) w(x, t1) ≤ C w(x, t2), ∀x ∈ Rn, ∀ t1 < t2 .
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(1.3) w(x, 2t) ≤ C w(x, t), ∀x ∈ Rn, ∀ t > 0 .

(1.4) |x− y| < t ⇒ w(x, t) ≤ C w(y, t), ∀x, y ∈ Rn, ∀ t > 0 .

As a first remark, since w(x, t) satisfies (1.2) and (1.3) the definition of BMOw,q

through inequality (1.1) over cubes with center a and sidelength r instead balls is
clearly equivalent. On the other hand, we say that the one variable function w(x, ·)
satisfies the doubling condition if (1.3) holds for each x.

The spaces BMOw,q provide an adequate setting to make a unifying approach to
the study of several well known spaces. For instance, particular case of (1.1) can
be found in [18], where the authors prove a weighted extension of the result that
the Hilbert Transform is a bounded map of L∞ into BMO. Also, taking q = 1 and
w(x, t) = Φ(t) t−n

´
B(x,t)

v(y)dy, with a positive and locally integrable function v

and assuming certain properties on Φ : R+ → R+ we get the BMOΦ(v) of [14].
For Φ(t) = tn we recover the weighted BMO space of Muckenhoupt and Wheeden
([19]). When v ≡ 1 we get the classical BMO (Φ ≡ 1), the Lipschitz integral spaces
(Φ(t) = tβ , β > 0) and, for a more general φ, the spaces BMOΦ considered by
Spanne in [24]. (See [3] in addition).

The case w(x, t) = tα−n‖χB(x,t)‖p′(·), where 0 < α < n, p′(·) = p(·)/(p(·) − 1)

and ‖ · ‖p(·) denotes the norm in the variable Lebesgue space Lp(·) (see [16]), has
a special interest since, the spaces BMOw,q are the spaces Lqα,p(·) introduced in

[23]), which, under natural condition on p(·), they turn out to coincide with Lα,p(·).
(See Corollary 2.38 below). And, in turn, the space Lα,p(·) has been identified
(see Theorems 1.11 and 1.13 in [23]) as the suitable target space for the fractional
integral operator acting on certain Lp(·).

Some particular cases of the spaces (1.1) are useful in the study of regularity of
solutions of elliptic PDEs (see for instance [1], [2] and [23]).

The main purpose of our article is to make a unifying approach to the study of
mapping properties of fractional integrals as well as Riesz transforms in relation to
the spaces BMOw,q so that this approach includes all the afore mentioned particular
cases. In addition we proved some properties of these spaces such as, for instance,
a pointwise characterization.

The structure of the article is as follows. Section 2 contains properties of the
BMOw,q spaces in general (section 2.1) and the particular case Lα,p(·) (section
2.2). In section 3 are our main results related to the boundedness of the fractional
integral. Finally section 4 is devoted to the boundedness of Riesz transforms.

2. Properties of the spaces BMOw,q and Lqα,p(·).

In this section we prove some useful properties of the spaces involved. We start
by recalling some definitions and properties related to real functions. They will be
important tools in our results.

Definition 2.1. Let h : R+
0 → R+

0 be a function. We say that h is of upper type
β > 0, if there exists a positive constant c such that

h(st) ≤ c sβh(t) ,
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for every s ≥ 1 and for every t > 0. We also say that h is of lower type β > 0 if
the last inequality holds for every 0 < s ≤ 1 and for every t > 0. We mean that
h satisfies a doubling condition if there exists a constant c such that h(2t) ≤ c h(t)
for all t > 0.

Definition 2.2. We say that h is quasi decreasing if there exists a constant c such
that h(t2) ≤ c h(t1) whenever t1 < t2.

The proofs of the following lemmas are easy and left to the reader.

Lemma 2.3. Let h be a function of upper type β with 0 < β ≤ 1, then h satisfies
a doubling condition. Moreover, h(t)/t is quasi decreasing.

Lemma 2.4. Consider a function h such that h(t)/tβ is quasi decreasing for some
0 < β ≤ 1, then h is of upper type β. Moreover, h satisfies a doubling condition.

2.1. The space BMOw,q.

Now we study conditions on the function w : Rn × R+ → R+ under which the
functions belonging to BMOw,q satisfy some kind of pointwise smoothness. Con-
versely, we also see that under certain hypothesis on w this smoothness implies the
function belongs to BMOw,q.

Proposition 2.5 (Pointwise Condition). Let 1 ≤ q < ∞ and let w(x, t) be a
function satisfying (1.2). Then, for every f ∈ BMOw,q, we have

(2.6) |f(x)− f(y)| ≤ C ‖f‖w,q
ˆ 4|x−y|

0

(
w(x, t) + w(y, t)

) dt
t
,

for some constant C > 0 and for almost every x, y ∈ Rn.

Proof. Let x, y be Lebesgue points of f in Rn. Taking B = B(x, |x − y|) and
B′ = B(y, |x− y|) we have

|f(x)− f(y)| ≤ |f(x)−mBf |+ |f(y)−mB′f |+ |mB′f −mBf | .
We only estimate the first term on the right-hand side, since the second is analogous.
Letting Bi = B(x, 2−i|x− y|) for each integer i, and using the hypothesis on w, we
get

|f(x)−mBf | ≤ lim
k→∞

(
|f(x)−mBkf |+

k−1∑
i=0

|mBi+1
f −mBif |

)

≤ C

∞∑
i=0

(
|Bi|−1

ˆ
Bi

|f(z)−mBif |q dz
) 1
q

≤ C ‖f‖w,q
∞∑
i=0

w(x, 2−i|x− y|)

= C ‖f‖w,q
∞∑
i=0

ˆ 2−i+1|x−y|

2−i|x−y|
w(x, 2−i|x− y|) dt

t
(2.7)

≤ C ‖f‖w,q
ˆ 2|x−y|

0

w(x, t)
dt

t
.
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Finally, denoting 2B = B(x, 2|x− y|), we have

|mB′f −mBf | ≤ |mB′f −m2Bf |+ |m2Bf −mBf |

≤ C ‖f‖w,q
ˆ 4|x−y|

0

w(x, t)
dt

t
.

This completes the proof. �

Remark 2.8. If in addition w(x, t) satisfies the the doubling condition (1.3) we can
obtain

(2.9) |f(x)− f(y)| ≤ C ‖f‖w,q
ˆ |x−y|

0

(
w(x, t) + w(y, t)

) dt
t
,

for almost every x, y ∈ Rn.

Proposition 2.10. Let us consider w be a measurable function satisfying (1.3).
Suppose that for some 1 ≤ q <∞

Ψq(x, r)
.
=

(
1

rn

ˆ
B(x,r)

(ˆ r

0

w(z, t)
dt

t

)q
dz

)1/q

,

is finite for all x ∈ Rn and every r > 0. If a measurable function f satisfies a
pointwise condition given by (2.6), then f ∈ BMOΨq ,q. Moreover, if there exists a
constant C > 0 such that

(2.11) Ψq(x, r) ≤ C w(x, r) ,

independent of x and r, then f ∈ BMOw,q.

Proof. The finiteness of Ψq(x, r) implies that the right-hand side of (2.6) is finite
a.e. Moreover, it is not difficult to see that f is locally integrable. In order to prove
that f ∈ BMOΨq ,q, we will prove that

(2.12)

ˆ
B

|f(y)−mBf |q dy ≤ C Ψq(x, r)
q |B| ,

for every ball B = B(x, r). In factˆ
B

|f(y)−mBf |q dy

≤ C

ˆ
B

(
1

|B|

ˆ
B

∣∣∣∣∣
ˆ 4|y−z|

0

(
w(y, t) + w(z, t)

) dt
t

∣∣∣∣∣ dz
)q

dy

≤ C

ˆ
B

(ˆ 8r

0

w(y, t)
dt

t
+

1

|B|

ˆ
B

ˆ 8r

0

w(z, t)
dt

t
dz

)q
dy

≤ C

ˆ
B

(ˆ 8r

0

w(y, t)
dt

t

)q
dy + C |B|1−q

(ˆ
B

ˆ 8r

0

w(z, t)
dt

t
dz

)q
≤ C

ˆ
B

(ˆ 8r

0

w(z, t)

t
dt

)q
dz ,

where in the last step the Hölder’s inequality was applied. Thus, using the doubling
condition on w we have (2.12). Moreover, if (2.11) holds then it is clear that
f ∈ BMOw,q and the proposition is proved. �

The propositions above allow us to get the following theorem.
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Theorem 2.13. Let w be a measurable function satisfying (1.2) and (1.3). More-
over, suppose (2.11) holds for some 1 ≤ q <∞, then BMOw,1 = BMOw,s for every
1 ≤ s ≤ q.
Proof. By Hölder’s inequality it is clear that BMOw,s ⊂ BMOw,1. On the other
hand, if f ∈ BMOw,1, from Proposition 2.5, f satisfies (2.6). In view of Proposition
2.10 we have that f ∈ BMOw,q. Hence, using Hölder’s inequality again, the theorem
follows. �

The next proposition gives sufficient conditions on w so that inequality (2.11) holds.

Proposition 2.14. Let w be a measurable function. If w is of lower type β > 0
on the second variable, then inequality (2.11) holds for every 1 ≤ q <∞.

Proof. Let B = B(x, r), then by a change of variable we haveˆ
B

(ˆ r

0

w(z, u)

u
du

)q
dz =

ˆ
B

(ˆ 1

0

w(z, rt)

t
dt

)q
dz

≤ C

ˆ
B

( ˆ 1

0

tβ−1 dt
)q
w(z, r)q dz

≤ C

ˆ
B

w(x, r)q dz ≤ C w(x, r)q rn .

This completes the proof. �

We note that Theorem 2.13 makes use the pointwise condition (2.6) and the hy-
pothesis (2.11). However, in the case w ≡ 1 neither of them is valid and it is well
known that BMO1,1 = BMO1,q for every 1 ≤ q < ∞. So it is natural to wonder
what other properties of w can assure the same coincidence of spaces. In order to
give an answer we first state the following result, which are due to Franchi, Pérez
and Wheeden (see [11]).

Definition 2.15. For a number 1 ≤ t <∞, we say that a function w satisfies the
Dt-condition if there exists a positive constant c such that for each ball B = B(x, r)
and any family {Bi} of pairwise disjoint subballs of B

(2.16)
∑
i

w(xi, ri)
t rni ≤ ct w(x, r)t rn ,

where xi and ri are the center and the radious of Bi, respectively. We denote the
smallest constant c for which (2.16) holds by ‖w‖.
It is not difficult to see that the Dt-condition implies the Ds-condition for every
1 ≤ s < t.

Theorem 2.17 ([11], Theorem 2.3). Let B0 = B(x0, r0) be a ball in Rn. Suppose
that w satisfies the Dt-condition for some 1 ≤ t < ∞. Let f be a measurable
function defined on 17B0 and such that

(2.18)
1

|B|

ˆ
B

|f(y)− fB | dy ≤ ‖f‖w,1 w(x, r) .

for every ball B = B(x, r) ⊂ 17B0. Then

(2.19) sup
λ>0

λ

(
| {x ∈ B0 : |f − fB0 | > λ} |

|B0|

)1/r

≤ C ‖w‖ ‖f‖w,1 w(x0, 17r0) ,
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where the constant C is independent of f and B0.

Corollary 2.20. Let 1 < t <∞. Under the same hypotheses of the Theorem 2.17,
we have

(2.21)

(
1

|B0|

ˆ
B0

|f(y)− fB0 |q dy
)1/q

≤ C ‖w‖ ‖f‖w,1 w(x0, 17r0) ,

for every 1 < q < t, where the constant C is independent of f and B0.

Now, in view of the above theorem and its corollary, we are able to prove the
following result.

Theorem 2.22. Let w be a measurable function satisfying (1.2), (1.3) and (1.4).
Then, the spaces BMOw,q coincide for all 1 ≤ q <∞.

Proof. It is easily seen that BMOw,q ⊂ BMOw. On the other hand, if f ∈ BMOw,
by Corollary 2.20, we have to see that w satisfies the Dq-condition for every 1 ≤
q < ∞. In fact, let B be a ball and {Bi} a family of pairwise disjoint subballs of
B. Then, from the hypotheses on w we have∑
i

w(xi, ri)
q rni ≤ C

∑
i

w(xi, r)
q rni ≤ C

∑
i

w(x, r)q rni

≤ C w(x, r)q
∑
i

|Bi| ≤ C w(x, r)q|B| = C w(x, r)q rn .

Then, the spaces coincide. �

2.2. The space Lqα,p(·).

Here we consider the spaces Lqα,p(·) defined in the previous section. We will denote

p−(Ω) and p+(Ω) the infimum and supremum of p(·) over Ω, when Ω is a subset
of Rn. We only write p− and p+ in the case Ω = Rn. The following lemma shows
very useful relations between the norm of a characteristic function of a ball and its
Lebesgue measure.

Lemma 2.23. Let B = B(x0, r) be a ball in Rn.

(a) There exist positive constants a1 and a2 such that if r < 1 we get

a1 |B|
1

p−(B) ≤ ‖χB‖p(·) ≤ a2 |B|
1

p+(B) .

(b) There exist positive constants b1 and b2 such that if r > 1 we get

b1 |B|
1

p+(B) ≤ ‖χB‖p(·) ≤ b2 |B|
1

p−(B) .

In the setting of variable exponent Lebesgue spaces it is common to assume the
following Log–Hölder conditions on the exponent functions p(·).

LH0 : ∃ c0 > 0 / |p(x)− p(y)| ≤ c0

log(e+ 1
|x−y| )

, ∀x, y ∈ Rn ;

LH∞ : ∃ p∞, c1 > 0 / |p(x)− p∞| ≤
c1

log(e+ |x|)
, ∀x ∈ Rn .
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Remark 2.24. In [5] (Proposition 4.57) it is proved that LH0 and LH∞ imply that
there exists a constant C > 0 such that

(2.25) ‖χB‖p(·) ‖χB‖p′(·) ≤ C |B| ,
for every ball B ⊂ Rn. Considering this inequality and applying Hölder’s inequality
it is easy to see that w(x, ·) =

∥∥χB(x,·)
∥∥
p(·) verifies the following doubling condition

(2.26)
∥∥χB(x,2t)

∥∥
p(·) ≤ C

∥∥χB(x,t)

∥∥
p(·) ,

where the constant C is independent of x and t. Obviously, p′(·) has the same
property.

Definition 2.27. If inequality (2.26) holds we say that the exponent function p(·)
satisfies a doubling condition.

In connection with these Log–Hölder continuity properties we state two important
lemmas whose proofs can be found in several articles, see for instance [10, 7, 12, 4, 8].

Lemma 2.28. Let p+ <∞. Then the following conditions are equivalent:

(a) The function p(·) satisfies LH0.
(b) There exists a constant C such that

|B|p−(B)−p+(B) ≤ C ,
for every ball B ⊂ Rn.

Lemma 2.29. Let p(·) be an exponent function satisfying LH∞. Then, there exists
a constant c such that

c−1|B|1/p∞ ≤ ‖χB‖p(·) ≤ c |B|
1/p∞ ,

for every ball B with radius greater than or equal to 1/4.

The following three technical lemmas give some properties of the particular function
w(x, t) = tα−n

∥∥χB(x,t)

∥∥
p′(·).

Lemma 2.30. Let p(·) be an exponent function such that p− ≥ n
α and satisfying

LH0 and LH∞. Then w(x, t) = tα−n
∥∥χB(x,t)

∥∥
p′(·) is quasi–increasing as a function

of t.

Proof. We will see that there exists a constant C > 0 such that, given 0 < s < t,
we get

(2.31) tα−n
∥∥χB(x,t)

∥∥
p′(·) ≤ C sα−n

∥∥χB(x,s)

∥∥
p′(·) ,

where C does not depent on x. For this, we divide the proof in three parts.

(a) If 1 < t < s, by Lemma 2.29 and the hypotheses on p(·), we have

w(x, t) = tα−n
∥∥χB(x,t)

∥∥
p′(·) ≤ C tα−n tn−

n
p∞ = C tα−

n
p∞

≤ C sα−
n
p∞ ≤ C sα−n

∥∥χB(x,s)

∥∥
p′(·) = C w(x, s) .

(b) Now, if t < s < 1, by Lemma 2.23 with p′(·) instead of p(·), Lemma 2.28
and taking into account that p−(B(x, t)) ≥ p−(B(x, s)), we have

w(x, t) = tα−n
∥∥χB(x,t)

∥∥
p′(·)

≤ C tα−n t
n− n

p−(B(x,t))
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≤ C s
α− n

p−(B(x,t))

≤ C s
α− n

p+(B(x,s))
(
s

n
p+(B(x,s))

− n
p−(B(x,s))

)
≤ C sα−n

∥∥χB(x,s)

∥∥
p′(·) = C w(x, s) .

(c) Finally, suppose that t < 1 < s. By Lemmas 2.23 and 2.29 we get that

w(x, t) ≤ C t
α− n

p−(B(x,t)) ≤ C ≤ C sα−
n
p∞ ≤ C w(x, s) .

The proof is complete. �

Lemma 2.32. Let p(·) be an exponent function satisfying LH0 and LH∞. Then
there exists C > 0 such that∥∥χB(x,t)

∥∥
p′(·) ≤ C

∥∥χB(y,t)

∥∥
p′(·) ,

whenever |x− y| < t, for all t > 0.

Proof. It is not difficult to see that p′(·) satisfies LH0 and LH∞ whenever p(·) does.
Moreover 1/p′∞ = 1 − 1/p∞. So, in order to prove the lemma, we are going to
consider two cases. First, suppose t > 1. By Lemma 2.29 we have∥∥χB(x,t)

∥∥
p′(·) ≤ C |B(x, t)|1−

1
p∞ = C |B(y, t)|1−

1
p∞ ≤ C

∥∥χB(y,t)

∥∥
p′(·) .

Now, suppose t ≤ 1. Since that B(y, t) ⊂ B(x, 2t) if |x − y| < t, by Lemmas 2.23
and 2.28 we have∥∥χB(x,t)

∥∥
p′(·) ≤ C |B(x, t)|1−

1
p−(B(x,t))

= C |B(x, t)|1−
1

p+(B(y,t)) |B(x, t)|
1

p+(B(y,t))
− 1
p−(B(x,t))

≤ C |B(y, t)|1−
1

p+(B(y,t))

(
|B(x, t)|p−(B(x,2t))−p+(B(x,2t))

)1/p2−

≤ C
∥∥χB(y,t)

∥∥
p′(·) ,

and the lemma is proved. �

Lemma 2.33. Let p(·) be an exponent function such that p− >
n
α . If p(·) satisfies

LH0 and LH∞ then

(2.34)

ˆ r

0

∥∥χB(x,t)

∥∥
p′(·)

tn−α
dt

t
≤ C

∥∥χB(x,r)

∥∥
p′(·)

rn−α
.

for every B = B(x, r), where C is independent of B.

Proof. Let x ∈ Rn fixed. First we suppose r ≤ 1. By Lemma 2.23 we have

ˆ r

0

∥∥χB(x,t)

∥∥
p′(·)

tn−α
dt

t
≤ C

ˆ r

0

|B(x, t)|1−
1

p−(B(x,t))

tn−α
dt

t

≤ C

ˆ r

0

t
α− n

p−(B(x,r))
−1
dt = C r

α− n
p−(B(x,r)) ,

Now, from Lemma 2.28 and Lemma 2.23 again we get
ˆ r

0

∥∥χB(x,t)

∥∥
p′(·)

tn−α
dt

t
≤ C r

α− n
p+(B(x,r))

(
r

n
p+(B(x,r))

− n
p−(B(x,r))

)
≤ C

∥∥χB(x,r)

∥∥
p′(·)

rn−α
.
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On the other hand, if r > 1, we write

(2.35)

ˆ r

0

∥∥χB(x,t)

∥∥
p′(·)

tn−α
dt

t
=

ˆ 1

0

∥∥χB(x,t)

∥∥
p′(·)

tn−α
dt

t
+

ˆ r

1

∥∥χB(x,t)

∥∥
p′(·)

tn−α
dt

t
.

The previous estimate allows to obtain

ˆ 1

0

∥∥χB(x,t)

∥∥
p′(·)

tn−α
dt

t
≤ C .

Now, since αp−−n > 0 and (p−)′ = (p′)+ it is not difficult to see that (α−n)(p−)′+
n ≥ 1. Then, we get

1 < r(α−n)(p−)′+n = C |B(x, r)| r(α−n)(p−)′ = C |B(x, r)| r(α−n)(p′)+

< C

ˆ
B(x,r)

r(α−n)p′(y) dy = C

ˆ
Rn

(χB(x,r)

r(n−α)

)p′(y)

dy .

So it follows that r(n−α) is a lower bound for
∥∥χB(x,r)

∥∥
p′(·). Then

(2.36)

ˆ 1

0

∥∥χB(x,t)

∥∥
p′(·)

tn−α
dt

t
≤ C

∥∥χB(x,r)

∥∥
p′(·)

rn−α
.

For the second term, by Lemma 2.29, the estimate is clear. In fact

ˆ r

1

∥∥χB(x,t)

∥∥
p′(·)

tn−α
dt

t
≤ C

ˆ r

1

|Bt|1−
1
p∞

tn−α
dt

t
≤ C

ˆ r

1

tα−
n
p∞−1 dt(2.37)

≤ C rα−
n
p∞ ≤ C

∥∥χB(x,r)

∥∥
p′(·)

rn−α
.

Finally, note that inequalities (2.35), (2.36) and (2.37) imply (2.34). �

Corollary 2.38. Let 0 < α < n and let p(·) be an exponent function with p− >
n
α

such that the conditions LH0 and LH∞ hold. Then Lα,p(·) = Lqα,p(·) for 1 ≤ q <∞.

Proof. By Hölder’s inequality, it is clear that Lqα,p(·) ⊂ Lα,p(·). On the other hand,

from Lemma 2.30, the hypotheses on p(·) and Proposition 2.5, every f ∈ Lα,p(·) sat-
isfies the pointwise inequality (2.6). Moreover, the right-hand side of this inequality
is finite.
Now, for 1 < q <∞ fixed, from Lemmas 2.33 and 2.32 we have

ˆ
B(x,r)

(ˆ r

0

∥∥χB(z,u)

∥∥
p′(·)

un−α
du

u

)q
dz ≤ C

ˆ
B(x,r)

∥∥χB(z,r)

∥∥q
p′(·)

r(n−α)q
dz

≤ C
(
rα−n

∥∥χB(x,r)

∥∥
p′(·)

)q
rn ,

which states that (2.11) holds for w(x, r) = rα−n
∥∥χB(x,r)

∥∥
p′(·). Then, Remark 2.24

and Proposition 2.10 ensures that f ∈ Lqα,p(·), which finishes the proof. �

Now, if we consider an exponent function p(·) that does not necessarily verify
the Log–Hölder conditions LH0 and LH∞, a different approach can be adopted.
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However, a smaller range of q is obtained. In order to do this, we first recall (see
[16]) that we can write the representation of the norm given by

(2.39) ‖f‖p(·) ≈ sup
g: ‖g‖p′(·)≤1

ˆ
Rn
f(x) g(x) dx .

In order to prove our previous statement, we need the following variable version of
Minkowski’s integral inequality. This result can be found in [C-U,F], however for
the sake of completeness we include the proof here.

Proposition 2.40. Let p(·) be an exponent function and f : Rn × Rn → R be a
measurable function.

(a) Suppose that f(·, y) ∈ Lp(·) a.e. y ∈ Rn and the mapping y → ‖f(·, y)‖p(·)
is in L1, then∥∥∥∥ˆ

Rn
f(·, y) dy

∥∥∥∥
p(·)
≤ C

ˆ
Rn
‖f(·, y)‖p(·) dy ,

where C is only dependent on the bounds of p(·).
(b) Moreover, for 1 < q < p− we get∥∥∥∥∥

(ˆ
Rn
|f(·, y)|q dy

) 1
q

∥∥∥∥∥
p(·)

≤ C
(ˆ

Rn
‖f(·, y)‖qp(·) dy

) 1
q

.

Proof. By Hölder’s inequality and (2.39), we have∥∥∥∥ˆ
Rn
f(·, y) dy

∥∥∥∥
p(·)

≤ C sup
g: ‖g‖p′(·)≤1

[ˆ
Rn

(ˆ
Rn
f(x, y) dy

)
|g(x)| dx

]
≤ C sup

g: ‖g‖p′(·)≤1

[ˆ
Rn

ˆ
Rn
f(x, y)|g(x)| dx dy

]
≤ C

ˆ
Rn
‖f(·, y)‖p(·) dy .

Now to prove (b) we observe that p(·)
q is an exponent function with

(p(·)
q

)
− > 1 and

‖f‖qp(·) = ‖fq‖ p(·)
q

whenever f ∈ Lp(·). Then, from (a), we get∥∥∥∥∥
(ˆ

Rn
|f(·, y)|q dy

) 1
q

∥∥∥∥∥
q

p(·)

=

∥∥∥∥ˆ
Rn
|f(·, y)|q dy

∥∥∥∥
p(·)
q

≤ C

ˆ
Rn
‖ |f(·, y)|q ‖ p(·)

q
dy

= C

ˆ
Rn
‖ |f(·, y)| ‖qp(·) dy ,

and so we get the desired result. �

Proposition 2.41. Let 0 < α < n and let p(·) be an exponent function with p− >
n
α

such that p′(·) satisfies a doubling condition. If a measurable function f satisfies
the following pointwise condition

(2.42) |f(x)− f(y)| ≤ C
ˆ 2|x−y|

0

∥∥χB(x,t)

∥∥
p′(·) +

∥∥χB(y,t)

∥∥
p′(·)

tn−α
dt

t
,

for almost every x, y ∈ Rn, then f ∈ Lα,p(·).
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Proof. Given r > 0 and x0 ∈ Rn we consider the ball B = B(x0, r). In order to
prove that f ∈ Lα,p(·) we will see that

(2.43)

ˆ
B

|f(x)−mBf | dx ≤ C |B|
α
n ‖χ2B‖p′(·) .

In fact, as in the proof of Proposition 2.10, from the hypothesis on f and the fact
that p′(·) satisfies a doubling condition we get

ˆ
B

|f(x)−mBf | dx ≤ C

ˆ
B

ˆ 4r

0

∥∥χB(x,2t)

∥∥
p′(·)

tn−α
dt

t
dx

≤ C

ˆ r

0

ˆ
B

∥∥χB(x,t)

∥∥
p′(·) dx

dt

tn−α+1
.

Now, let q > 1 to be determined later. Applying the Hölder’s inequality we haveˆ
B

|f(x)−mBf | dx ≤ C |B|
1
q′

ˆ r

0

( ˆ
B

∥∥χB(x,t)

∥∥q
p′(·) dx

) 1
q dt

tn−α+1

≤ C |B|
1
q′

ˆ r

0

( ˆ
Rn

∥∥χB(x0,r)(x)χB(x,t)(·)
∥∥q
p′(·) dx

) 1
q dt

tn−α+1
.

We claim that by taking q such that n
α < q′ < p− we have

(2.44)
(ˆ

Rn

∥∥χB(x0,r)(x)χB(x,t)(·)
∥∥q
p′(·) dx

) 1
q ≤ C t

n
q ‖χ2B‖p′(·) <∞ ,

for every 0 < t < r. Thus,ˆ
B

|f(x)−mBf | dx ≤ C ‖χ2B‖p′(·) |B|
1
q′

ˆ r

0

t
n
q−n+α−1 dt

= C ‖χ2B‖p′(·) |B|
1
q′ r

α− n
q′ = C ‖χ2B‖p′(·) |B|

α
n ,

and so we get our result.

Now, it only remains to prove the claim. Using the theory of integration for vector-
valued functions our claim says that χB(x0,r)(x)χB(x,t)(z) belongs to the Bochner–

Lebesgue space Lq
Lp′(·)

(see [9], chapter V), whose topological dual space is Lq
′

Lp(·)
.

Then by duality we can write∥∥χB(x0,r)(x)χB(x,t)(·)
∥∥
Lq
Lp
′(·)

≤ C sup
‖gt(x,z)‖

L
q′

Lp(·)
≤1

(ˆ
Rn

ˆ
Rn
χB(x0,r)(x)χB(x,t)(z)gt(x, z) dx dz

)

≤ C sup
‖gt(x,z)‖

L
q′

Lp(·)
≤1

(ˆ
Rn

ˆ
Rn
χB(x0,r)(x)χB(z,t)(x)gt(x, z) dx dz

)
,

where in the last expression we use that χB(x,t)(z) = χB(z,t)(x). Now, taking into
account that for every fixed 0 < t < r we have χB(x0,2r)(z) = 1 for all z ∈ B(x, t)
whenever x ∈ B(x0, r), we have∥∥χB(x0,r)(x)χB(x,t)(z)

∥∥
Lq
Lp
′(·)

≤ C sup
‖gt(x,z)‖

L
q′

Lp(·)
≤1

(ˆ
Rn
χB(x0,2r)(z)

ˆ
Rn
χB(z,t)(x)|gt(x, z)| dx dz

)
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≤ C t
n
q sup
‖gt(x,z)‖

L
q′

Lp(·)
≤1

ˆ
2B

‖gt(·, z)‖q′ dz

≤ C t
n
q ‖χ2B‖p′(·) sup

‖gt(x,z)‖
L
q′

Lp(·)
≤1

‖gt(x, z)‖Lp(·)
Lq
′
.

Finally, recalling that n
α < q′ < p−, by Proposition 2.40 we conclude that∥∥χB(x0,r)(x)χB(x,t)(z)

∥∥
Lq
Lp
′(·)

≤ C t
n
q ‖χB2R

‖p′(·) sup
‖gt(x,z)‖

L
q′

Lp(·)
≤1

‖gt(x, z)‖Lq′
Lp(·)

≤ C t
n
q ‖χB2R

‖p′(·) < ∞ .

�

We note that if in Proposition 2.41 p(·) is assumed to be a constant in the interval
(n/α, n/(α − 1)+), then the pointwise condition (2.42) implies that f belongs to
the Lipschitz space of order 0 < β = α− n/p < 1 (See, in addition, [13] and [24]).
In view of Proposition 2.10, we get the following pointwise characterization of Lα,p(·)
without Log–Hölder hypotheses on p(·).

Theorem 2.45. Let 0 < α < n and p(·) be an exponent function such that p− >
n
α

and p′(·) satisfies a doubling condition. The following conditions are equivalent

(1) f ∈ Lα,p(·).
(2) f satisfies (2.42).

Proof. From Proposition 2.41, clearly (2) implies (1). In order to prove the converse
we proceed in the same way as in Proposition 2.5 but this time considering in
(2.7) the properties of w(x, t) = tα−n

∥∥χB(x,t)

∥∥
p′(·), i.e.: p′(·) satisfies a doubling

condition and tα−n is decreasing. �

Theorem 2.46. Let 0 < α < n and let p(·) be an exponent function such that
p− > n

α . If p′(·) satisfies a doubling condition. then Lα,p(·) = Lsα,p(·) for every s,

with 1 ≤ s < n
n−α .

Proof. By Hölder’s inequality, clearly Lsα,p(·) ⊂ Lα,p(·). On the other hand, if

f ∈ Lα,p(·) by Corollary 2.45 f satisfies the pointwise estimate (2.42). In view of

Proposition 2.10 with w(x, t) = tα−n
∥∥χB(x,t)

∥∥
p′(·), we only have to prove (2.11).

Taking s in (1, n
n−α ) we get
ˆ
B

(ˆ r

0

tα−n−1
∥∥χB(x,t)

∥∥
p′(·) dt

)s
dx

≤

(ˆ r

0

(ˆ
B

t(α−n−1)s
∥∥χB(x,t)

∥∥s
p′(·) dx

) 1
s

dt

)s

=

(ˆ r

0

tα−n−1
∥∥χB(x0,r)(x)χB(x,t)(z)

∥∥
Ls
Lp
′(·)

dt

)s
≤ C

(ˆ r

0

tα−n−1t
n
s

∥∥χB(x0,r)

∥∥
p′(·) dt

)s
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= C
∥∥χB(x0,r)

∥∥s
p′(·)

(ˆ r

0

tα−n−1+n
s dt

)s
= C

∥∥χB(x0,r)

∥∥s
p′(·) r

(α−n)srn

= C
(
‖χB‖p′(·) r

(α−n)
)s
rn ,

where α − n + n
s > 0. Then Lα,p(·) = Lsα,p(·) for every 1 ≤ s < n

n−α as we wanted

to prove. �

3. Fractional integrals on BMOw,q spaces.

In this section, we prove boundedness results for the fractional integral operator.
In order to do this, we consider the following definition.

Definition 3.1. Let w(x, t) be a measurable function. We say that w ∈ W∞ if
there exists a constant C > 0 such that

(3.2)

ˆ ∞
r

w(x, t)

t

dt

t
≤ C w(x, r)

r
,

for all x ∈ Rn and every r > 0.

It should be noticed that condition (3.2) appears in the literature in different con-
texts. See, for instance [13], [6] and, in the particular case w(x, t) = tα−n

∥∥χB(x,t)

∥∥
p′(·),

in [23] by the authors of the present paper.
Now, we prove a technical lemma that will be useful in order to get one of our main
results.

Lemma 3.3. Let α be a real number and let w be a measurable function satisfying
(1.2) and (1.3). If a function f belongs to BMOw,q for a some 1 ≤ q <∞, then we
have ˆ

B

|f(y)−mBf |
|x− y|n−α

dy ≤ C ‖f‖w,q
ˆ r

0

tα w(x, t)

t
dt ,(3.4)

where B = B(x, r) and C is not dependent on B.

Proof. Let x ∈ Rn and r > 0. We consider the ball B = B(x, r) and denote
Bk = B(x, 2−kr), k ∈ N0. Then, we estimate
ˆ

B

|f(y)−mBf |
|x− y|n−α

dy =

∞∑
k=0

ˆ

Bk−Bk+1

|f(y)−mBf |
|x− y|n−α

dy

≤ C

∞∑
k=0

(2−kr)α |Bk|−1

ˆ

Bk

|f(y)−mBf | dy

≤ C

∞∑
k=0

(2−kr)α
k∑
j=0

(
|Bj |−1

ˆ

Bj

∣∣f(y)−mBjf
∣∣q dy) 1

q

≤ C ‖f‖w,q
∞∑
k=0

(2−kr)α
k∑
j=0

w(x, 2−jr)
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= C ‖f‖w,q
∞∑
j=0

(2−jr)α w(x, 2−jr)

≤ C ‖f‖w,q
∞∑
j=0

ˆ 2−jr

2−j−1r

tα w(x, t)
dt

t

≤ C ‖f‖w,q
ˆ r

0

tα w(x, t)

t
dt ,

as we wanted to prove. �

Remark 3.5. Note that the conditions (1.2) and (1.3) are only applied in Lemma
3.3 to get the integral expression involving the function w(x, t). For the particular
case w(x, t) = Φ(t)t−n

´
B(x,t)

v(y)dy a similar expression can be proved without

assuming those hypothesis on the whole w(x, t). In that case we only need to
consider the properties of each factor.

Now, for a number σ ≥ 0, we denote wσ(x, t) = tσ w(x, t) (clearly w0 = w). We
will prove the main theorem of this section.

Theorem 3.6. Let 0 < α < n and w be a non-negative measurable function satisfy-
ing conditions (1.2), (1.3) and (1.4). Now, if wα ∈ W∞ then the fractional integral
Iα can be extended to a linear bounded operator from BMOw,q in to BMOwα,q, with
1 ≤ q <∞ as follows

(3.7) Ĩαf(x) =

ˆ

Rn

(
1

|x− y|n−α
− 1

|y|n−α

)
f(y) dy ,

so, that Ĩα is well defined on BMOw,q.

Proof. First we prove that the extension of Iα to Ĩα is well defined. For this, we
take f ∈ BMOw,q, x ∈ Rn, r > |x| and the ball B = B(0, r). We need to show that

|Ĩαf(x)| <∞. Since the expression in brackets in (3.7) has null integral over Rn as
a function of y, we get

Ĩαf(x) =

ˆ

Rn

(
1

|x− y|n−α
− 1

|y|n−α

)
(f(y)−m2Bf) dy = I1(x) + I2(x) ,

where I1 and I2 are the integrals over B(0, 2r) and Rn−B(0, 2r), respectively. For
I1, by Lemma 3.3 and the condition (1.2) on w, we have

|I1(x)| ≤
ˆ

B(0,2r)

∣∣f(y)−mB(0,2r)f
∣∣

|y|n−α
dy +

ˆ

B(0,2r)

∣∣f(y)−mB(0,2r)f
∣∣

|x− y|n−α
dy

≤
ˆ

B(0,2r)

∣∣f(y)−mB(0,2r)f
∣∣

|y|n−α
dy +

ˆ

B(x,4r)

∣∣f(y)−mB(x,4r)f
∣∣

|x− y|n−α
dy

+ |mB(x,4r)f −mB(0,2r)f |
ˆ

B(0,2r)

dy

|x− y|n−α
(3.8)

≤ C ‖f‖w,q
ˆ 2r

0

tα w(0, t)

t
dt+ C ‖f‖w,q

ˆ 4r

0

tα w(x, t)

t
dt
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+ C ‖f‖w,q w(x, 4r) rα

≤ C ‖f‖w,q r
α
(
w(0, 2r) + w(x, 4r)

)
< ∞ .

Now, let us estimate I2(x) for each x ∈ B(0, r). Applying the mean value theorem,
we get

|I2(x)| ≤ C |B| 1n
ˆ

Rn−B(0,2r)

|f(y)−mBf |
|y|n−α+1

dy .

Then, letting Bk = 2kB = B(0, 2kr), k ∈ N, we have

|I2(x)| ≤ C r

∞∑
k=1

ˆ

Bk+1−Bk

|f(y)−mBf |
|y|n−α+1

dy

≤ C r

∞∑
k=1

(2kr)α−1|Bk+1|−1

ˆ

Bk+1

|f(y)−mBf | dy

≤ C r

∞∑
k=1

(2kr)α−1
k+1∑
j=1

(
|Bj |−1

ˆ

Bj

∣∣f(y)−mBjf
∣∣q dy) 1

q

≤ C ‖f‖w,q r
∞∑
k=1

(2kr)α−1
k+1∑
j=1

w(0, 2jr)

≤ C ‖f‖w,q r
∞∑
j=1

(2jr)α−1w(0, 2jr)

≤ C ‖f‖w,q r
∞∑
j=1

ˆ 2j+1r

2jr

tαw(0, t)

t

dt

t

≤ C ‖f‖w,q r
ˆ ∞
r

tαw(0, t)

t

dt

t
.

Since wα ∈ W∞ we can conclude that

(3.9) |I2(x)| ≤ C ‖f‖w,q r
rαw(0, r)

r
= C ‖f‖w,q r

αw(0, r) .

Finally, from (3.8) and (3.9) we have that |Ĩαf(x)| <∞ for all x ∈ Rn.

Let us show the boundedness of the operator Ĩα. To this aim, we observe that from
the properties of w, for x ∈ Rn, r > 0 and 1 ≤ q <∞, we have

ˆ
B(x,r)

(ˆ r

0

tα w(z, t)

t
dt
)q
dz ≤

ˆ
B(x,r)

w(z, r)q
( ˆ r

0

tα−1 dt
)q
dz

≤ C w(x, r)q
ˆ
B(x,r)

rα q dz

≤ C
(
rαw(x, r)

)q
rn .

So, this estimate proves that wα satisfies (2.11). Then, by Proposition 2.10, the
proof of the theorem will be complete as soon as we prove that for every function

f in BMOw,q, Ĩαf satisfies a pointwise inequality like (2.6) with wα instead of
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w. In fact, for such a function and given x1, x2 points in Rn, considering the ball
B = B(x1, 2|x1 − x2|) we have

|Ĩαf(x1)− Ĩαf(x2)| ≤
ˆ

Rn

∣∣∣∣ 1

|x1 − y|n−α
− 1

|x2 − y|n−α

∣∣∣∣ |f(y)−mBf | dy

=

ˆ
B

+

ˆ
Rn−B

= I1 + I2 .

Proceeding in a similar way as in (3.8) and (3.9), we get that

|Ĩαf(x1)− Ĩαf(x2)| ≤ C ‖f‖w,1
ˆ 2|x1−x2|

0

tαw(x1, t) + tαw(x2, t)

t
dt ,(3.10)

as we wanted to prove. �

Corollary 3.11. Let α, β ∈ R+ be such that 0 < α + β < 1 and let w(x, t) be
a non-negative measurable function satisfying conditions (1.2), (1.3) and (1.4). If
wα+β ∈ W∞ then the fractional integral Iα can be extended to a linear bounded
operator from BMOwβ ,q to BMOwα+β ,q, with 1 ≤ q <∞, as in (3.7).

Proof. It is clear that wβ(x, t) satisfies properties (1.2), (1.3) and (1.4) if w(x, t)
does. Then, applying Theorem 3.6 with wβ we get the result. �

Remark 3.12. It is obvious that w ≡ 1 satisfies the hypotheses of the previous
corollary, then the well known classical results

Iα : BMO→ Lip(α) ,

Iα : Lip(β)→ Lip(α+ β) ,

for β > 0 such that 0 < α+ β < 1 are included.
Also, Theorem 3.6 and Corollary 3.11 recover the following results contained in [13]
(see Theorem 2.9 and Corollary 2.12):

Iα : BMO(v) → BMOα(v) whenever v ∈ H(α,∞) ,

Iα : BMOβ(v) → BMOα+β(v) whenever v ∈ H(α+ β,∞) ,

where H(α,∞) is defined by

|B|1/n−α/n
ˆ
Rn−B

v(y)

|xB − y|n−α+1
dy ≤ C 1

|B|

ˆ
B

v(y) dy .

In fact, it is easy to see that v ∈ H(α,∞) implies that w(x, t) = tα−nv(B(x, t)) sat-
isfies (1.3)(see [13]), (1.4) and W∞ condition. As we note in Remark 3.5, although
the condition (1.2) does not necessarily holds for this particular w(x, t), we get the
integral expression appearing in (3.10), that is

|Ĩαf(x1)− Ĩαf(x2)| ≤ C ‖f‖w,1
ˆ 2|x1−x2|

0

tα−nv(B(x1, t)) + tα−nv(B(x2, t))

t
dt ,

which in view of (1.3) (that is the doubling condition of the weight v), the following
inequality holds

|Ĩαf(x1)− Ĩαf(x2)| ≤ C ‖f‖w,1

( ˆ

|z−x1|<2|x1−x2|

v(z)

|z − x1|n−α
dz
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+

ˆ

|z−x2|<2|x1−x2|

v(z)

|z − x2|n−α
dz

)

This clearly implies that Ĩαf ∈ BMOα(v) taking double average over B.

4. The Riesz Transforms.

Let f be a locally integrable function. Recall that for each j ∈ {1, . . . , n} the Riesz
Transform operator is given by

Rjf(x) = lim
ε→0+

ˆ

|x−y|>ε

xj − yj
|x− y|n+1

f(y) dy .

It is well known that these operators are bounded in weighted Lp spaces (see [9] for
instance). Moreover, in [18], M. Morvidone proved the boundedness of the Hilbert
transform as an operator between certain weighted spaces of functions with mean
oscillation controlled by a function ϕ, which generalized results due to Muckenhoupt
and Wheeden ([19]) and Peetre ([22]).
It is important to note that the hypotheses assumed by Morvidone are not contained
in ours because that author takes advantage of a better knowledge of the structure
of w(x, t), since just a particular case is considered.

Our next theorem gives an analogous result for general functions w(x, t).

Theorem 4.1. Let 1 ≤ q < ∞ and w be a measurable function satisfying (1.2),
(1.3) and (1.4). Suppose that w ∈ W∞, then Rj can be extended to a linear bounded
operator Rjf(x) on BMOw,q as follows

(4.2) Rjf(x) = lim
ε→0+

ˆ

|x−y|>ε

[
xj − yj
|x− y|n+1

+
yjΓ(y)

|y|n+1

]
f(y) dy .

Here Γ(y) is the characteristic function of |y| > 1.

Proof. In view of Theorem 2.22 we have to prove the result only for 1 < q <∞.
Now, let 1 < q < ∞ and f ∈ BMOw,q. First we prove that Rjf(x) is well
defined over BMOw,q. It is not difficult to see that Rj1 = 0. Using this, for each
x ∈ B = B(0, r), we get

Rjf(x) = Rj(f −mBf)(x)(4.3)

= lim
ε→0+

ˆ

|x−y|>ε
|y|<2r

[
xj − yj
|x− y|n+1

+
yjΓ(y)

|y|n+1

]
(f(y)−mBf) dy

+ lim
ε→0+

ˆ

|x−y|>ε
|y|>2r

[
xj − yj
|x− y|n+1

+
yjΓ(y)

|y|n+1

]
(f(y)−mBf) dy

= T1(x) + T2(x) .



18 M. RAMSEYER, O. SALINAS AND B. VIVIANI

For T1, by the definition of the operator

|T1(x)| ≤

∣∣∣∣∣ lim
ε→0+

ˆ

|x−y|>ε
|y|<2r

xj − yj
|x− y|n+1

(f(y)−mBf) dy

∣∣∣∣∣
+ lim

ε→0+

ˆ

|x−y|>ε
1<|y|<2r

|f(y)−mBf |
|y|n

dy < ∞ .

Since (f(y) −mBf)χ2B ∈ Lq, the finiteness a.e. of the first term is consequence
of the boundedness of Rj . For the second one, Lebesgue’s dominated convergence
theorem is applied to get the conclusion.
On the other hand, taking ε < r in T2, applying the mean value theorem and
considering the increasing sequence of balls Bk = B(0, 2kr), with k = 1, 2, . . . we
have

|T2(x)| ≤ C r

ˆ

|y|>2r

|f(y)−mBf |
|x− y|n+1

dy(4.4)

≤ C r

∞∑
k=1

ˆ

2kr<|y|<2k+1r

|f(y)−mBf |
|y|n+1

dy

≤ C

∞∑
k=1

1

2k
1

|Bk+1|

ˆ
Bk+1

|f(y)−mBf | dy

≤ C

∞∑
k=1

k+1∑
j=1

1

2k

(
1

|Bj |

ˆ
Bj

|f(y)−mBjf |q dy

) 1
q

= C ‖f‖w,q
∞∑
j=1

w(0, 2jr)

ˆ 2j+1r

2jr

1

2j
dt

t

≤ C ‖f‖w,q r
ˆ ∞
r

w(0, t)

t

dt

t

≤ C ‖f‖w,q w(0, r) < ∞ ,

where the last inequality holds because w ∈ W∞. Finally, taking a sequence {Bn}
of balls such that Bn ↗ Rn and applying the above reasoning for each Bn we get
that Rjf is finite a.e.
Now, we prove the boundedness of the operator acting on BMOw,q. As for (4.3),
we consider g = f −mBf , g1 = gχ2B and g2 = g − g1, with B = B(x0, r) given.
First we study Rjg1. From the boundedness of classical Riesz Transform, we haveˆ

B

|Rjg1(x)−mB(Rjg1)|q dx ≤ C

ˆ
2B

|f(x)−mBf |q dx

≤ C ‖f‖qw,q w(x0, 2r)
q|B| ,

This and (1.3) allow us to conclude that

1

w(x0, r)

(
1

|B|

ˆ
B

|Rjg1(x)−mB(Rjg1)|q dx
) 1
q

≤ C ‖f‖w,q .
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On the other hand, for Rjg2 taking ε < r and then applying the mean value
theorem, the same reasoning used for (4.4) yields

|Rjg2(x)−Rjg2(z)| ≤
ˆ
Rn−2B

∣∣∣∣ xj − yj
|x− y|n+1

+
zj − yj
|z − y|n+1

∣∣∣∣ |f(y)−mBf | dy

≤ C r

ˆ
Rn−2B

|f(y)−mBf |
|x0 − y|n+1

dy

≤ C ‖f‖w,q r
ˆ ∞
r

w(x0, t)

t

dt

t

≤ C ‖f‖w,q w(x0, r) < ∞ .

Finally, by Hölder’s inequality we can writeˆ
B

|Rjg2(x)−mB(Rjg2)|q dx ≤ 1

|B|

ˆ
B

ˆ
B

|Rjg2(x)−Rjg2(z)|q dz dx

≤ C ‖f‖qw,q
1

|B|

ˆ
B

ˆ
B

w(x0, r)
q dz dx

= C ‖f‖qw,q |B|w(x0, r)
q .

So the theorem is proved. �

Remark 4.5. For w(x, t) = φ(t), the condition φ ∈ W∞ implies that φ is of upper
type β with β < 1, as it is proved in Lemma (3.3) of [13], which in particular
establishes that φ satisfies (1.3). Hence we can prove that it φ is a non negative
and non decreasing function such that φ ∈ W∞, then Rj can be extended to a
bounded linear operator on BMOφ. This last result is contained in [22].
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[3] Campanato, S. “Propietà di hölderianità di alcune classi di funzioni”. Ann. Sc. Normale.

Sup. Pisa 17, (1963), 175–188.
[4] Cruz-Uribe, D.; Fiorenza, A.; Neugebauer, C. J. “Weighted norm inequalities for the maximal

operator on variable Lebesgue spaces”. J. Math. Anal. Appl. 394(2), (2012), 744–760.

[5] Cruz-Uribe, D.; Fiorenza, A. “Variable Lebesgue spaces. Foundations and harmonic analy-
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Instituto de Matemática Aplicada del Litoral CONICET-UNL and Facultad de In-
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