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Abstract
We present an equivalence between the category of Nelson Paraconsistent lattices (NPc-lattices) and a category of pairs of
Brouwerian algebras and regular filters. Specializing such category of pairs to Gödel hoops, we get the subvariety of Gödel
NPc-lattices and, using the dual equivalence of finite Gödel hoops with finite trees, we obtain a duality for finite Gödel
NPc-lattices. This duality is used to describe finitely generated free Gödel NPc-lattices..
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1 Introduction

Nelson’s paraconsistent logic N4 is the paraconsistent variant of Nelson’s system [26]. We recall that
Paraconsistent logics are those logics that admit inconsistent but non-trivial theories and Nelson’s
system (constructive logic with strong negation, [3, 23]) is an expansion of intuitionistic logic by a
new negation symbol that behaves as an involutive negation.

It turns out that N4 is algebraizable and the corresponding algebraic structures are N4-lattices,
which were studied and analysed by Odintsov in [24, 26].

Following some of the ideas of [28, 29] and [6], in [5] a class of residuated lattices with involution
is defined, called Nelson paraconsistent lattices (NPc-lattices for short). There it is proved that NPc-
lattices and eN4-lattices (an extension of N4-lattices by a constant e) are termwise equivalent. This
situates Nelson’s paraconsistent logic within the framework of substructural logics [16], providing
an alternative semantics in terms of well-known algebraic structures.

The most interesting property of NPc-lattices is that they can be represented by twist-products of
Brouwerian algebras, sometimes also known as generalized Heyting algebras, which are bottom-free
reducts of Heyting algebras. By a twist-product of a lattice L we mean a suitably defined sublattice
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of the cartesian product of L with its order-dual L∂ equipped with the natural order involution
(x,y) �→ (y,x) for all (x,y)∈L×L∂ .

The idea of considering this kind of construction to deal with order involutions on lattices goes
back to Kalman’s 1958 paper [20], and it has been used widely to represent many involutive lattices
with additional operations (see [5, 6, 9, 10, 14, 21, 25–27, 30, 31]).

In the present article the fact that NPc-lattices are representable by twist-products of Brouwerian
algebras is exploited to obtain some results about these residuated lattices. To begin with, we give a
categorical equivalence between the category of NPc-lattices and morphisms and a category whose
objects are pairs consisting of a Brouwerian algebra and a regular filter of it. The equivalence follows
the ideas given by Sendlewski [27] and by Odsintov [26], but we rephrase them in the context of
residuated lattices.

Then we focus our attention on Gödel NPc-lattices. These structures form the proper subvariety
of NPc-lattices that can be represented by twist-products of Gödel hoops (prelinear Brouwerian
algebras). As is well known, Esakia duality [13] can be specialized to a duality between finite
prelinear Heyting algebras and finite forests with order preserving open maps [12, 19]. In [1, 2] the
latter duality is adapted to Gödel hoops: finite Gödel hoops are dually equivalent with finite trees and
order preserving open maps. In particular, each finite Gödel hoop arises as the set of all non-empty
downward closed subsets of a tree, equipped with suitably defined operations. Based on this duality,
we present a duality for finite Gödel NPc-lattices and we use it to describe finitely generated free
algebras in this subvariety.

We refer to [22] for all results and notions of Category Theory needed along the paper.

2 Brouwerian algebras and NPc-lattices

By a commutative residuated lattice we mean a residuated lattice-ordered commutative monoid, that
is, an algebra A= (A,∨,∧,∗,⇒,e) of type (2,2,2,2,0) such that (A,∨,∧) is a lattice, (A,∗,e) is a
commutative monoid and the following residuation condition is satisfied:

x∗y≤z if and only if x≤y⇒z, (1)

where x,y,z denote arbitrary elements of A and ≤ is the order given by the lattice structure.
It is well known that commutative residuated lattices form a variety that we shall denote by CRL

(see, for instance, [4, 16, 18]).
A commutative residuated lattice A is called integral if x≤e for all x∈A. The negative cone of

A∈CRL is the set A−={x∈A :x≤e}. It is easy to see that A− is closed under the operations ∨,∧,∗,
and if the binary operation⇒e is defined as

x⇒e y= (x⇒y)∧e, (2)

then A−= (A−,∨,∧,∗,⇒e,e) is an integral commutative residuated lattice.An integral commutative
residuated lattice is a Brouwerian algebra [16, Chapter 2] (also a generalized Heyting algebra or an
implicative lattice) if it satisfies the equation x∗x=x2=x.

2.1 Regular filters on Brouwerian algebras

Let L be a Brouwerian algebra (also known as implicative lattice). In Brouwerian algebras both
products ∗ and ∧ coincide and the neutral element of the product e is also the greatest element of the
algebra. We say an element x∈L is dense if it is of the form x=w∨(w⇒z), with w,z∈L.
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Proposition 2.1
The set Fd of dense elements of L is a (lattice) filter.

Proof. Assume first L has a minimum element⊥. Then an element x is dense iff x⇒⊥=⊥. In details,
if x⇒⊥=⊥ then x is clearly dense as x=x∨(x⇒⊥). Conversely, if x is dense then x=w∨(w⇒z)
and

x⇒⊥= (w∨(w⇒z))⇒⊥= (w⇒⊥)∧((w⇒z)⇒⊥)

≤ (w⇒z)∧((w⇒z)⇒⊥)≤⊥.

In this case Fd is a filter. Now consider the case L unbounded. Take 〈Fd 〉, the filter generated by Fd
and let x∈〈Fd 〉. Then x is of the form

x≥
n∧

i=1

wi∨(wi⇒zi)

for some wi,zi∈L, and take m=∧n
i=1(wi∧zi), so Lm={y :y≥m} is a subalgebra of L with x,wi,zi∈

Lm and minimum element m. Then x is dense in Lm (as it is greater than or equal to the infimum of
finitely many dense elements of Lm) and we have x⇒m=m (in Lm but also in L as the former is a
subalgebra of the latter) and therefore x=x∨(x⇒m), obtaining x∈Fd . �

Observe that if L is a chain, we have x⇒y=� if x≤y and x⇒y=y if x>y, then every non-
bottom element (in case it exists) will be dense, as given x∈L if there exists y with x>y, we will
have x=x∨(x⇒y).

We will work with filters containing the filter Fd , which we call regular. It turns out that they have
a specific structure.

Lemma 2.2
If the filter F is an intersection of maximal filters, then it is regular.

Proof. Assume first F maximal and take a,b∈L. If a∈F then a∨(a⇒b)∈F and we are done. If
a �∈F , then 〈F∪{a}〉=L, being F maximal, and therefore b∈〈F∪{a}〉. Then there will exist c∈F
such that b≥a∧c. But this is equivalent to c≤a⇒b, so (a⇒b)∈F and a∨(a⇒b)∈F . This way
Fd ⊆F for F maximal.

If F is an intersection of maximal filters, clearly Fd ⊆F , as it is contained in each one of them. �
Lemma 2.3
If L bounded, then every regular proper filter is an intersection of maximal filters.

Proof. Take ⊥ to be the minimum of L and let F be a proper regular filter. If F⊆P with P a prime
filter, then P must be maximal. Indeed, if not there would exist M maximal (and proper) such that
P �M and given a∈M \P, as a∨(a⇒⊥)∈F⊆P with P prime and a �∈P, it should be a⇒⊥∈P,
then a,a⇒⊥∈M and therefore⊥=a∧(a⇒⊥)∈M , absurd as M is proper. Then every prime filter
containing F must be maximal.

As every proper filter is the intersection of every prime filter containing it, this last result implies
F is an intersection of maximal filters. �
Corollary 2.4
If L is bounded, then regular proper filters are exactly intersections of maximal filters.
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2.2 NPc-lattices

An involution on A∈CRL is a unary operation ∼ satisfying the equations ∼ ∼x=x and x⇒∼y=
y⇒∼x. If f :=∼e, then ∼x=x⇒ f and f satisfies the equation

(x⇒ f )⇒ f =x. (3)

The element f in Equation (3) is called a dualizing element.
Conversely, if f ∈A is a dualizing element and we define ∼x=x⇒ f for all x∈A, then ∼ is an

involution on A and ∼e= f . Hence there is a bijective correspondence between involutions on A
and dualizing elements in A (see [15, 30] for details).

Taking f =e in (3) we obtain an equation in the language of residuated lattices that determines
a subvariety IeCRL of CRL. We call the elements of this subvariety e-involutive commutative
residuated lattices or e-lattices for short (they were called residuated lattices with involution in
[6, 7]). It is easy to see that the involution ∼ given by the prescription ∼x=x⇒e for all x∈A,
satisfies the following properties:

(1) ∼∼x=x,
(2) ∼ (x∨y)= ∼x∧∼y,
(3) ∼ (x∧y)= ∼x∨∼y,
(4) ∼ (x∗y)= x⇒∼y.

Moreover, we have that ∼e=e.
Lattice-ordered abelian groups with x∗y=x+y, x→y=y−x and e=0 are examples of e-lattices.

Other examples of e-lattices are given by twist structures, which will be defined in the next section.

Definition 2.5
(see Definition 2.1 in [7]) A Nelson Paraconsistent residuated lattice (NPc-lattice for short), is a
distributive e-lattice A= (A,∨,∧,∗,⇒,e) satisfying the following equations:

(x∗y)∧e= (x∧e)∗(y∧e), (4)

(x∧e)2=x∧e, (5)

((x∧e)⇒y)∧((∼y∧e)⇒∼x)=x⇒y. (6)

The reader can check that B− with the implication as defined in 2 is a Brouwerian algebra. It is
also well known and easy to verify that NPc-lattices satisfy the quasiequation:

if x∧e=y∧e and ∼x∧e= ∼y∧e, then x=y. (7)

3 Representation of NPc-lattices

By a full twist-product of a lattice L we mean the cartesian product of L with its order-dual L∂

equipped with the natural order involution (x,y) �→ (y,x) for all (x,y)∈L×L∂ . As far as we know
the idea of considering this kind of construction to handle order involutions on lattices goes back to
Kalman’s 1958 paper [20], but the denomination ‘twist’ appeared thirty years later on Kracht’s paper
[21]. The following result is a particular case of [30, Corollary 3.6].
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Theorem 3.1
Let L= (L,∗,⇒,∨,∧,e) be an integral commutative residuated lattice. Then

K(L)= (L×L,�,�,∗,→,(e,e))

with the operations �,�,∗,→ given by

(a,b)�(c,d )= (a∨c,b∧d ) (8)

(a,b)�(c,d )= (a∧c,b∨d ) (9)

(a,b)∗(c,d )= (a∗c,(a⇒d )∧(c⇒b)) (10)

(a,b)→ (c,d )= ((a⇒c)∧(d⇒b),a∗d ) (11)

is an e-lattice. Moreover, the correspondence

(a,e) �→a

defines an isomorphism from (K(L))− onto L.

We refer to K(L) as the full twist-product obtained from L, and every subalgebra A of K(L)
containing the set {(a,e) :a∈L} is called a twist-product obtained from L. Thus if A is a twist-product
obtained from L its negative cone is isomorphic to L.

K-lattices, introduced in [8], are e-lattices satisfying equations (4), (6) and the distributive law of
lattices when one of the variables is the neutral e. Thus NPc-lattices form a proper subvariety of the
variety of K-lattices. But K-lattices are exactly those e-lattices that are isomorphic to a twist-product
of their negative cone [8, Theorem 3.7]. As a particular case one can verify the following result:

Theorem 3.2
If L is a Brouwerian algebra, then K(L) is an NPc-lattice. Moreover, for every NPc-lattice B, the
application φB :B→K(B−) given by

x �→ (x∧e,∼x∧e)

is an injective morphism.
As it is clear from the definition of the operations in the twist-products, each term γ in the language

of NPc-lattices, with variables x1,...xn, can be uniquely identified with a couple of terms (γ 1,γ 2)
in the language of Brouwerian algebras. A simple proof by induction on the complexity of γ yields
the pair of terms. In details, let γ be a term in the language of NPc-lattices and assume that A is
an NPc-lattice, that by Theorem 3.2 can be identified with a subalgebra of K(A−). Let γA be the
corresponding term function from An to A. If φ=φA :A→K(A−) as in Theorem 3.2, for each
(a1,a2,...,an)∈An if φ(ai)= (bi,ci) for every i=1,2,...,n, we get

φ((γA)(a1,...,an))=γK(A−)(φ(a1),...,φ(an)))

=γK(A−)((b1,c1),...,(bn,cn))

= (γ 1
A− (b1,c1,...,bn,cn),γ 2

A− (b1,c1,...,bn,cn)).

We now proceed to prove a categorical equivalence between the category of NPc-lattices and
residuated lattices morphims and a category whose objects are pairs of Brouwerian algebras and
regular filters. The idea is to reformulate the characterization of N4-lattices given by Odintsov [26]
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in terms of residuated lattices. In Section 6 of [8] it is proved that some varieties of e-lattices can
be represented by pairs formed by a bounded integral residuated lattices and a lattice filter of it. But
those ideas cannot be applied directly to the present case, since the lower bound of the residuated
lattice plays a crucial role. Following Odintsov’s notation [26], in the sequel we shall often denote
with ∇ the regular filter of a Brouwerian algebra L used to build a twist-product.

Theorem 3.3
Let L be a Brouwerian algebra and ∇ a regular filter of L. Then the subset

Tw(L,∇)={(a,b)∈L×L :a∨b∈∇},
of the NPc-lattice K(L) is a twist-product obtained from L, whose negative cone is isomorphic with
L.

Moreover, if L′ is another Brouwerian algebra and ∇′ a regular filter in L′, for each morphism
f :L→L′ satisfying f (∇)⊆∇′ we obtain an NPc-lattice morphism

f :Tw(L,∇)→Tw(L′,∇′)
given by f ((a,b))= (f (a),f (b)).

Proof. For the first part we prove that B=Tw(L,∇) is the universe of a subalgebra of K(L) whose
negative cone is isomorphic to L, i.e., the operations are closed in B and (a,e)∈B for each a∈L.
Take (a,b),(c,d )∈B, then

• (a,b)�(c,d )∈B, as (a,b)�(c,d )= (a∧c,b∨d ) and therefore (a∧c)∨(b∨d )= (a∨b∨d )∧
(c∨d∨b)≥ (a∨b)∧(c∨d )∈∇.

• (a,b)�(c,d )∈B, as (a,b)�(c,d )= (a∨c,b∧d ) and therefore (a∨c)∨(b∧d )= (a∨b∨c)∧
(a∨c∨d )≥ (a∨b)∧(c∨d )∈∇.

• (a,b)·(c,d )∈B, as (a,b)·(c,d )= (a∧c,(a⇒d )∧(c⇒b)) and therefore

(a∧c)∨((a⇒d )∧(c⇒b))=
= (a∨(a⇒d ))∧(c∨(a⇒d ))∧(a∨(c⇒b))∧(c∨(c⇒b))

≥ (a∨(a⇒d ))∧(c∨d )∧(a∨b)∧(c∨(c⇒b))∈∇.

• ∼ (a,b)∈B, this is immediate as ∼ (a,b)= (b,a) and b∨a=a∨b∈∇.
• (a,b)→ (c,d )∈B, as x→y=∼ (x·∼y) in e-lattices.
• (a,e)∈B for each a∈L, as a∨e=e∈∇ (in particular (e,e)∈B).

Finally, assume L′ is another Brouwerian algebra with∇′ a regular filter in it, and take a morphism
f :L→L′ satisfying f (∇)⊆∇′. We will show that f (a,b)= (f (a),f (b)) is well defined and is a
morphism from Tw(L,∇) to Tw(L′,∇′). The condition f (∇)⊆∇′ guarantees that if a∨b∈∇, then
f (a)∨f (b)= f (a∨b)∈∇′, then f is well defined. From the fact that f is a morphism and the definition
of the operations for Tw(L,∇) and Tw(L′,∇′), we obtain that f is an NPc-lattice morphism. �

Now we will assign to each NPc-lattice B a pair composed by a Brouwerian algebra L and a
regular filter ∇ such that B∼=Tw(L,∇). This is achieved by gluing the result of Theorem 3.2 and the
following theorem:

Theorem 3.4
Given a twist-product B obtained from L, the set ∇={a∨b : (a,b)∈B} is a regular filter in L, and

B=Tw(L,∇).
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Moreover, let L′ be another Brouwerian algebra and B′ be a twist-product obtained from L′. Let
further π1 : B′→L′ be the projection on the first coordinate, and ∇′={c∨d : (c,d )∈B′}. Then for
each NPc-lattice morphism f :B→B′ we obtain a Brouwerian morphism f :L→L′ given by

f (a)=π1(f ((a,e)))

that satisfies f (∇)⊆∇′.
Proof. We first observe that if a∈∇, then there exists b≤a such that (a,b)∈B. Indeed, if a∈∇
there exists (c,d )∈B such that a=c∨d , then (c∨d ,c∧d )= (c,d )�∼ (c,d )∈B and taking b=c∧d
we obtain b≤a and (a,b)∈B.

Now we show that ∇ is a regular filter.

• e∈∇, as (e,e)∈B and e=e∨e.
• if a,c∈∇, then a∧c∈∇. In fact, by the observation above there exist b,d ∈L such that b≤

a,d≤c and (a,b),(c,d )∈B. Then since (b,e),(d ,e) are also in B, (b∧d ,e)∈B and

(a,b)�((a,b)→ (b∧d ,e))= (a,b)�((a⇒ (b∧d ))∧b,a)

= (a,b)�(b∧(a⇒d ),a)

= (b∧d ,a),

we have (b∧d ,a)∈B, and similarly (b∧d ,c)∈B. Finally (b∧d ,a∧c)= (b∧d ,a)�(b∧d ,c)∈
B and as b∧d≤a∧c we obtain a∧c∈∇.

• if a∈∇ and c≥a, again from the observation there exists b≤a such that (a,b)∈B, and as we
also have (c,e)∈B, we obtain (c,b)= (a,b)�(c,e)∈B, and as b≤a≤c, we get c=c∨b∈∇.

• if a,b∈L, then a∨(a⇒b)∈∇, as (a,e),(b,e)∈B and (a⇒b,a)= (a,e)→ (b,e)∈B.

For the next part, observe that if B̃={(a,b)∈L×L :a∨b∈∇}, then it is clear that B⊆ B̃. For the
other inclusion take (a,b)∈ B̃ with a,b∈L. Since B is an algebra that contains all the elements of the
form (x,e) with x∈L we have that (e,b) and (e,a) are in B. Then the element (a⇒b,a)= (e,b)→
(e,a) is also in B. From the definition of ∇ there exists (c,d )∈B such that a∨b=c∨d . Hence
(c,d )�(d ,c)= (c∨d ,c∧d )= (a∨b,c∧d ) is also in B. Then

(a∨b,c∧d )�(a⇒b,a)�(e,b)= ((a∧(a⇒b))∨(b∧(a⇒b)),a∨b)

= (b,a∨b),

so (b,a∨b)∈B and similarly (a,a∨b)∈B. From this we obtain (a∧b,a∨b)∈B, and as (b,a)=
(a∨b,a∧b)�(a⇒b,a)∈B, we get what we wanted.

For the last part, take L′ another Brouwerian algebra, B′ a twist-product obtained from L′ and
f :B→B′ an NPc-lattice morphism. As f sends negative cones to negative cones, f is well defined
from L to L′, and it is also clear that it is a lattice morphism and f (e)=e. We now check that it also
preserves implication, define c= f (a),d= f (b), then

f (a⇒b)=π1(f (a⇒b,e))=π1(f (((a,e)→ (b,e))�(e,e)))

=π1((f (a,e)→ f (b,e))�f (e,e))

=π1(((c,e)→ (d ,e))�(e,e))=π1(c⇒d ,e)

= f (a)⇒ f (b).
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Finally, if ∇′={c∨d : (c,d )∈B′}, taking a∨b∈∇ define (c,d )= f (a,b)∈B′ and observe that

f (a∨b,e)= f (((a,b)�∼ (a,b))�(e,e))

= (f (a,b)�∼ f (a,b))�f (e,e)

= ((c,d )�(d ,c))�(e,e)

= (c∨d ,e),

so c∨d=π1(f (a∨b,e))= f (a∨b), and thus f (∇)⊆∇′. �
Theorem 3.5
Let B be an NPc-lattice. Then the set ∇={(x∨∼x)∧e :x∈B} is a regular filter in B−, and

B∼=Tw(B−,∇).

Moreover, if B′ is another NPc-lattice, for each NPc-lattice morphism f :B→B′ we obtain a
Brouwerian morphism f :B−→ (B′)− given by f = f |B− , that satisfies f (∇)⊆∇′, where∇′={(y∨∼
y)∧e :y∈B′}.
Proof. As B∼=φB(B), and the latter is a twist-product of B− (and B− is a Brouwerian algebra), the
set

∇={π1(φB(x))∨π2(φB(x)) :x∈B}
={(x∧e)∨(∼x∧e) :x∈B}
={(x∨∼x)∧e :x∈B}

is a regular filter in B− and

φB(B)=Tw(B−,∇).

For the second part, if f :B→B′ is an NPc-lattice morphism, it maps negative cones into negative
cones, so f is well defined. To check that it is a Brouwerian algebra morphism only need to see that
f (x⇒e y)= f (x)⇒e f (y). To see this, let x,y∈B−,

f (x⇒e y)= f (x⇒e y)= f ((x⇒y)∧e)

= (f (x)⇒ f (y))∧e= f (x)⇒e f (y)

= f (x)⇒e f (y).

Finally, to check that f (∇)⊆∇′, if (x∨∼x)∧e∈∇, then it is clear that if y= f (x)∈B′,

f ((x∨∼x)∧e)= f ((x∨∼x)∧e)

= (f (x)∨∼ f (x))∧e= (y∨∼y)∧e∈∇′.
�

We now obtain a categorical equivalence. Consider the category NPC of NPc-lattices together
with NPc-lattice morphisms, and the category BF that has as objects pairs of the form (L,∇) where
L is a Brouwerian algebra and ∇⊆L is a regular filter, and as arrows f : (L,∇)→ (L′,∇′) such that
f :L→L′ is a Brouwerian morphism that satisfies f (∇)⊆∇′.
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Theorem 3.6
The functor F :BF→NPC that acts on objects as

F((L,∇))=Tw(L,∇)

and on arrows, for f : (L,∇)→ (L′,∇′) obtaining F(f ) :Tw(L,∇)→Tw(L′,∇′) given by

F(f )(x,y)= (f (x),f (y)),

gives an equivalence of categories.

Proof. F is well defined from Theorems 3.3 and 3.4, and it is clearly functorial, as F(id(L,∇))=
idF((L,∇)), and for arrows g : (L,∇)→ (L′,∇′) and f : (L′,∇′)→ (L′′,∇′′), if (x,y)∈Tw(L,∇),

F(f ◦g)(x,y)= (f ◦g(x),f ◦g(y))

=F(f )(g(x),g(y))

=F(f )◦F(g)(x,y).

Now, to prove it is an equivalence of categories, we will prove that F is full, faithful and essentially
surjective:

• full. Let f :Tw(L,∇)→Tw(L′,∇′) be an NPc-lattice morphism. Take f (x)=π1(f (x,e)), for
x∈L. From Theorem 3.4, it is a morphism from (L,∇) to (L′,∇′), let us see now that f=F(f ).
In the negative cone, it is clear that f (x,e)= (f (x),e)=F(f )(x,e). Then, as they are NPc-lattice
morphisms, they must be equal everywhere. Indeed, if g,h :B→B′ are NPc-lattice morphisms
such that g(x∧e)=h(x∧e), for each x∈B, then if y=g(x) and z=h(x), from y∧e=g(x∧e)=
h(x∧e)=z∧e and ∼y∧e=g(∼x∧e)=h(∼x∧e)=∼z∧e we obtain y=z, as NPc-lattices
satisfy the quasiequation (7).

• faithful. If F(f ) :Tw(L,∇)→Tw(L′,∇′) and F(g) :Tw(L,∇)→Tw(L′,∇′) satisfy F(f )=
F(g), in particular they coincide on the negative cone, (f (x),e)=F(f )(x,e)=F(g)(x,e)=
(g(x),e) for all x∈L, so f =g.

• essentially surjective. From Theorem 3.5, every object B on NPC satisfies B∼=Tw(B−,∇).

�
Lemma 3.7
In the category BF, finite products are given coordinatewise. That is, if (L1,∇1),...,(Ln,∇n) are
objects in BF, then

n∏
i=1

(Li,∇i)∼=
(

n∏
i=1

Li,

n∏
i=1

∇i

)
,

where
∏n

i=1Li and
∏n

i=1∇i are products in the category of Brouwerian algebras (filters are
subalgebras, products are defined as set-products with operations defined pointwise), and projections
coincide with the projections in

∏n
i=1Li.

Proof. It suffices to prove the result for n=2. Let (L1,∇1),(L2,∇2) be objects in BF, take L=L1×L2,
∇=∇1×∇2 and πi=πL

i , where πL
i is the projection from L onto Li, for i=1,2. Clearly ∇ is a filter

and contains all the dense elements, as operations are given coordinatewise. Then π1,π2 are clearly
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morphisms in BF, as they are morphisms in the category B of Brouwerian algebras, and besides
πi(∇)=πL

i (∇1×∇2)=∇i.
Let (L′,∇′) be another object in BF and take fi : (L′,∇′)→ (Li,∇i) morphisms. Define f :L′→L

by f (x′)= (f1(x′),f2(x′)) for x′ ∈L′, we will show that it is a morphism in BF and that πi ◦f = fi. The
fact that it is a morphism in B and that πi ◦f = fi follow from the fact that L is the product of L1 and
L2 in the category of Brouwerian algebras, we only need to show that it is a morphism in BF. To see
this, observe that f (∇′)={(f1(x′),f2(x′)) :x′ ∈L′}⊆ f1(∇′)×f2(∇′), but as fi(∇′)⊆∇i, we obtain that
f (∇′)⊆∇1×∇2=∇. �
Theorem 3.8
In the category NPC, finite products are characterized as follows: let B1,...,Bn be objects in NPC

and for each i, let ∇i be the regular filter in B−i such that Bi∼=Tw(B−i ,∇i). Then

n∏
i=1

Bi∼=Tw

(
n∏

i=1

B−i ,

n∏
i=1

∇i

)
.

Proof. This follows from Lemma 3.7 and the fact that NPC and BF are categorically equivalent. �

4 Gödel hoops and Gödel NPc-lattices

AGödel hoop is a Brouwerian algebra satisfying the prelinearity equation (x⇒y)∨(y⇒x)=e. Every
linearly ordered set can be equipped with a structure of Gödel hoop in a unique way. We denote by
[0,1]G the Gödel hoop on [0,1] and by Gn the finite linearly ordered Gödel hoop with n elements.
Gödel hoops form a variety that is generated by [0,1]G. Given a Gödel hoop G= (G,∨,∧,∗,⇒,e)
and a new element ⊥, we extend operations of G on G∪{⊥} by setting ⊥ smaller than all the
elements of G and x∗⊥=⊥=⊥∗⊥=⊥∗x, x⇒⊥=⊥, ⊥⇒x=e=⊥⇒⊥ for every x∈G. Then
G⊥= (G∪{⊥},∨,∧,∗,⇒,e) is a Gödel hoop which is lower bounded.

Definition 4.1
A Gödel NPc-lattice is a NPc-lattice satisfying the equation

(((x∧e)→y)∨((y∧e)→x))∧e=e.

Then, as a consequence of Theorem 3.6 we have the following.

Theorem 4.2
The restriction of the functor F to the category GHF of pairs consisting of Gödel hoops and regular
filters, gives an equivalence of categories between GHF and the full subcategory GNPC of NPC

having Gödel NPc-lattices as objects.

4.1 Duality for Gödel hoops

In [1] it is shown that the category of finite Gödel hoops is dually equivalent to the category Tfin of
finite trees and open maps. We recall here some details of such construction. A forest is a poset F
such that ↓x={y∈F |y≤x} is totally ordered for any x∈F . If P is a poset, by P⊥ we denote the
poset obtained by adding a new bottom element ⊥ to P. A tree is a forest with a minimum element
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(the root of the tree), hence for each forest F , F⊥ is a tree. We hence denote by ∅⊥ the singleton tree
only consisting of its root. Given a tree T we denote by T↑ the unique forest such that T= (T↑)⊥.

A downset (i.e. a downward closed set) of a forest (tree) is itself a forest (tree), and we shall call
it a subforest (subtree) of F .

Given two forests F and G, an order preserving map f : F→G is open if x′ ≤ f (x) in G implies
that there exists y≤x in F such that f (y)=x′. Open maps carry downsets to downsets.

We denote by Ffin and Tfin the category of finite forests and finite trees, respectively, with open
maps.

In Ffin the coproduct, denoted by + from here on, is just the disjoint union, whereas in Tfin it is
given by

S⊕T∼=
(

S↑+T↑
)
⊥

(i.e. all roots merge in a single root). It is clear that ∅⊥ is the neutral element of the coproduct (that
is, the initial object) in Tfin.

Given two trees S and T , their product in the category Tfin of finite trees coincide with the product
in the category Ffin of finite forests, and it can be calculated by the following recursive laws [2]:

• ∅⊥×T∼=T (i.e. ∅⊥ is the neutral element of the product, being the terminal object, in both Tfin
and Ffin);

• S×T∼= (S↑×T+S↑×T↑+S×T↑)⊥;
• If F,G,H are finite forests, (F+G)×H∼= (F×H )+(G×H ).

Then the projection maps πS and πT are recursively defined as follows (we focus on πS , the other
projection being analogous): if x∈S×T then either x is the root of S×T and in this case we set
πS (x) equal to the root of S, or x∈S↑×T+S↑×T↑+S×T↑. In turns, if x∈S↑×T+S↑×T↑ then
we set πS (x)= ιS (πS↑ (x)), where ιS is the inclusion function of S↑ in S and πS↑ is the projection
function of S↑×T or S↑×T↑. If x∈S×T↑ then πS (x) coincides with the projection function in S
of the product S×T↑.

Note that an atom x of S×T satisfies that either πS (x) is the root of S and πT (x) is an atom of T ,
or πS (x) is an atom of S and πT (x) is the root of T ; or both πS (x) and πT (x) are atoms of S and T
respectively.

Theorem 4.3
[1] The category Tfin is dually equivalent to the category GHfin of finite Gödel hoops and (Brouwerian)
morphisms.

The duality is given by the functor Spec∗ that sends a Gödel hoop L to its prime filter tree (Spec(L))⊥
(identifying L with the root of the tree, that is Spec∗(L)={p :p is a prime filter of L or p=L}), and
given a morphism f :L→L′, its image under the functor is f −1 : (Spec(L′))⊥→ (Spec(L))⊥.

We recall from [1, Thm. 4.3.1] that the free Gödel hoop FreeGH(n) over n generators is inductively
defined as follows: FreeGH(1)=G2 and

FreeGH(n)=
n−1∏
i=0

FreeGH(i)
(n

i)⊥ . (12)

Finally, from [1, Theorem 4.3.1] we have that the dual of the free Gödel hoop over n generators

Hn=Spec∗(FreeGH(n))
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Figure 1. A tree and all of its atomic upward closed subtrees.

is given by H0=∅⊥ and

Hn=
(

n−1∑
i=0

(
n

i

)
Hi

)
⊥

,

where the sum here is taken as the coproduct in forest (i.e. the disjoint union).

4.2 Duality for Gödel NPc-lattices

To establish a duality for Gödel NPc-lattices, we will introduce another category, consisting of pairs
of trees, as follows.

Definition 4.4
Given a finite tree T , a subtree t of T is an atomic upward closed subtree of T if t contains the root
of T and whenever an atom a of T belongs to t and b∈T with b≥a, then b∈ t.

We consider the following category denoted by Tt,fin: objects are pairs (T ,t) where T is a finite tree
and t is an atomic upward closed subtree of T ; arrows φ : (T ,t)→ (T ′,t′) are open maps φ :T→T ′
such that φ(t)⊆ t′.

In contrast with general embeddings of subtrees, note that if T is a tree and t is another tree
embeddable in T in such a way that its image is an atomic upward closed subtree of T , then this
embedding is unique up to isomorphism. See Fig. 1 and Fig. 2 for examples. Notice further that given
a tree T , the only atomic upward closed subtrees of T⊥ are ∅⊥ (that is the root of T⊥) and T⊥ itself.

Theorem 4.5
Tt,fin is the dual of the category GNPCfin of finite Gödel NPc-lattices.

Proof. Since GNPCfin is equivalent to the category GHFfin of pairs of finite Gödel hoops and
regular filters (Theorem 4.2), it is enough to see the duality of Tt,fin and GHFfin. As the functor Spec∗
gives the dual isomorphism with GHfin, we only need to check that it is well-behaved with respect
to atomic upward closed subtrees and regular filters.

Given a regular filter ∇, define

t(∇)={p∈Spec(L) :∃m∈Spec(L),∇⊆m,p⊆m}⊥,

(observe that if ∇=L, then t(∇)=∅⊥={L}). Clearly t(∇) is an atomic upward closed subtree of
Spec∗(L) with the order ⊇ (the filters m are the maximals of L or all of L, i.e. they are atoms or the
root of Spec∗(L)). From Corollary 2.4, one can recover ∇ from t(∇),

∇=∩{m∈ t(∇) :m is the root or an atom of t(∇)}.
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We now define

Spec∗(L,∇)= (Spec∗(L),t(∇)).

We still need to check that it is well-behaved with respect to arrows. Let f :L→L′ be a (Brouwerian)
morphism and let ∇,∇′ be regular filters in L and L′, respectively. We will check that f (∇)⊆∇′ if
and only if f −1(t(∇′))⊆ t(∇), so Spec∗ sends arrows in GFfin into arrows in Tt,fin, and vice-versa.

• If f (∇)⊆∇′, then ∇⊆ f −1(∇′). Now if p′ ∈ t(∇′), we should check that f −1(p′)∈ t(∇). This is
clear if p′ is the root or an atom of t(∇′), as ∇′⊆p′ so by hypothesis f (∇)⊆p′, which in turn
gives∇⊆ f −1(p′) and therefore f −1(p′)∈ t(∇) (as f −1 is an open map, f −1(p′) is the root or an
atom of Spec∗(L′)). Now, if p′ is not the root or an atom, let m′ be the unique atom (maximal
filter) such that p′ ⊆m′. As m′ ∈ t(∇′) is an atom, we just proved that f −1(m′)∈ t(∇), but as
f −1(p′)⊆ f −1(m′) the fact that t(∇) is an atomic upward closed subtree gives us f −1(p′)∈ t(∇).

• If f −1(t(∇′))⊆ t(∇), we need to check that f (∇)⊆∇′, or equivalently that ∇⊆ f −1(∇′). As

∇′=∩{m′ ∈ t(∇′) :m′ is the root or an atom of t(∇′)},

we have that

f −1(∇′)=∩{f −1(m′) :m′ is the root or an atom of t(∇′)}.

By hypothesis, each of these m′ satisfies f −1(m′)∈ t(∇), and as they are the root or an atom of
t(∇) (f −1 being an open map), we have ∇⊆ f −1(m′) and we conclude ∇⊆ f −1(∇′).

The functor S : GNPCfin→Tt,fin obtained as composition of F−1 :GNPCfin→GHFfin of Theo-
rem 4.2 and Spec∗ :GHFfin→Tt,fin is the desired duality.

�
In the category Tt,fin, the coproduct is given coordinatewise, i.e.

(S,s)⊕(T ,t)∼=(S⊕T ,s⊕t).

This fact can be easily proven directly, but it is also a consequence of Theorem 3.8.
To define the product in the category Tt,fin, first observe that for any (S,s) in Tt,fin

(S,s)×(∅⊥,∅⊥)∼= (S,s)

as (∅⊥,∅⊥) is the terminal object in Tt,fin. Now set, for every other (T ,t) in Tt,fin,

r=
((

s↑×T
)
+(s↑×t↑)+

(
S×t↑

))
⊥

and we are going to prove that

(S,s)×(T ,t)∼= (S×T ,r).

Proposition 4.6
With the notation as before, r is an atomic upward closed subtree of S×T .
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Figure 2. The dual in GHfin of the tree in Figure 1 and all of its regular filters, in correspondence to
its atomic upward closed subtrees.

Proof. Clearly r is a subtree of S×T and the set of atoms of r is {a∈r |a is an atom of S×T }.
Let us denote by a0 and b0 the roots of S and T (hence of s and t) and by a1

1,...,a1
n and b1

1,...,b
1
m

the atoms of s and t, respectively. If x is an atom of S×T and x∈r, then x is the root of a tree in one
of the forests s↑×T or s↑×t↑ or S×t↑. Suppose x is the root of a tree in s↑×T hence the root of a
tree in S↑×T . Then πT (x)=b0 while πS (x)=a1

i for some i∈{1,...,n}. Now if y≥x and y∈S×T ,
then it must be πT (y)≥b0 and πS (y)≥a1

i , hence πT (y)∈T and πS (y)∈s↑ and so y∈s↑×T⊆r. The
other cases are similar, hence r is an atomic upward closed subtree of S×T . �
Theorem 4.7
(S×T ,r) is the product of (S,s) and (T ,t) in the category Tt,fin.

Proof. Note that the projection map πS :S×T→S is such that πS (r)⊆s, hence it is a map in the
category Tt,fin and we set π(S,s)=πS . Analogously, we set π(T ,t)=πT .

The proof follows by the properties of product in the category Tfin. �

5 Free GNPc-lattices

Theorem 5.1
Let [0,1]G denote the standard Gödel hoop over the real interval [0,1]. The variety GNPC of Gödel
NPc-lattices is generated by the full twist product K([0,1]G).

Proof. We have to prove that given two terms τ,γ in the language of NPc-lattices, an equation τ=γ

holds in GNPC if and only if it holds in K([0,1]G). One direction is immediate, since K([0,1]G)∈
GNPC. For the other direction, recall that if τ (x1,...,xn) is a term in the language of NPc-lattices
there are unique terms τ1,τ2 in the language of Gödel hoops such that if A∈GNPC, then replacing
xi by the pair of variables (yi,zi) we get

τK(A−)(x1,...xn)=τK(A−)((y1,z1),...(yn,zn))

and

τK(A−)((y1,z1),...(yn,zn))= (τ 1
A− (y1,z1,...,yn,zn),τ2

A− (y1,z1,...,yn,zn)).

Now assume that τ=γ does not hold in GNPC and let τ1,τ2,γ 1,γ 2 be the corresponding terms in
the language of Gödel hoops. Then there is an algebra A in GNPC and elements a1,...an∈A such
that

τA(a1,...,an) �=γA(a1,...,an).
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Since A can be identified with a subalgebra of the full twist-product K(A−) (see Theorem 3.2)
there are elements b1,c1,b2,c2,...,bn,cn∈A− such that if ai= (bi,ci) for each i=1,...,n one of the
equations

τ1
A− (b1,c1 ...,bn,cn)=γ 1

A− (b1,c1 ...,bn,cn)

or

τ2
A− (b1,c1 ...,bn,cn)=γ 2

A− (b1,c1 ...,bn,cn)

does not hold in A−. But since A− is in the variety of Gödel hoops and this variety is generated by
[0,1]G, we can assert that there are elements f1,g1,...,fn,gn in [0,1]G such that either

τ1
A− (f1,g1,...,fn,gn) �=γ 1

A− (f1,g1,...,fn,gn)

or

τ2
A− (f1,g1,...,fn,gn) �=γ 2

A− (f1,g1,...,fn,gn).

Take di= (fi,gi)∈ ([0,1]G)2 and B=K([0,1]G) and we get

τB(d1,...,dn) �=γB(d1,...,dn).

Therefore the equation τ=γ does not hold in K([0,1]G). �
The following is a well known result of universal algebra.

Theorem 5.2
([11, Chapter IV, Theorem 3.13]) If a variety V of algebras is generated by an algebra A, then the free
algebra in V with α generators is isomorphic to the subalgebra of functions f :Aα→A generated by
the projection functions.

5.1 The case of one generator

We intend to use Theorem 5.1 and Theorem 5.2 to describe the free Gödel NPc-lattice with one
generator FreeGNPC(1).

Now, the carrier of K([0,1]GH) is just [0,1]2, so we have to characterize exactly the class of
functions {f : [0,1]2→[0,1]2} generated, with the pointwise operations of K([0,1]GH), by the
identity function (a,b) �→ (a,b). This is equivalent to the determination of all functions f : [0,1]2→
[0,1]2 such that there is a term τ in one variable such that f (a,b)=τ (a,b) for all (a,b)∈[0,1]2. We
first prove some necessary results taking finite subalgebras of the Gödel hoop [0,1]:
Lemma 5.3
Consider the three-element Gödel chain G3={a,b,1} with a<b<1. Then the Gödel NPc-lattices
respectively generated by the elements (a,b) or (b,a), i.e. the smallest subalgebras of the full-twist
K(G3) respectively containing the elements (a,b) or (b,a), are in both cases Tw(G3,{b,1}), whose
carrier is K(G3)\{(a,a)}. Moreover, they coincide with the Gödel NPc-lattice generated by the
elements (a,1) and (b,1).
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Proof. First notice that the carrier of Tw(G3,{b,1}) is clearly K(G3)\{(a,a)}. Let us focus on (a,b)
and let 〈(a,b)〉 be the subalgebra generated by (a,b). As K(G3)\{(a,a)} is a subalgebra and contains
the element (a,b), for it is the twist-product Tw(G3,∇) with ∇={b,1}, it only remains to be shown
that every element of K(G3) different from (a,a) belongs to 〈(a,b)〉.

• (1,1),(a,b)∈〈(a,b)〉 trivially.
• (b,a)∈〈(a,b)〉, as (b,a)=∼ (a,b).
• (a,1)∈〈(a,b)〉, as (a,1)= (a,b)�(1,1).
• (1,a)∈〈(a,b)〉, as (1,a)=∼ (a,1).
• (b,1)∈〈(a,b)〉, as (b,1)= (b,a)�(1,1).
• (1,b)∈〈(a,b)〉, as (1,b)=∼ (b,1).
• (b,b)∈〈(a,b)〉, as (b,b)= (a,b)�(b,1).

For the other part, (a,1),(b,1)∈〈(a,b)〉, and as (b,1)→ (a,1)= (a,b), the result follows. The case
〈(b,a)〉 is promptly settled by noticing that (a,b)=∼ (b,a). �
Lemma 5.4
Consider the two-element Gödel chain G2={a,1} with a<1. Then:

(1) The Gödel NPc-lattice generated by the element (a,a) is K(G2).
(2) The smallest subalgebras of the full-twist K(G2) generated either by the element (a,1) or by

(1,a), are both isomorphic with Tw(G2,{1}) whose carrier is K(G2)\{(a,a)}.
Proof. 1) Just notice that (a,a)�(1,1)= (a,1) and (a,a)�(1,1)= (1,a).

2) As in Lemma 5.3, (a,a) �∈ 〈(a,1)〉. The rest follows trivially by (1,a)=∼ (a,1). Clearly, the
carrier of Tw(G2,{1}) is K(G2)\{(a,a)}. �

We shall now determine the structure of the free Gödel NPc-lattice over one generator. The result
hinges on the characterization given in [17] of the free prelinear Heyting algebras (or, Gödel algebras)
as algebras of [0,1]-valued functions.

Lemma 5.5
In the variety GNPC, the algebra FreeGNPC(1) embeds into the following product:

Tw(G3,G2)×Tw(G2,G2)×Tw(G3,G2).

Proof. Consider the following subsets of [0,1]2: A={(a,b)∈[0,1]2,a<b}, B={(a,b)∈[0,1]2,a=
b}, C={(a,b)∈[0,1]2,a>b}. Clearly, {A,B,C} forms a partition of [0,1]2.

Now, pick two distinct points (a1,b1),(a′1,b′1)∈A, with b1 �=1 �=b′1. By Lemma 5.3, the algebras
〈(a1,b1)〉, 〈(a′1,b′1)〉 singly generated by these two points are isomorphic. Moreover, the function from
〈(a1,b1)〉 into 〈(a1,b1)〉×〈(a′1,b′1)〉 that maps (a1,b1) to ((a1,b1),(a′1,b′1)) yields an isomorphism

〈(a1,b1)〉∼=〈((a1,b1),(a′1,b′1))〉,

and clearly 〈((a1,b1),(a′1,b′1))〉 embeds into 〈(a1,b1)〉×〈(a′1,b′1)〉.
Pick now (a′1,b′1)∈A, with b′1=1. By Lemma 5.4, 〈(a′1,b′1)〉 is isomorphic to the quotient of
〈(a1,b1)〉, given by the congruence θ generated by ((b1,1),(1,1)). Therefore

〈(a1,b1)〉∼=〈((a1,b1),(a′1,1))〉
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via the maps (a1,b1) �→ ((a1,b1),(a1,b1)/θ ) �→ ((a1,b1),(a′1,1)). Repeating the argument above for
each point in A, it turns out that the embedding from 〈(a1,b1)〉 into

∏
(a,b)∈A〈(a,b)〉 given by

(a1,b1) �→ ((a,b))(a,b)∈A

is an isomorphism between 〈(a1,b1)〉 and 〈((a,b))(a,b)∈A〉.
But 〈((a,b))(a,b)∈A〉 is by its very definition the algebra of all functions f : A→[0,1]2 generated by

the identity function idA : A→A. The latter, in turn, by Lemma 5.3 is isomorphic with Tw(G3,G2).
In a completely analogous fashion, one shows that the algebra of all functions f : B→[0,1]2

generated by the identity function over B is isomorphic to K(G2)∼=Tw(G2,G2), and that the algebra
of all functions f : C→[0,1]2 generated by the identity function over C is isomorphic to Tw(G3,G2).

To end the proof, notice that every element of FreeGNPC(1) can be expressed as a triplet of
functions (f ,g,h), with f : A→[0,1]2, g : B→[0,1]2, and h : C→[0,1]2. Therefore the generator
of FreeGNPC(1) can be chosen as a triplet

((a1,b1),(a2,b2),(a3,b3)),

for some arbitrarily fixed choice of a1,b1,a2,b2,a3,b3∈[0,1] such that a1 <b1 <1, a2=b2 <1 and
b3 <a3 <1. �

Notice that we cannot drop any of the three factors in Tw(G3,G2)×Tw(G2,G2)×Tw(G3,G2)
without losing the property that FreeGNPC(1) embeds into the remaining algebra. As a matter of fact
each of the maps (ai,bi) �→ (aj,bj), for i,j∈{1,2,3} and ai,bi,aj,bj being the corresponding elements
forming the chosen generator triplet in Lemma 5.5, is an isomorphism iff i= j.

Theorem 5.6
The following holds:

FreeGNPC(1)∼=Tw(G3,G2)×Tw(G2,G2)×Tw(G3,G2)
∼=Tw(G3×G2×G3,G2×G2×G2)
∼=Tw(FreeGH(2),∇),

where ∇=G2×G2×G2.

Proof. We need to prove that for every triplet

((p1,q1),(p2,q2),(p3,q3))∈Tw(G3,G2)×Tw(G2,G2)×Tw(G3,G2),

there is a one-variable term t(x) in the language of NPc-lattices, such that

((p1,q1),(p2,q2),(p3,q3))= t(((a1,b1),(a2,b2),(a3,b3))),

where ((a1,b1),(a2,b2),(a3,b3)) is the chosen triplet in Lemma 5.5.
We consider the terms: τ1(x) :=∼ ((∼x)∗(∼x))∗∼ ((∼x)∗(∼x)), τ2(x) :=∼ ((x↔∼x)∗(x↔∼

x)), and τ3(x) :=∼ (x∗x)∗∼ (x∗x).
Notice that:

τ1(((a1,b1),(a2,b2),(a3,b3)))= ((a1,1),(1,a2),(1,b3)),
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τ2(((a1,b1),(a2,b2),(a3,b3)))= ((1,a1),(a2,1),(1,b3)),

and

τ3(((a1,b1),(a2,b2),(a3,b3)))= ((1,a1),(1,a2),(b3,1)).

Now, by the proofs of Lemmas 5.3 and 5.4, we have that for each i∈{1,2,3}, there is a one-variable
term

ti(x)∈{e,x,∼x,x∧e,x∨e,∼x∨e,∼x∧e,x∨(∼x∧e),x∧(∼x∨e)}

such that πi(ti(((a1,b1),(a2,b2),(a3,b3))))= (pi,qi) where πi is the i-th projection.
Observe then that

(t1∨τ1)(((a1,b1),(a2,b2),(a3,b3)))= ((p1,q1),(1,a2),(1,b3)),

(t2∨τ2)(((a1,b1),(a2,b2),(a3,b3)))= ((1,a1),(p2,q2),(1,b3)),

and

(t3∨τ3)(((a1,b1),(a2,b2),(a3,b3)))= ((1,a1),(1,a2),(p3,q3)).

The proof is settled by checking that

( 3∧
i=1

(ti∨τi)

)
(((a1,b1),(a2,b2),(a3,b3)))= ((p1,q1),(p2,q2),(p3,q3)).

Since the operator Tw commutes with direct products (Theorem 4.2), we equivalently have

FreeGNPC(1)∼=Tw(G3×G2×G3,G2×G2×G2),

(see Fig. 3 for a display of the two components of the twist-product above) and the last isomorphism
follows from (12) for n=2:

FreeGH(2)∼=G3×G2×G3.

�
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Figure 3. The Gödel hoop G3×G2×G3 together with its filter G2×G2×G2.

Notice that, for every finite Gödel hoop A, with Spec∗(A)∼=T , it holds that Spec∗(A⊥,A)∼=
(T⊥,T⊥), since the only pair (a,b)∈A2⊥ such that a∨b �∈A is (a,b)= (⊥,⊥). On the other hand,
Spec∗(A⊥,A⊥)∼= (T⊥,∅⊥). We recall that S : GNPC→Tt,fin is the functor realising the duality as
in Theorem 4.5.

Lemma 5.7
S(FreeGNPC(1))∼= (H2,(2H1)⊥).

Proof. By Theorem 5.6,

S(FreeGNPC(1))∼=S(Tw(G3×G2×G3,G2×G2×G2)).

Recall that G3∼=FreeGH(1)⊥ and G2∼=FreeGH(1)∼=FreeGH(0)⊥. So,

S(FreeGNPC(1))∼=S(Tw(FreeGH(1)⊥×FreeGH(0)⊥×FreeGH(1)⊥,

FreeGH(1)×FreeGH(0)⊥×FreeGH(1)))
∼=S(Tw(FreeGH(1)⊥,FreeGH(1)))

⊕S(Tw(FreeGH(0)⊥,FreeGH(0)⊥))

⊕S(Tw(FreeGH(1)⊥,FreeGH(1)))
∼= (H1⊥,H1⊥)⊕(H0⊥,∅⊥)⊕(H1⊥,H1⊥)
∼= (H1⊥⊕H0⊥⊕H1⊥,H1⊥⊕∅⊥⊕H1⊥)
∼= (H2,(2H1)⊥).

�

5.2 The case of n generators

We plan now to use the results from sections 4.1, 4.2 and 5.1 to obtain the free GNPc-lattice with n
generators.
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Since Hn=Spec∗(FreeGH(n)), it immediately follows that

Hi×Hj∼=Spec∗(FreeGH(i)!FreeGH(j))∼=Spec∗(FreeGH(i+j))∼=Hi+j,

where ! is the coproduct in GH.
Let now Tn=S(FreeGNPC(n)). Note that Tn∼=Tn−1×T1 and by Lemma 5.7:

T1∼= (H2,(2H1)⊥).

Set, for i=0,...,n−1, ci,n=0 and for i=n,...,2n:

ci,n=22n−i
(

n

2n−i

)
.

Lemma 5.8
For i=n+2,...,2n it holds ci,n+1=ci−2,n+2ci−1,n.

Proof. By definition ci−1,n=22n+1−i
( n

2n+1−i

)
, ci−2,n=22n+2−i

( n
2n+2−i

)
, and ci,n+1=

22n+2−i
( n+1

2n+2−i

)
. The claim follows by properties of binomial coefficients, since:(

n+1

2n+2−i

)
=
(

n

2n+1−i

)
+
(

n

2n+2−i

)
.

�
Lemma 5.9
Tn∼= (H2n,tn) where tn is the uniquely determined (up to isomorphisms) subtree of H2n given by

tn=
(2n−1∑

i=n

ci,nHi

)
⊥

.

Proof. As T1∼= (H2,(2H1)⊥), Tn+1∼=Tn×T1 and (H2)n∼=H2n, we only need to check the subtree
part. We proceed by induction on n.

Assume by induction hypothesis, that Tn∼= (H2n,tn) with

tn=
(2n−1∑

i=n

ci,nHi

)
⊥

.

We are going to prove that Tn+1∼= (H2(n+1),tn+1) with

tn+1=
⎛
⎝ 2n+1∑

i=n+1

ci,n+1Hi

⎞
⎠
⊥

.

By definition of product

tn+1∼=
((

t↑n ×H2

)
+(t↑n ×2H1)+(H2n×2H1)

)
⊥

∼=
(2n−1∑

i=n

ci,nHi+2+
2n−1∑
i=n

2ci,nHi+1+2H2n+1

)
⊥

.
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Notice that, by index shifting,

2n−1∑
i=n

ci,nHi+2∼=
2n+1∑

i=n+2

ci−2,nHi

and

2n−1∑
i=n

2ci,nHi+1∼=
2n∑

i=n+1

2ci−1,nHi.

Hence, by Lemma 5.8,

t↑n+1
∼=

2n−1∑
i=n

ci,nHi+2+
2n−1∑
i=n

2ci,nHi+1+2H2n+1

∼=
2n∑

i=n+1

2ci−1,nHi+
2n+1∑

i=n+2

ci−2,nHi+2H2n+1

∼=2cn,nHn+1+
2n∑

i=n+2

2ci−1,nHi+
2n+1∑

i=n+2

ci−2,nHi+2H2n+1

∼=2cn,nHn+1+
2n∑

i=n+2

(ci−2,n+2ci−1,n)Hi+c2n−1,nH2n+1+2H2n+1

∼=2cn,nHn+1+
2n∑

i=n+2

ci,n+1Hi+(2+c2n−1,n)H2n+1.

Since

2cn,n=2·2n=2n+1=2n+1
(

n+1

n+1

)
=cn+1,n+1,

2+c2n−1,n=2+2n=2

(
n+1

1

)
=c2n+1,n+1

we have

tn+1∼=
⎛
⎝ 2n+1∑

i=n+1

ci,n+1Hi

⎞
⎠
⊥

and the claim follows. �
So we have that Tn∼= (H2n,tn), with

H2n=
(2n−1∑

i=0

(
2n

i

)
Hi

)
⊥

, tn=
(2n−1∑

i=n

ci,nHi

)
⊥

.
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Rewriting them using coproducts in the category of trees, we obtain

H2n=
2n−1⊕
i=0

(
2n

i

)
(Hi)⊥, tn=

2n−1⊕
i=n

ci,n(Hi)⊥.

Combining the fact that coproducts in the category Tt,fin are given coordinatewise, that ∅⊥ is both
the terminal and the initial object in Tfin, and that ci,n=0 for i=0,...,n−1, we have that

Tn∼=
2n−1⊕
i=0

((
2n

i

)
−ci,n

)
((Hi)⊥,∅⊥)⊕

2n−1⊕
i=n

ci,n((Hi)⊥,(Hi)⊥).

Notice now that the NPc-lattice dual of the pair ((Hi)⊥,∅⊥) is the full twist-product
K((FreeGH(i))⊥) and that the NPc-lattice dual of the pair ((Hi)⊥,(Hi)⊥) is

Tw((FreeGH(i))⊥,FreeGH(i)).

Finally, recalling that the carrier of this algebra is K((FreeGH(i))⊥)\{(⊥,⊥)}, we conclude the
following theorem.

Theorem 5.10

FreeGNPC(n)∼=

∼=
2n−1∏
i=0

K((FreeGH(i))⊥)

(
(2n

i )−ci,n

)
×

2n−1∏
i=n

Tw((FreeGH(i))⊥,FreeGH(i))ci,n

∼=Tw(FreeGH(2n),∇),

where

∇=
2n−1∏
i=0

((FreeGH(i))⊥)

(
(2n

i )−ci,n

)
×

2n−1∏
i=n

(FreeGH(i))ci,n .

Proof. By Lemma 5.9. �
Corollary 5.11
For each integer n≥0, the cardinality of FreeGNPC(n) is given by the following recurrences:

|FreeGNPC(n)|=
2n−1∏
i=0

(hi+1)
2
(
(2n

i )−ci,n

)
·(h2

i +2hi)
ci,n ,

where h0=1 and, for all integers k≥0,

hk=
k−1∏
i=0

(hi+1)(
k
i).

Proof. By [1, Theorem 4.3.1], the cardinality of FreeGH(k) is hk , for all integers k≥0. Then, clearly,
the cardinality of K((FreeGH(i))⊥) is (hi+1)2 and the cardinality of Tw((FreeGH(i))⊥,FreeGH(i))
is (hi+1)2−1. The claim follows by Theorem 5.10. �
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