On the category of Nelson paraconsistent lattices

STEFANO AGUZZOLI, DI, University of Milano, Italy. E-mail: aguzzoli@di.unimi.it

MANUELA BUSANICHE, Instituto de Matemática Aplicada del Litoral, UNL, CONICET, FIQ, Argentina. E-mail: mbusaniche@santafe-conicet.gov.ar

BRUNELLA GERLA, DiSTA, University of Insubria, Varese, Italy. E-mail: brunella.gerla@uninsubria.it

MIGUEL ANDRÉS MARCOS, Instituto de Matemática Aplicada del Litoral, UNL, CONICET, FIQ, Argentina. E-mail: mmarcos@santafe-conicet.gov.ar

Abstract

We present an equivalence between the category of Nelson Paraconsistent lattices (NPc-lattices) and a category of pairs of Brouwerian algebras and regular filters. Specializing such category of pairs to Gödel hoops, we get the subvariety of Gödel NPc-lattices and, using the dual equivalence of finite Gödel hoops with finite trees, we obtain a duality for finite Gödel NPc-lattices. This duality is used to describe finitely generated free Gödel NPc-lattices..

Keywords: Nelson paraconsistent lattices, Brouwerian algebras, Gödel hoops, dual equivalences, free algebras.

1 Introduction

Nelson's paraconsistent logic N4 is the paraconsistent variant of Nelson's system [26]. We recall that Paraconsistent logics are those logics that admit inconsistent but non-trivial theories and Nelson's system (constructive logic with strong negation, [3, 23]) is an expansion of intuitionistic logic by a new negation symbol that behaves as an involutive negation.

It turns out that N4 is algebraizable and the corresponding algebraic structures are N4-lattices, which were studied and analysed by Odintsov in [24, 26].

Following some of the ideas of [28, 29] and [6], in [5] a class of residuated lattices with involution is defined, called Nelson paraconsistent lattices (NPc-lattices for short). There it is proved that NPc-lattices and eN4-lattices (an extension of N4-lattices by a constant e) are termwise equivalent. This situates Nelson's paraconsistent logic within the framework of substructural logics [16], providing an alternative semantics in terms of well-known algebraic structures.

The most interesting property of NPc-lattices is that they can be represented by twist-products of Brouwerian algebras, sometimes also known as generalized Heyting algebras, which are bottom-free reducts of Heyting algebras. By a *twist-product* of a lattice L we mean a suitably defined sublattice

© The Author, 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com doi:10.1093/logcom/exx002

of the cartesian product of **L** with its order-dual \mathbf{L}^{∂} equipped with the natural order involution $(x,y) \mapsto (y,x)$ for all $(x,y) \in L \times L^{\partial}$.

The idea of considering this kind of construction to deal with order involutions on lattices goes back to Kalman's 1958 paper [20], and it has been used widely to represent many involutive lattices with additional operations (see [5, 6, 9, 10, 14, 21, 25–27, 30, 31]).

In the present article the fact that NPc-lattices are representable by twist-products of Brouwerian algebras is exploited to obtain some results about these residuated lattices. To begin with, we give a categorical equivalence between the category of NPc-lattices and morphisms and a category whose objects are pairs consisting of a Brouwerian algebra and a regular filter of it. The equivalence follows the ideas given by Sendlewski [27] and by Odsintov [26], but we rephrase them in the context of residuated lattices.

Then we focus our attention on Gödel NPc-lattices. These structures form the proper subvariety of NPc-lattices that can be represented by twist-products of Gödel hoops (prelinear Brouwerian algebras). As is well known, Esakia duality [13] can be specialized to a duality between finite prelinear Heyting algebras and finite forests with order preserving open maps [12, 19]. In [1, 2] the latter duality is adapted to Gödel hoops: finite Gödel hoops are dually equivalent with finite trees and order preserving open maps. In particular, each finite Gödel hoop arises as the set of all non-empty downward closed subsets of a tree, equipped with suitably defined operations. Based on this duality, we present a duality for finite Gödel NPc-lattices and we use it to describe finitely generated free algebras in this subvariety.

We refer to [22] for all results and notions of Category Theory needed along the paper.

2 Brouwerian algebras and NPc-lattices

By a *commutative residuated lattice* we mean a *residuated lattice-ordered commutative monoid*, that is, an algebra $\mathbf{A} = (A, \lor, \land, *, \Rightarrow, e)$ of type (2, 2, 2, 2, 0) such that (A, \lor, \land) is a lattice, (A, *, e) is a *commutative* monoid and the following residuation condition is satisfied:

$$x * y \le z$$
 if and only if $x \le y \Rightarrow z$, (1)

where x, y, z denote arbitrary elements of A and \leq is the order given by the lattice structure.

It is well known that commutative residuated lattices form a variety that we shall denote by \mathbb{CRL} (see, for instance, [4, 16, 18]).

A commutative residuated lattice **A** is called *integral* if $x \le e$ for all $x \in A$. The *negative cone* of $\mathbf{A} \in \mathbb{CRL}$ is the set $A^- = \{x \in A : x \le e\}$. It is easy to see that A^- is closed under the operations $\lor, \land, *$, and if the binary operation \Rightarrow_e is defined as

$$x \Rightarrow_{e} y = (x \Rightarrow y) \land e, \tag{2}$$

then $\mathbf{A}^- = (A^-, \lor, \land, *, \Rightarrow_e, e)$ is an integral commutative residuated lattice. An integral commutative residuated lattice is a *Brouwerian algebra* [16, Chapter 2] (also a *generalized Heyting algebra* or an *implicative lattice*) if it satisfies the equation $x * x = x^2 = x$.

2.1 Regular filters on Brouwerian algebras

Let L be a Brouwerian algebra (also known as implicative lattice). In Brouwerian algebras both products * and \land coincide and the neutral element of the product *e* is also the greatest element of the algebra. We say an element $x \in L$ is **dense** if it is of the form $x = w \lor (w \Rightarrow z)$, with $w, z \in L$.

PROPOSITION 2.1 The set F_d of dense elements of *L* is a (lattice) filter.

PROOF. Assume first *L* has a minimum element \bot . Then an element *x* is dense iff $x \Rightarrow \bot = \bot$. In details, if $x \Rightarrow \bot = \bot$ then *x* is clearly dense as $x = x \lor (x \Rightarrow \bot)$. Conversely, if *x* is dense then $x = w \lor (w \Rightarrow z)$ and

$$x \Rightarrow \bot = (w \lor (w \Rightarrow z)) \Rightarrow \bot = (w \Rightarrow \bot) \land ((w \Rightarrow z) \Rightarrow \bot)$$
$$< (w \Rightarrow z) \land ((w \Rightarrow z) \Rightarrow \bot) < \bot.$$

In this case F_d is a filter. Now consider the case L unbounded. Take $\langle F_d \rangle$, the filter generated by F_d and let $x \in \langle F_d \rangle$. Then x is of the form

$$x \ge \bigwedge_{i=1}^{n} w_i \lor (w_i \Longrightarrow z_i)$$

for some $w_i, z_i \in L$, and take $m = \bigwedge_{i=1}^n (w_i \wedge z_i)$, so $L_m = \{y : y \ge m\}$ is a subalgebra of L with $x, w_i, z_i \in L_m$ and minimum element m. Then x is dense in L_m (as it is greater than or equal to the infimum of finitely many dense elements of L_m) and we have $x \Rightarrow m = m$ (in L_m but also in L as the former is a subalgebra of the latter) and therefore $x = x \lor (x \Rightarrow m)$, obtaining $x \in F_d$.

Observe that if *L* is a chain, we have $x \Rightarrow y = \top$ if $x \le y$ and $x \Rightarrow y = y$ if x > y, then every nonbottom element (in case it exists) will be dense, as given $x \in L$ if there exists *y* with x > y, we will have $x = x \lor (x \Rightarrow y)$.

We will work with filters containing the filter F_d , which we call *regular*. It turns out that they have a specific structure.

Lemma 2.2

If the filter F is an intersection of maximal filters, then it is regular.

PROOF. Assume first *F* maximal and take $a, b \in L$. If $a \in F$ then $a \lor (a \Rightarrow b) \in F$ and we are done. If $a \notin F$, then $\langle F \cup \{a\} \rangle = L$, being *F* maximal, and therefore $b \in \langle F \cup \{a\} \rangle$. Then there will exist $c \in F$ such that $b \ge a \land c$. But this is equivalent to $c \le a \Rightarrow b$, so $(a \Rightarrow b) \in F$ and $a \lor (a \Rightarrow b) \in F$. This way $F_d \subseteq F$ for *F* maximal.

If F is an intersection of maximal filters, clearly $F_d \subseteq F$, as it is contained in each one of them.

Lemma 2.3

If *L* bounded, then every regular proper filter is an intersection of maximal filters.

PROOF. Take \perp to be the minimum of *L* and let *F* be a proper regular filter. If $F \subseteq P$ with *P* a prime filter, then *P* must be maximal. Indeed, if not there would exist *M* maximal (and proper) such that $P \subsetneq M$ and given $a \in M \setminus P$, as $a \lor (a \Rightarrow \bot) \in F \subseteq P$ with *P* prime and $a \notin P$, it should be $a \Rightarrow \bot \in P$, then $a, a \Rightarrow \bot \in M$ and therefore $\bot = a \land (a \Rightarrow \bot) \in M$, absurd as *M* is proper. Then every prime filter containing *F* must be maximal.

As every proper filter is the intersection of every prime filter containing it, this last result implies *F* is an intersection of maximal filters.

COROLLARY 2.4

If L is bounded, then regular proper filters are exactly intersections of maximal filters.

2.2 NPc-lattices

An *involution* on $\mathbf{A} \in \mathbb{CRL}$ is a unary operation \sim satisfying the equations $\sim \sim x = x$ and $x \Rightarrow \sim y = y \Rightarrow \sim x$. If $f := \sim e$, then $\sim x = x \Rightarrow f$ and f satisfies the equation

$$(x \Rightarrow f) \Rightarrow f = x. \tag{3}$$

The element *f* in Equation (3) is called a *dualizing element*.

Conversely, if $f \in A$ is a dualizing element and we define $\sim x = x \Rightarrow f$ for all $x \in A$, then \sim is an involution on **A** and $\sim e = f$. Hence there is a bijective correspondence between involutions on **A** and dualizing elements in *A* (see [15, 30] for details).

Taking f = e in (3) we obtain an equation in the language of residuated lattices that determines a subvariety $\mathbb{I}_e \mathbb{CRL}$ of \mathbb{CRL} . We call the elements of this subvariety *e-involutive commutative residuated lattices* or *e-lattices* for short (they were called *residuated lattices with involution* in [6, 7]). It is easy to see that the involution ~ given by the prescription $\sim x = x \Rightarrow e$ for all $x \in A$, satisfies the following properties:

(1) $\sim \sim x = x$,

(2) $\sim (x \lor y) = \sim x \land \sim y$,

 $(3) \sim (x \wedge y) = \sim x \vee \sim y,$

(4) $\sim (x*y) = x \Rightarrow \sim y$.

Moreover, we have that $\sim e = e$.

Lattice-ordered abelian groups with x*y=x+y, $x \rightarrow y=y-x$ and e=0 are examples of *e*-lattices. Other examples of *e*-lattices are given by twist structures, which will be defined in the next section.

DEFINITION 2.5

(see Definition 2.1 in [7]) A *Nelson Paraconsistent residuated lattice (NPc-lattice* for short), is a distributive *e*-lattice $\mathbf{A} = (A, \lor, \land, \ast, \Rightarrow, e)$ satisfying the following equations:

$$(x*y) \wedge e = (x \wedge e)*(y \wedge e), \tag{4}$$

$$(x \wedge e)^2 = x \wedge e,\tag{5}$$

$$((x \wedge e) \Rightarrow y) \wedge ((\sim y \wedge e) \Rightarrow \sim x) = x \Rightarrow y.$$
(6)

The reader can check that \mathbf{B}^- with the implication as defined in 2 is a Brouwerian algebra. It is also well known and easy to verify that NPc-lattices satisfy the quasiequation:

if
$$x \wedge e = y \wedge e$$
 and $\sim x \wedge e = \sim y \wedge e$, then $x = y$. (7)

3 Representation of NPc-lattices

By a full *twist-product* of a lattice **L** we mean the cartesian product of **L** with its order-dual L^{∂} equipped with the natural order involution $(x, y) \mapsto (y, x)$ for all $(x, y) \in L \times L^{\partial}$. As far as we know the idea of considering this kind of construction to handle order involutions on lattices goes back to Kalman's 1958 paper [20], but the denomination 'twist' appeared thirty years later on Kracht's paper [21]. The following result is a particular case of [30, Corollary 3.6].

THEOREM 3.1

Let $\mathbf{L} = (L, *, \Rightarrow, \lor, \land, e)$ be an integral commutative residuated lattice. Then

$$\mathbf{K}(\mathbf{L}) = (L \times L, \sqcup, \sqcap, *, \to, (e, e))$$

with the operations $\sqcup, \sqcap, *, \rightarrow$ given by

$$(a,b) \sqcup (c,d) = (a \lor c, b \land d) \tag{8}$$

$$(a,b)\sqcap(c,d) = (a \land c, b \lor d) \tag{9}$$

$$(a,b)*(c,d) = (a*c, (a \Rightarrow d) \land (c \Rightarrow b))$$

$$(10)$$

$$(a,b) \to (c,d) = ((a \Rightarrow c) \land (d \Rightarrow b), a*d) \tag{11}$$

is an *e*-lattice. Moreover, the correspondence

 $(a,e) \mapsto a$

defines an isomorphism from $(\mathbf{K}(\mathbf{L}))^{-}$ onto \mathbf{L} .

We refer to $\mathbf{K}(\mathbf{L})$ as the *full twist-product* obtained from \mathbf{L} , and every subalgebra \mathbf{A} of $\mathbf{K}(\mathbf{L})$ containing the set $\{(a, e) : a \in L\}$ is called *a twist-product* obtained from \mathbf{L} . Thus if \mathbf{A} is a twist-product obtained from \mathbf{L} its negative cone is isomorphic to \mathbf{L} .

K-lattices, introduced in [8], are *e*-lattices satisfying equations (4), (6) and the distributive law of lattices when one of the variables is the neutral *e*. Thus NPc-lattices form a proper subvariety of the variety of K-lattices. But K-lattices are exactly those *e*-lattices that are isomorphic to a twist-product of their negative cone [8, Theorem 3.7]. As a particular case one can verify the following result:

THEOREM 3.2

If L is a Brouwerian algebra, then K(L) is an NPc-lattice. Moreover, for every NPc-lattice B, the application $\phi_B : B \to K(B^-)$ given by

$$x \mapsto (x \wedge e, \sim x \wedge e)$$

is an injective morphism.

As it is clear from the definition of the operations in the twist-products, each term γ in the language of NPc-lattices, with variables $x_1, \dots x_n$, can be uniquely identified with a couple of terms (γ^1, γ^2) in the language of Brouwerian algebras. A simple proof by induction on the complexity of γ yields the pair of terms. In details, let γ be a term in the language of NPc-lattices and assume that **A** is an NPc-lattice, that by Theorem 3.2 can be identified with a subalgebra of $\mathbf{K}(\mathbf{A}^-)$. Let $\gamma_{\mathbf{A}}$ be the corresponding term function from \mathbf{A}^n to **A**. If $\phi = \phi_{\mathbf{A}} : \mathbf{A} \to \mathbf{K}(\mathbf{A}^-)$ as in Theorem 3.2, for each $(a_1, a_2, \dots, a_n) \in A^n$ if $\phi(a_i) = (b_i, c_i)$ for every $i = 1, 2, \dots, n$, we get

$$\begin{aligned} \phi((\gamma_{\mathbf{A}})(a_1,...,a_n)) &= \gamma_{\mathbf{K}(\mathbf{A}^-)}(\phi(a_1),...,\phi(a_n))) \\ &= \gamma_{\mathbf{K}(\mathbf{A}^-)}((b_1,c_1),...,(b_n,c_n)) \\ &= (\gamma_{\mathbf{A}^-}^1(b_1,c_1,...,b_n,c_n),\gamma_{\mathbf{A}^-}^2(b_1,c_1,...,b_n,c_n)). \end{aligned}$$

We now proceed to prove a categorical equivalence between the category of NPc-lattices and residuated lattices morphims and a category whose objects are pairs of Brouwerian algebras and regular filters. The idea is to reformulate the characterization of N4-lattices given by Odintsov [26]

in terms of residuated lattices. In Section 6 of [8] it is proved that some varieties of *e*-lattices can be represented by pairs formed by a bounded integral residuated lattices and a lattice filter of it. But those ideas cannot be applied directly to the present case, since the lower bound of the residuated lattice plays a crucial role. Following Odintsov's notation [26], in the sequel we shall often denote with ∇ the regular filter of a Brouwerian algebra L used to build a twist-product.

THEOREM 3.3

Let L be a Brouwerian algebra and ∇ a regular filter of L. Then the subset

$$Tw(L,\nabla) = \{(a,b) \in L \times L : a \lor b \in \nabla\},\$$

of the NPc-lattice K(L) is a twist-product obtained from L, whose negative cone is isomorphic with L.

Moreover, if L' is another Brouwerian algebra and ∇' a regular filter in L', for each morphism $f: \mathbf{L} \to \mathbf{L}'$ satisfying $f(\nabla) \subseteq \nabla'$ we obtain an NPc-lattice morphism

$$\mathbf{f}: \mathbf{Tw}(\mathbf{L}, \nabla) \to \mathbf{Tw}(\mathbf{L}', \nabla')$$

given by $\mathbf{f}((a,b)) = (f(a), f(b))$.

PROOF. For the first part we prove that $B = Tw(L, \nabla)$ is the universe of a subalgebra of $\mathbf{K}(\mathbf{L})$ whose negative cone is isomorphic to \mathbf{L} , i.e., the operations are closed in B and $(a, e) \in B$ for each $a \in L$. Take $(a, b), (c, d) \in B$, then

- $(a,b) \sqcap (c,d) \in B$, as $(a,b) \sqcap (c,d) = (a \land c, b \lor d)$ and therefore $(a \land c) \lor (b \lor d) = (a \lor b \lor d) \land (c \lor d \lor b) \ge (a \lor b) \land (c \lor d) \in \nabla$.
- $(a,b) \sqcup (c,d) \in B$, as $(a,b) \sqcup (c,d) = (a \lor c, b \land d)$ and therefore $(a \lor c) \lor (b \land d) = (a \lor b \lor c) \land (a \lor c \lor d) \ge (a \lor b) \land (c \lor d) \in \nabla$.
- $(a,b) \cdot (c,d) \in B$, as $(a,b) \cdot (c,d) = (a \land c, (a \Rightarrow d) \land (c \Rightarrow b))$ and therefore

$$(a \land c) \lor ((a \Rightarrow d) \land (c \Rightarrow b)) =$$

= $(a \lor (a \Rightarrow d)) \land (c \lor (a \Rightarrow d)) \land (a \lor (c \Rightarrow b)) \land (c \lor (c \Rightarrow b))$
> $(a \lor (a \Rightarrow d)) \land (c \lor d) \land (a \lor b) \land (c \lor (c \Rightarrow b)) \in \nabla.$

- $\sim(a,b)\in B$, this is immediate as $\sim(a,b)=(b,a)$ and $b\vee a=a\vee b\in \nabla$.
- $(a,b) \rightarrow (c,d) \in B$, as $x \rightarrow y = \sim (x \cdot \sim y)$ in *e*-lattices.
- $(a, e) \in B$ for each $a \in L$, as $a \lor e = e \in \nabla$ (in particular $(e, e) \in B$).

Finally, assume \mathbf{L}' is another Brouwerian algebra with ∇' a regular filter in it, and take a morphism $f: \mathbf{L} \to \mathbf{L}'$ satisfying $f(\nabla) \subseteq \nabla'$. We will show that $\mathbf{f}(a,b) = (f(a),f(b))$ is well defined and is a morphism from $\mathbf{Tw}(\mathbf{L}, \nabla)$ to $\mathbf{Tw}(\mathbf{L}', \nabla')$. The condition $f(\nabla) \subseteq \nabla'$ guarantees that if $a \lor b \in \nabla$, then $f(a) \lor f(b) = f(a \lor b) \in \nabla'$, then **f** is well defined. From the fact that *f* is a morphism and the definition of the operations for $\mathbf{Tw}(\mathbf{L}, \nabla)$ and $\mathbf{Tw}(\mathbf{L}', \nabla')$, we obtain that **f** is an NPc-lattice morphism.

Now we will assign to each NPc-lattice **B** a pair composed by a Brouwerian algebra **L** and a regular filter ∇ such that $\mathbf{B} \cong \mathbf{Tw}(\mathbf{L}, \nabla)$. This is achieved by gluing the result of Theorem 3.2 and the following theorem:

THEOREM 3.4

Given a twist-product **B** obtained from **L**, the set $\nabla = \{a \lor b : (a, b) \in B\}$ is a regular filter in **L**, and

 $\mathbf{B} = \mathbf{Tw}(\mathbf{L}, \nabla).$

Moreover, let \mathbf{L}' be another Brouwerian algebra and \mathbf{B}' be a twist-product obtained from \mathbf{L}' . Let further $\pi_1: \mathbf{B}' \to \mathbf{L}'$ be the projection on the first coordinate, and $\nabla' = \{c \lor d : (c,d) \in B'\}$. Then for each NPc-lattice morphism $\mathbf{f}: \mathbf{B} \to \mathbf{B}'$ we obtain a Brouwerian morphism $f: \mathbf{L} \to \mathbf{L}'$ given by

$$f(a) = \pi_1(\mathbf{f}((a, e)))$$

that satisfies $f(\nabla) \subseteq \nabla'$.

PROOF. We first observe that if $a \in \nabla$, then there exists $b \le a$ such that $(a, b) \in B$. Indeed, if $a \in \nabla$ there exists $(c, d) \in B$ such that $a = c \lor d$, then $(c \lor d, c \land d) = (c, d) \sqcup \sim (c, d) \in B$ and taking $b = c \land d$ we obtain $b \le a$ and $(a, b) \in B$.

Now we show that ∇ is a regular filter.

- $e \in \nabla$, as $(e, e) \in B$ and $e = e \lor e$.
- if $a, c \in \nabla$, then $a \wedge c \in \nabla$. In fact, by the observation above there exist $b, d \in L$ such that $b \leq a, d \leq c$ and $(a, b), (c, d) \in B$. Then since (b, e), (d, e) are also in $B, (b \wedge d, e) \in B$ and

$$(a,b)\sqcap((a,b)\to (b\land d,e)) = (a,b)\sqcap((a \Rightarrow (b\land d))\land b,a)$$
$$= (a,b)\sqcap(b\land (a \Rightarrow d),a)$$
$$= (b\land d,a),$$

we have $(b \land d, a) \in B$, and similarly $(b \land d, c) \in B$. Finally $(b \land d, a \land c) = (b \land d, a) \sqcup (b \land d, c) \in B$ and as $b \land d \leq a \land c$ we obtain $a \land c \in \nabla$.

- if a ∈ ∇ and c ≥ a, again from the observation there exists b ≤ a such that (a,b) ∈ B, and as we also have (c,e) ∈ B, we obtain (c,b)=(a,b) ⊔(c,e) ∈ B, and as b ≤ a ≤ c, we get c=c ∨ b ∈ ∇.
- if $a, b \in L$, then $a \lor (a \Rightarrow b) \in \nabla$, as $(a, e), (b, e) \in B$ and $(a \Rightarrow b, a) = (a, e) \to (b, e) \in B$.

For the next part, observe that if $\tilde{B} = \{(a,b) \in L \times L : a \lor b \in \nabla\}$, then it is clear that $B \subseteq \tilde{B}$. For the other inclusion take $(a,b) \in \tilde{B}$ with $a,b \in L$. Since *B* is an algebra that contains all the elements of the form (x,e) with $x \in L$ we have that (e,b) and (e,a) are in *B*. Then the element $(a \Rightarrow b,a) = (e,b) \Rightarrow (e,a)$ is also in *B*. From the definition of ∇ there exists $(c,d) \in B$ such that $a \lor b = c \lor d$. Hence $(c,d) \sqcap (d,c) = (c \lor d, c \land d) = (a \lor b, c \land d)$ is also in *B*. Then

$$(a \lor b, c \land d) \sqcap (a \Rightarrow b, a) \sqcap (e, b) = ((a \land (a \Rightarrow b)) \lor (b \land (a \Rightarrow b)), a \lor b)$$
$$= (b, a \lor b),$$

so $(b, a \lor b) \in B$ and similarly $(a, a \lor b) \in B$. From this we obtain $(a \land b, a \lor b) \in B$, and as $(b, a) = (a \lor b, a \land b) \sqcap (a \Rightarrow b, a) \in B$, we get what we wanted.

For the last part, take L' another Brouwerian algebra, B' a twist-product obtained from L' and $\mathbf{f}: \mathbf{B} \to \mathbf{B}'$ an NPc-lattice morphism. As \mathbf{f} sends negative cones to negative cones, f is well defined from L to L', and it is also clear that it is a lattice morphism and f(e) = e. We now check that it also preserves implication, define c = f(a), d = f(b), then

$$f(a \Rightarrow b) = \pi_1(\mathbf{f}(a \Rightarrow b, e)) = \pi_1(\mathbf{f}(((a, e) \to (b, e)) \sqcap (e, e)))$$
$$= \pi_1((\mathbf{f}(a, e) \to \mathbf{f}(b, e)) \sqcap \mathbf{f}(e, e))$$
$$= \pi_1(((c, e) \to (d, e)) \sqcap (e, e)) = \pi_1(c \Rightarrow d, e)$$
$$= f(a) \Rightarrow f(b).$$

Finally, if $\nabla' = \{c \lor d : (c,d) \in B'\}$, taking $a \lor b \in \nabla$ define $(c,d) = \mathbf{f}(a,b) \in B'$ and observe that

$$\mathbf{f}(a \lor b, e) = \mathbf{f}(((a, b) \sqcup \sim (a, b)) \sqcap (e, e))$$
$$= (\mathbf{f}(a, b) \sqcup \sim \mathbf{f}(a, b)) \sqcap \mathbf{f}(e, e)$$
$$= ((c, d) \sqcup (d, c)) \sqcap (e, e)$$
$$= (c \lor d, e),$$

so $c \lor d = \pi_1(\mathbf{f}(a \lor b, e)) = f(a \lor b)$, and thus $f(\nabla) \subseteq \nabla'$.

THEOREM 3.5

Let **B** be an NPc-lattice. Then the set $\nabla = \{(x \lor \sim x) \land e : x \in B\}$ is a regular filter in **B**⁻, and

 $\mathbf{B} \cong \mathbf{Tw}(\mathbf{B}^-, \nabla).$

Moreover, if **B**' is another NPc-lattice, for each NPc-lattice morphism $\mathbf{f}: \mathbf{B} \to \mathbf{B}'$ we obtain a Brouwerian morphism $f: \mathbf{B}^- \to (\mathbf{B}')^-$ given by $f = \mathbf{f}|_{\mathbf{B}^-}$, that satisfies $f(\nabla) \subseteq \nabla'$, where $\nabla' = \{(y \lor \sim y) \land e: y \in B'\}$.

PROOF. As $\mathbf{B} \cong \phi_{\mathbf{B}}(\mathbf{B})$, and the latter is a twist-product of \mathbf{B}^- (and \mathbf{B}^- is a Brouwerian algebra), the set

$$\nabla = \{\pi_1(\phi_{\mathbf{B}}(x)) \lor \pi_2(\phi_{\mathbf{B}}(x)) : x \in B\}$$
$$= \{(x \land e) \lor (\sim x \land e) : x \in B\}$$
$$= \{(x \lor \sim x) \land e : x \in B\}$$

is a regular filter in \mathbf{B}^- and

$$\phi_{\mathbf{B}}(\mathbf{B}) = \mathbf{Tw}(\mathbf{B}^{-}, \nabla).$$

For the second part, if $\mathbf{f}: \mathbf{B} \to \mathbf{B}'$ is an NPc-lattice morphism, it maps negative cones into negative cones, so *f* is well defined. To check that it is a Brouwerian algebra morphism only need to see that $f(x \Rightarrow_e y) = f(x) \Rightarrow_e f(y)$. To see this, let $x, y \in B^-$,

$$f(x \Rightarrow_{e} y) = \mathbf{f}(x \Rightarrow_{e} y) = \mathbf{f}((x \Rightarrow y) \land e)$$

= $(\mathbf{f}(x) \Rightarrow \mathbf{f}(y)) \land e = \mathbf{f}(x) \Rightarrow_{e} \mathbf{f}(y)$
= $f(x) \Rightarrow_{e} f(y).$

Finally, to check that $f(\nabla) \subseteq \nabla'$, if $(x \lor \sim x) \land e \in \nabla$, then it is clear that if $y = \mathbf{f}(x) \in B'$,

$$f((x \lor \sim x) \land e) = \mathbf{f}((x \lor \sim x) \land e)$$

= (\mathbf{f}(x) \lor \circ \mathbf{f}(x)) \lappa \end{aligned} = (y \lor \circ y) \lappa \end{aligned} \end{aligned}.

We now obtain a categorical equivalence. Consider the category \mathbb{NPC} of NPc-lattices together with NPc-lattice morphisms, and the category \mathbb{BF} that has as objects pairs of the form (\mathbf{L}, ∇) where \mathbf{L} is a Brouwerian algebra and $\nabla \subseteq L$ is a regular filter, and as arrows $f : (\mathbf{L}, \nabla) \rightarrow (\mathbf{L}', \nabla')$ such that $f : \mathbf{L} \rightarrow \mathbf{L}'$ is a Brouwerian morphism that satisfies $f(\nabla) \subseteq \nabla'$.

THEOREM 3.6 The functor $F : \mathbb{BF} \to \mathbb{NPC}$ that acts on objects as

$$F((\mathbf{L},\nabla)) = \mathbf{Tw}(\mathbf{L},\nabla)$$

and on arrows, for $f:(\mathbf{L},\nabla) \to (\mathbf{L}',\nabla')$ obtaining $F(f): \mathbf{Tw}(\mathbf{L},\nabla) \to \mathbf{Tw}(\mathbf{L}',\nabla')$ given by

$$F(f)(x, y) = (f(x), f(y)),$$

gives an equivalence of categories.

PROOF. *F* is well defined from Theorems 3.3 and 3.4, and it is clearly functorial, as $F(\mathrm{id}_{(\mathbf{L},\nabla)}) = \mathrm{id}_{F((\mathbf{L},\nabla))}$, and for arrows $g:(\mathbf{L},\nabla) \to (\mathbf{L}',\nabla') \to (\mathbf{L}'',\nabla'')$, if $(x,y) \in \mathrm{Tw}(\mathbf{L},\nabla)$,

$$F(f \circ g)(x, y) = (f \circ g(x), f \circ g(y))$$

= $F(f)(g(x), g(y))$
= $F(f) \circ F(g)(x, y).$

Now, to prove it is an equivalence of categories, we will prove that *F* is full, faithful and essentially surjective:

- **full.** Let $\mathbf{f}: \mathbf{Tw}(\mathbf{L}, \nabla) \to \mathbf{Tw}(\mathbf{L}', \nabla')$ be an NPc-lattice morphism. Take $f(x) = \pi_1(\mathbf{f}(x, e))$, for $x \in L$. From Theorem 3.4, it is a morphism from (\mathbf{L}, ∇) to (\mathbf{L}', ∇') , let us see now that $\mathbf{f} = F(f)$. In the negative cone, it is clear that $\mathbf{f}(x, e) = (f(x), e) = F(f)(x, e)$. Then, as they are NPc-lattice morphisms, they must be equal everywhere. Indeed, if $\mathbf{g}, \mathbf{h}: \mathbf{B} \to \mathbf{B}'$ are NPc-lattice morphisms such that $\mathbf{g}(x \wedge e) = \mathbf{h}(x \wedge e)$, for each $x \in B$, then if $y = \mathbf{g}(x)$ and $z = \mathbf{h}(x)$, from $y \wedge e = \mathbf{g}(x \wedge e) = \mathbf{h}(x \wedge e) = x \wedge e$ and $\sim y \wedge e = \mathbf{g}(\sim x \wedge e) = \mathbf{h}(\sim x \wedge e) = \sim z \wedge e$ we obtain y = z, as NPc-lattices satisfy the quasiequation (7).
- faithful. If F(f): $\mathbf{Tw}(\mathbf{L}, \nabla) \to \mathbf{Tw}(\mathbf{L}', \nabla')$ and F(g): $\mathbf{Tw}(\mathbf{L}, \nabla) \to \mathbf{Tw}(\mathbf{L}', \nabla')$ satisfy F(f) = F(g), in particular they coincide on the negative cone, (f(x), e) = F(f)(x, e) = F(g)(x, e) = (g(x), e) for all $x \in L$, so f = g.
- essentially surjective. From Theorem 3.5, every object **B** on \mathbb{NPC} satisfies $\mathbf{B} \cong \mathbf{Tw}(\mathbf{B}^-, \nabla)$.

LEMMA 3.7 In the category \mathbb{BF} , finite products are given coordinatewise. That is, if $(\mathbf{L}_1, \nabla_1), \dots, (\mathbf{L}_n, \nabla_n)$ are objects in \mathbb{BF} , then

$$\prod_{i=1}^{n} (\mathbf{L}_{i}, \nabla_{i}) \cong \left(\prod_{i=1}^{n} \mathbf{L}_{i}, \prod_{i=1}^{n} \nabla_{i} \right),$$

where $\prod_{i=1}^{n} L_i$ and $\prod_{i=1}^{n} \nabla_i$ are products in the category of Brouwerian algebras (filters are subalgebras, products are defined as set-products with operations defined pointwise), and projections coincide with the projections in $\prod_{i=1}^{n} L_i$.

PROOF. It suffices to prove the result for n=2. Let $(L_1, \nabla_1), (L_2, \nabla_2)$ be objects in \mathbb{BF} , take $L=L_1 \times L_2$, $\nabla = \nabla_1 \times \nabla_2$ and $\pi_i = \pi_i^L$, where π_i^L is the projection from *L* onto L_i , for i=1,2. Clearly ∇ is a filter and contains all the dense elements, as operations are given coordinatewise. Then π_1, π_2 are clearly

morphisms in \mathbb{BF} , as they are morphisms in the category \mathbb{B} of Brouwerian algebras, and besides $\pi_i(\nabla) = \pi_i^L(\nabla_1 \times \nabla_2) = \nabla_i$.

Let (L', ∇') be another object in \mathbb{BF} and take $f_i: (L', \nabla') \to (L_i, \nabla_i)$ morphisms. Define $f: L' \to L$ by $f(x') = (f_1(x'), f_2(x'))$ for $x' \in L'$, we will show that it is a morphism in \mathbb{BF} and that $\pi_i \circ f = f_i$. The fact that it is a morphism in \mathbb{B} and that $\pi_i \circ f = f_i$ follow from the fact that L is the product of L_1 and L_2 in the category of Brouwerian algebras, we only need to show that it is a morphism in \mathbb{BF} . To see this, observe that $f(\nabla') = \{(f_1(x'), f_2(x')): x' \in L'\} \subseteq f_1(\nabla') \times f_2(\nabla')$, but as $f_i(\nabla') \subseteq \nabla_i$, we obtain that $f(\nabla') \subseteq \nabla_1 \times \nabla_2 = \nabla$.

THEOREM 3.8

In the category NPC, finite products are characterized as follows: let $\mathbf{B}_1, ..., \mathbf{B}_n$ be objects in NPC and for each *i*, let ∇_i be the regular filter in B_i^- such that $\mathbf{B}_i \cong \mathbf{Tw}(\mathbf{B}_i^-, \nabla_i)$. Then

$$\prod_{i=1}^{n} \mathbf{B}_{i} \cong \mathbf{Tw}\left(\prod_{i=1}^{n} \mathbf{B}_{i}^{-}, \prod_{i=1}^{n} \nabla_{i}\right).$$

PROOF. This follows from Lemma 3.7 and the fact that \mathbb{NPC} and \mathbb{BF} are categorically equivalent.

4 Gödel hoops and Gödel NPc-lattices

A Gödel hoop is a Brouwerian algebra satisfying the prelinearity equation $(x \Rightarrow y) \lor (y \Rightarrow x) = e$. Every linearly ordered set can be equipped with a structure of Gödel hoop in a unique way. We denote by $[0,1]_{\mathbf{G}}$ the Gödel hoop on [0,1] and by \mathbf{G}_n the finite linearly ordered Gödel hoop with *n* elements. Gödel hoops form a variety that is generated by $[0,1]_{\mathbf{G}}$. Given a Gödel hoop $\mathbf{G} = (G, \lor, \land, \ast, \Rightarrow, e)$ and a new element \bot , we extend operations of \mathbf{G} on $G \cup \{\bot\}$ by setting \bot smaller than all the elements of *G* and $x \ast \bot = \bot = \bot \ast \bot = \bot \ast x, x \Rightarrow \bot = \bot, \bot \Rightarrow x = e = \bot \Rightarrow \bot$ for every $x \in G$. Then $\mathbf{G}_{\bot} = (G \cup \{\bot\}, \lor, \land, \ast, \Rightarrow, e)$ is a Gödel hoop which is lower bounded.

DEFINITION 4.1 A Gödel NPc-lattice is a NPc-lattice satisfying the equation

$$(((x \land e) \rightarrow y) \lor ((y \land e) \rightarrow x)) \land e = e.$$

Then, as a consequence of Theorem 3.6 we have the following.

THEOREM 4.2

The restriction of the functor F to the category \mathbb{GHF} of pairs consisting of Gödel hoops and regular filters, gives an equivalence of categories between \mathbb{GHF} and the full subcategory \mathbb{GNPC} of \mathbb{NPC} having Gödel NPc-lattices as objects.

4.1 Duality for Gödel hoops

In [1] it is shown that the category of finite Gödel hoops is dually equivalent to the category \mathcal{T}_{fin} of finite trees and open maps. We recall here some details of such construction. A *forest* is a poset *F* such that $\downarrow x = \{y \in F \mid y \leq x\}$ is totally ordered for any $x \in F$. If *P* is a poset, by P_{\perp} we denote the poset obtained by adding a new bottom element \perp to *P*. A *tree* is a forest with a minimum element

(the *root* of the tree), hence for each forest F, F_{\perp} is a tree. We hence denote by \emptyset_{\perp} the singleton tree only consisting of its root. Given a tree T we denote by T^{\uparrow} the unique forest such that $T = (T^{\uparrow})_{\perp}$.

A downset (i.e. a downward closed set) of a forest (tree) is itself a forest (tree), and we shall call it a *subforest* (*subtree*) of F.

Given two forests *F* and *G*, an order preserving map $f : F \to G$ is *open* if $x' \le f(x)$ in *G* implies that there exists $y \le x$ in *F* such that f(y) = x'. Open maps carry downsets to downsets.

We denote by \mathcal{F}_{fin} and \mathcal{T}_{fin} the category of finite forests and finite trees, respectively, with open maps.

In \mathcal{F}_{fin} the coproduct, denoted by + from here on, is just the disjoint union, whereas in \mathcal{T}_{fin} it is given by

$$S \oplus T \cong \left(S^{\uparrow} + T^{\uparrow} \right)_{\perp}$$

(i.e. all roots merge in a single root). It is clear that \emptyset_{\perp} is the neutral element of the coproduct (that is, the initial object) in \mathcal{T}_{fin} .

Given two trees S and T, their product in the category \mathcal{T}_{fin} of finite trees coincide with the product in the category \mathcal{F}_{fin} of finite forests, and it can be calculated by the following recursive laws [2]:

- $\emptyset_{\perp} \times T \cong T$ (i.e. \emptyset_{\perp} is the neutral element of the product, being the terminal object, in both \mathcal{T}_{fin} and \mathcal{F}_{fin});
- $S \times T \cong (S^{\uparrow} \times T + S^{\uparrow} \times T^{\uparrow} + S \times T^{\uparrow})_{\perp};$
- If F, G, H are finite forests, $(F+G) \times H \cong (F \times H) + (G \times H)$.

Then the projection maps π_S and π_T are recursively defined as follows (we focus on π_S , the other projection being analogous): if $x \in S \times T$ then either x is the root of $S \times T$ and in this case we set $\pi_S(x)$ equal to the root of S, or $x \in S^{\uparrow} \times T + S^{\uparrow} \times T^{\uparrow} + S \times T^{\uparrow}$. In turns, if $x \in S^{\uparrow} \times T + S^{\uparrow} \times T^{\uparrow}$ then we set $\pi_S(x) = \iota_S(\pi_{S^{\uparrow}}(x))$, where ι_S is the inclusion function of S^{\uparrow} in S and $\pi_{S^{\uparrow}}$ is the projection function of $S^{\uparrow} \times T$ or $S^{\uparrow} \times T^{\uparrow}$. If $x \in S \times T^{\uparrow}$ then $\pi_S(x)$ coincides with the projection function in S of the product $S \times T^{\uparrow}$.

Note that an atom x of $S \times T$ satisfies that either $\pi_S(x)$ is the root of S and $\pi_T(x)$ is an atom of T, or $\pi_S(x)$ is an atom of S and $\pi_T(x)$ is the root of T; or both $\pi_S(x)$ and $\pi_T(x)$ are atoms of S and T respectively.

THEOREM 4.3

[1] The category \mathcal{T}_{fin} is dually equivalent to the category \mathbb{GH}_{fin} of finite Gödel hoops and (Brouwerian) morphisms.

The duality is given by the functor Spec^{*} that sends a Gödel hoop **L** to its prime filter tree (Spec(**L**))_⊥ (identifying *L* with the root of the tree, that is Spec^{*}(*L*)={ $\mathfrak{p}:\mathfrak{p}$ is a prime filter of *L* or $\mathfrak{p}=L$ }), and given a morphism $f: \mathbf{L} \to \mathbf{L}'$, its image under the functor is $f^{-1}:(\text{Spec}(\mathbf{L}'))_{\perp} \to (\text{Spec}(\mathbf{L}))_{\perp}$.

We recall from [1, Thm. 4.3.1] that the free Gödel hoop $\text{Free}_{\mathbb{GH}}(n)$ over *n* generators is inductively defined as follows: $\text{Free}_{\mathbb{GH}}(1) = \mathbf{G}_2$ and

$$\operatorname{Free}_{\mathbb{GH}}(n) = \prod_{i=0}^{n-1} \operatorname{Free}_{\mathbb{GH}}(i)^{\binom{n}{i}}_{\perp}.$$
(12)

Finally, from [1, Theorem 4.3.1] we have that the dual of the free Gödel hoop over *n* generators

$$H_n = \operatorname{Spec}^*(\operatorname{Free}_{\mathbb{GH}}(n))$$

FIGURE 1. A tree and all of its atomic upward closed subtrees.

is given by $H_0 = \emptyset_{\perp}$ and

$$H_n = \left(\sum_{i=0}^{n-1} \binom{n}{i} H_i\right)_{\perp},$$

where the sum here is taken as the coproduct in forest (*i.e.* the disjoint union).

4.2 Duality for Gödel NPc-lattices

To establish a duality for Gödel NPc-lattices, we will introduce another category, consisting of pairs of trees, as follows.

DEFINITION 4.4

Given a finite tree T, a subtree t of T is an **atomic upward closed** subtree of T if t contains the root of T and whenever an atom a of T belongs to t and $b \in T$ with $b \ge a$, then $b \in t$.

We consider the following category denoted by $\mathcal{T}_{t,fin}$: objects are pairs (T, t) where T is a finite tree and t is an atomic upward closed subtree of T; arrows $\phi: (T, t) \to (T', t')$ are open maps $\phi: T \to T'$ such that $\phi(t) \subseteq t'$.

In contrast with general embeddings of subtrees, note that if T is a tree and t is another tree embeddable in T in such a way that its image is an atomic upward closed subtree of T, then this embedding is unique up to isomorphism. See Fig. 1 and Fig. 2 for examples. Notice further that given a tree T, the only atomic upward closed subtrees of T_{\perp} are \emptyset_{\perp} (that is the root of T_{\perp}) and T_{\perp} itself.

THEOREM 4.5

 $\mathcal{T}_{t,fin}$ is the dual of the category \mathbb{GNPC}_{fin} of finite Gödel NPc-lattices.

PROOF. Since \mathbb{GNPC}_{fin} is equivalent to the category \mathbb{GHF}_{fin} of pairs of finite Gödel hoops and regular filters (Theorem 4.2), it is enough to see the duality of $\mathcal{T}_{t,fin}$ and \mathbb{GHF}_{fin} . As the functor Spec^{*} gives the dual isomorphism with \mathbb{GH}_{fin} , we only need to check that it is well-behaved with respect to atomic upward closed subtrees and regular filters.

Given a regular filter ∇ , define

$$t(\nabla) = \{ \mathfrak{p} \in \operatorname{Spec}(L) : \exists \mathfrak{m} \in \operatorname{Spec}(L), \nabla \subseteq \mathfrak{m}, \mathfrak{p} \subseteq \mathfrak{m} \}_{\perp},\$$

(observe that if $\nabla = L$, then $t(\nabla) = \emptyset_{\perp} = \{L\}$). Clearly $t(\nabla)$ is an atomic upward closed subtree of Spec^{*}(*L*) with the order \supseteq (the filters m are the maximals of *L* or all of *L*, i.e. they are atoms or the root of Spec^{*}(*L*)). From Corollary 2.4, one can recover ∇ from $t(\nabla)$,

 $\nabla = \cap \{ \mathfrak{m} \in t(\nabla) : \mathfrak{m} \text{ is the root or an atom of } t(\nabla) \}.$

We now define

$$\operatorname{Spec}^{*}(\mathbf{L}, \nabla) = (\operatorname{Spec}^{*}(\mathbf{L}), t(\nabla)).$$

We still need to check that it is well-behaved with respect to arrows. Let $f: L \to L'$ be a (Brouwerian) morphism and let ∇, ∇' be regular filters in L and L', respectively. We will check that $f(\nabla) \subseteq \nabla'$ if and only if $f^{-1}(t(\nabla')) \subseteq t(\nabla)$, so Spec^{*} sends arrows in \mathbb{GF}_{fin} into arrows in $\mathcal{T}_{t,fin}$, and vice-versa.

If f(∇) ⊆ ∇', then ∇ ⊆ f⁻¹(∇'). Now if p' ∈ t(∇'), we should check that f⁻¹(p') ∈ t(∇). This is clear if p' is the root or an atom of t(∇'), as ∇' ⊆ p' so by hypothesis f(∇) ⊆ p', which in turn gives ∇ ⊆ f⁻¹(p') and therefore f⁻¹(p') ∈ t(∇) (as f⁻¹ is an open map, f⁻¹(p') is the root or an atom of Spec*(L')). Now, if p' is not the root or an atom, let m' be the unique atom (maximal filter) such that p' ⊆ m'. As m' ∈ t(∇') is an atom, we just proved that f⁻¹(m') ∈ t(∇), but as f⁻¹(p') ⊆ f⁻¹(m') the fact that t(∇) is an atomic upward closed subtree gives us f⁻¹(p') ∈ t(∇).
If f⁻¹(t(∇')) ⊆ t(∇), we need to check that f(∇) ⊆ ∇', or equivalently that ∇ ⊆ f⁻¹(∇'). As

 $\nabla' = \cap \{\mathfrak{m}' \in t(\nabla') : \mathfrak{m}' \text{ is the root or an atom of } t(\nabla')\},\$

we have that

$$f^{-1}(\nabla') = \bigcap \{ f^{-1}(\mathfrak{m}') : \mathfrak{m}' \text{ is the root or an atom of } t(\nabla') \}.$$

By hypothesis, each of these \mathfrak{m}' satisfies $f^{-1}(\mathfrak{m}') \in t(\nabla)$, and as they are the root or an atom of $t(\nabla)$ (f^{-1} being an open map), we have $\nabla \subseteq f^{-1}(\mathfrak{m}')$ and we conclude $\nabla \subseteq f^{-1}(\nabla')$.

The functor $S: \mathbb{GNPC}_{fin} \to \mathcal{T}_{t,fin}$ obtained as composition of $F^{-1}:\mathbb{GNPC}_{fin} \to \mathbb{GHF}_{fin}$ of Theorem 4.2 and Spec^{*}: $\mathbb{GHF}_{fin} \to \mathcal{T}_{t,fin}$ is the desired duality.

In the category $T_{t,fin}$, the coproduct is given coordinatewise, i.e.

$$(S,s) \oplus (T,t) \cong (S \oplus T, s \oplus t).$$

This fact can be easily proven directly, but it is also a consequence of Theorem 3.8.

To define the product in the category $\mathcal{T}_{t,fin}$, first observe that for any (S,s) in $\mathcal{T}_{t,fin}$

$$(S,s) \times (\emptyset_{\perp}, \emptyset_{\perp}) \cong (S,s)$$

as $(\emptyset_{\perp}, \emptyset_{\perp})$ is the terminal object in $\mathcal{T}_{t, fin}$. Now set, for every other (T, t) in $\mathcal{T}_{t, fin}$,

$$r = \left(\left(s^{\uparrow} \times T \right) + \left(s^{\uparrow} \times t^{\uparrow} \right) + \left(S \times t^{\uparrow} \right) \right)_{\perp}$$

and we are going to prove that

$$(S,s) \times (T,t) \cong (S \times T,r)$$

PROPOSITION 4.6

With the notation as before, r is an atomic upward closed subtree of $S \times T$.

FIGURE 2. The dual in \mathbb{GH}_{fin} of the tree in Figure 1 and all of its regular filters, in correspondence to its atomic upward closed subtrees.

PROOF. Clearly *r* is a subtree of $S \times T$ and the set of atoms of *r* is $\{a \in r \mid a \text{ is an atom of } S \times T\}$.

Let us denote by a^0 and b^0 the roots of *S* and *T* (hence of *s* and *t*) and by a_1^1, \ldots, a_n^1 and b_1^1, \ldots, b_m^1 the atoms of *s* and *t*, respectively. If *x* is an atom of $S \times T$ and $x \in r$, then *x* is the root of a tree in one of the forests $s^{\uparrow} \times T$ or $s^{\uparrow} \times t^{\uparrow}$ or $S \times t^{\uparrow}$. Suppose *x* is the root of a tree in $s^{\uparrow} \times T$ hence the root of a tree in $S^{\uparrow} \times T$. Then $\pi_T(x) = b^0$ while $\pi_S(x) = a_i^1$ for some $i \in \{1, \ldots, n\}$. Now if $y \ge x$ and $y \in S \times T$, then it must be $\pi_T(y) \ge b^0$ and $\pi_S(y) \ge a_i^1$, hence $\pi_T(y) \in T$ and $\pi_S(y) \in s^{\uparrow}$ and so $y \in s^{\uparrow} \times T \subseteq r$. The other cases are similar, hence *r* is an atomic upward closed subtree of $S \times T$.

THEOREM 4.7 $(S \times T, r)$ is the product of (S, s) and (T, t) in the category $\mathcal{T}_{t,fin}$.

PROOF. Note that the projection map $\pi_S: S \times T \to S$ is such that $\pi_S(r) \subseteq s$, hence it is a map in the category $\mathcal{T}_{t,fin}$ and we set $\pi_{(S,s)} = \pi_S$. Analogously, we set $\pi_{(T,t)} = \pi_T$.

The proof follows by the properties of product in the category T_{fin} .

5 Free GNPc-lattices

THEOREM 5.1

Let $[0,1]_{\mathbf{G}}$ denote the standard Gödel hoop over the real interval [0,1]. The variety \mathbb{GNPC} of Gödel NPc-lattices is generated by the full twist product $\mathbf{K}([0,1]_{\mathbf{G}})$.

PROOF. We have to prove that given two terms τ, γ in the language of NPc-lattices, an equation $\tau = \gamma$ holds in GNPC if and only if it holds in $\mathbf{K}([0, 1]_{\mathbf{G}})$. One direction is immediate, since $\mathbf{K}([0, 1]_{\mathbf{G}}) \in \mathbb{GNPC}$. For the other direction, recall that if $\tau(x_1, \dots, x_n)$ is a term in the language of NPc-lattices there are unique terms τ^1, τ^2 in the language of Gödel hoops such that if $\mathbf{A} \in \mathbb{GNPC}$, then replacing x_i by the pair of variables (y_i, z_i) we get

$$\tau_{\mathbf{K}(\mathbf{A}^{-})}(x_1,...,x_n) = \tau_{\mathbf{K}(\mathbf{A}^{-})}((y_1,z_1),...(y_n,z_n))$$

and

$$\pi_{\mathbf{K}(\mathbf{A}^{-})}((y_1, z_1), \dots, (y_n, z_n)) = (\tau_{\mathbf{A}^{-}}^1(y_1, z_1, \dots, y_n, z_n), \tau_{\mathbf{A}^{-}}^2(y_1, z_1, \dots, y_n, z_n)).$$

Now assume that $\tau = \gamma$ does not hold in \mathbb{GNPC} and let $\tau^1, \tau^2, \gamma^1, \gamma^2$ be the corresponding terms in the language of Gödel hoops. Then there is an algebra **A** in \mathbb{GNPC} and elements $a_1, \ldots, a_n \in A$ such that

$$\tau_{\mathbf{A}}(a_1,\ldots,a_n)\neq \gamma_{\mathbf{A}}(a_1,\ldots,a_n).$$

Since **A** can be identified with a subalgebra of the full twist-product **K**(**A**⁻) (see Theorem 3.2) there are elements $b_1, c_1, b_2, c_2, ..., b_n, c_n \in A^-$ such that if $a_i = (b_i, c_i)$ for each i = 1, ..., n one of the equations

$$\tau_{\mathbf{A}^{-}}^{1}(b_{1},c_{1}...,b_{n},c_{n}) = \gamma_{\mathbf{A}^{-}}^{1}(b_{1},c_{1}...,b_{n},c_{n})$$

or

$$\tau_{\mathbf{A}^{-}}^{2}(b_{1},c_{1}...,b_{n},c_{n}) = \gamma_{\mathbf{A}^{-}}^{2}(b_{1},c_{1}...,b_{n},c_{n})$$

does not hold in A^- . But since A^- is in the variety of Gödel hoops and this variety is generated by $[0,1]_{\mathbf{G}}$, we can assert that there are elements $f_1, g_1, \dots, f_n, g_n$ in $[0,1]_{\mathbf{G}}$ such that either

$$\tau_{\mathbf{A}^{-}}^{1}(f_{1},g_{1},\ldots,f_{n},g_{n})\neq\gamma_{\mathbf{A}^{-}}^{1}(f_{1},g_{1},\ldots,f_{n},g_{n})$$

or

$$\tau_{\mathbf{A}^{-}}^{2}(f_{1},g_{1},\ldots,f_{n},g_{n})\neq \gamma_{\mathbf{A}^{-}}^{2}(f_{1},g_{1},\ldots,f_{n},g_{n}).$$

Take $d_i = (f_i, g_i) \in ([0, 1]_{\mathbf{G}})^2$ and $\mathbf{B} = \mathbf{K}([0, 1]_{\mathbf{G}})$ and we get

$$\tau_{\mathbf{B}}(d_1,\ldots,d_n)\neq \gamma_{\mathbf{B}}(d_1,\ldots,d_n).$$

Therefore the equation $\tau = \gamma$ does not hold in **K**([0,1]_{**G**}).

The following is a well known result of universal algebra.

Theorem 5.2

([11, Chapter IV, Theorem 3.13]) If a variety \mathcal{V} of algebras is generated by an algebra \mathbf{A} , then the free algebra in \mathcal{V} with α generators is isomorphic to the subalgebra of functions $f : \mathbf{A}^{\alpha} \to \mathbf{A}$ generated by the projection functions.

5.1 The case of one generator

We intend to use Theorem 5.1 and Theorem 5.2 to describe the free Gödel NPc-lattice with one generator $\text{Free}_{\mathbb{GNPC}}(1)$.

Now, the carrier of $\mathbf{K}([0,1]_{\mathbf{GH}})$ is just $[0,1]^2$, so we have to characterize exactly the class of functions $\{f : [0,1]^2 \rightarrow [0,1]^2\}$ generated, with the pointwise operations of $\mathbf{K}([0,1]_{\mathbf{GH}})$, by the identity function $(a,b) \mapsto (a,b)$. This is equivalent to the determination of all functions $f : [0,1]^2 \rightarrow [0,1]^2$ such that there is a term τ in one variable such that $f(a,b) = \tau(a,b)$ for all $(a,b) \in [0,1]^2$. We first prove some necessary results taking finite subalgebras of the Gödel hoop [0,1]:

Lemma 5.3

Consider the three-element Gödel chain $G_3 = \{a, b, 1\}$ with a < b < 1. Then the Gödel NPc-lattices respectively generated by the elements (a, b) or (b, a), *i.e.* the smallest subalgebras of the full-twist $\mathbf{K}(G_3)$ respectively containing the elements (a, b) or (b, a), are in both cases $\mathbf{Tw}(G_3, \{b, 1\})$, whose carrier is $K(G_3) \setminus \{(a, a)\}$. Moreover, they coincide with the Gödel NPc-lattice generated by the elements (a, 1) and (b, 1).

PROOF. First notice that the carrier of $\mathbf{Tw}(\mathbf{G}_3, \{b, 1\})$ is clearly $K(\mathbf{G}_3) \setminus \{(a, a)\}$. Let us focus on (a, b) and let $\langle (a, b) \rangle$ be the subalgebra generated by (a, b). As $K(\mathbf{G}_3) \setminus \{(a, a)\}$ is a subalgebra and contains the element (a, b), for it is the twist-product $\mathbf{Tw}(\mathbf{G}_3, \nabla)$ with $\nabla = \{b, 1\}$, it only remains to be shown that every element of $K(\mathbf{G}_3)$ different from (a, a) belongs to $\langle (a, b) \rangle$.

- $(1,1), (a,b) \in \langle (a,b) \rangle$ trivially.
- $(b,a) \in \langle (a,b) \rangle$, as $(b,a) = \sim (a,b)$.
- $(a, 1) \in \langle (a, b) \rangle$, as $(a, 1) = (a, b) \sqcap (1, 1)$.
- $(1,a) \in \langle (a,b) \rangle$, as $(1,a) = \sim (a,1)$.
- $(b,1) \in \langle (a,b) \rangle$, as $(b,1) = (b,a) \sqcap (1,1)$.
- $(1,b) \in \langle (a,b) \rangle$, as $(1,b) = \sim (b,1)$.
- $(b,b) \in \langle (a,b) \rangle$, as $(b,b) = (a,b) \sqcup (b,1)$.

For the other part, $(a, 1), (b, 1) \in \langle (a, b) \rangle$, and as $(b, 1) \rightarrow (a, 1) = (a, b)$, the result follows. The case $\langle (b, a) \rangle$ is promptly settled by noticing that $(a, b) = \sim (b, a)$.

Lemma 5.4

Consider the two-element Gödel chain $G_2 = \{a, 1\}$ with a < 1. Then:

- (1) The Gödel NPc-lattice generated by the element (a, a) is $K(G_2)$.
- (2) The smallest subalgebras of the full-twist $\mathbf{K}(\mathbf{G}_2)$ generated either by the element (a, 1) or by (1,a), are both isomorphic with $\mathbf{Tw}(\mathbf{G}_2, \{1\})$ whose carrier is $K(\mathbf{G}_2) \setminus \{(a,a)\}$.

PROOF. 1) Just notice that $(a, a) \sqcap (1, 1) = (a, 1)$ and $(a, a) \sqcup (1, 1) = (1, a)$.

2) As in Lemma 5.3, $(a,a) \notin \langle (a,1) \rangle$. The rest follows trivially by $(1,a) = \sim (a,1)$. Clearly, the carrier of **Tw**(**G**₂, {1}) is K(**G**₂) \ {(a,a)}.

We shall now determine the structure of the free Gödel NPc-lattice over one generator. The result hinges on the characterization given in [17] of the free prelinear Heyting algebras (or, *Gödel algebras*) as algebras of [0, 1]-valued functions.

LEMMA 5.5 In the variety \mathbb{GNPC} , the algebra $\operatorname{Free}_{\mathbb{GNPC}}(1)$ embeds into the following product:

$$\mathbf{Tw}(\mathbf{G}_3,\mathbf{G}_2)\times\mathbf{Tw}(\mathbf{G}_2,\mathbf{G}_2)\times\mathbf{Tw}(\mathbf{G}_3,\mathbf{G}_2).$$

PROOF. Consider the following subsets of $[0, 1]^2$: $A = \{(a, b) \in [0, 1]^2, a < b\}, B = \{(a, b) \in [0, 1]^2, a > b\}$. Clearly, $\{A, B, C\}$ forms a partition of $[0, 1]^2$.

Now, pick two distinct points $(a_1, b_1), (a'_1, b'_1) \in A$, with $b_1 \neq 1 \neq b'_1$. By Lemma 5.3, the algebras $\langle (a_1, b_1) \rangle, \langle (a'_1, b'_1) \rangle$ singly generated by these two points are isomorphic. Moreover, the function from $\langle (a_1, b_1) \rangle$ into $\langle (a_1, b_1) \rangle \times \langle (a'_1, b'_1) \rangle$ that maps (a_1, b_1) to $((a_1, b_1), (a'_1, b'_1))$ yields an isomorphism

$$\langle (a_1, b_1) \rangle \cong \langle ((a_1, b_1), (a_1', b_1')) \rangle,$$

and clearly $\langle ((a_1, b_1), (a'_1, b'_1)) \rangle$ embeds into $\langle (a_1, b_1) \rangle \times \langle (a'_1, b'_1) \rangle$.

Pick now $(a'_1, b'_1) \in A$, with $b'_1 = 1$. By Lemma 5.4, $\langle (a'_1, b'_1) \rangle$ is isomorphic to the quotient of $\langle (a_1, b_1) \rangle$, given by the congruence θ generated by $((b_1, 1), (1, 1))$. Therefore

$$\langle (a_1, b_1) \rangle \cong \langle ((a_1, b_1), (a'_1, 1)) \rangle$$

via the maps $(a_1,b_1) \mapsto ((a_1,b_1),(a_1,b_1)/\theta) \mapsto ((a_1,b_1),(a'_1,1))$. Repeating the argument above for each point in *A*, it turns out that the embedding from $\langle (a_1,b_1) \rangle$ into $\prod_{(a,b) \in A} \langle (a,b) \rangle$ given by

$$(a_1, b_1) \mapsto ((a, b))_{(a, b) \in A}$$

is an isomorphism between $\langle (a_1, b_1) \rangle$ and $\langle ((a, b))_{(a, b) \in A} \rangle$.

But $\langle ((a,b))_{(a,b)\in A} \rangle$ is by its very definition the algebra of all functions $f : A \to [0,1]^2$ generated by the identity function $id_A : A \to A$. The latter, in turn, by Lemma 5.3 is isomorphic with $Tw(G_3, G_2)$.

In a completely analogous fashion, one shows that the algebra of all functions $f: B \to [0, 1]^2$ generated by the identity function over *B* is isomorphic to $\mathbf{K}(\mathbf{G}_2) \cong \mathbf{Tw}(\mathbf{G}_2, \mathbf{G}_2)$, and that the algebra of all functions $f: C \to [0, 1]^2$ generated by the identity function over *C* is isomorphic to $\mathbf{Tw}(\mathbf{G}_3, \mathbf{G}_2)$.

To end the proof, notice that every element of $\text{Free}_{\mathbb{GNPC}}(1)$ can be expressed as a triplet of functions (f, g, h), with $f : A \to [0, 1]^2$, $g : B \to [0, 1]^2$, and $h : C \to [0, 1]^2$. Therefore the generator of $\text{Free}_{\mathbb{GNPC}}(1)$ can be chosen as a triplet

$$((a_1, b_1), (a_2, b_2), (a_3, b_3)),$$

for some arbitrarily fixed choice of $a_1, b_1, a_2, b_2, a_3, b_3 \in [0, 1]$ such that $a_1 < b_1 < 1, a_2 = b_2 < 1$ and $b_3 < a_3 < 1$.

Notice that we cannot drop any of the three factors in $Tw(G_3, G_2) \times Tw(G_2, G_2) \times Tw(G_3, G_2)$ without losing the property that $Free_{\mathbb{GNPC}}(1)$ embeds into the remaining algebra. As a matter of fact each of the maps $(a_i, b_i) \mapsto (a_j, b_j)$, for $i, j \in \{1, 2, 3\}$ and a_i, b_i, a_j, b_j being the corresponding elements forming the chosen generator triplet in Lemma 5.5, is an isomorphism iff i=j.

THEOREM 5.6 The following holds:

$$Free_{\mathbb{GNPC}}(1) \cong \mathbf{Tw}(\mathbf{G}_3, \mathbf{G}_2) \times \mathbf{Tw}(\mathbf{G}_2, \mathbf{G}_2) \times \mathbf{Tw}(\mathbf{G}_3, \mathbf{G}_2)$$
$$\cong \mathbf{Tw}(\mathbf{G}_3 \times \mathbf{G}_2 \times \mathbf{G}_3, \mathbf{G}_2 \times \mathbf{G}_2 \times \mathbf{G}_2)$$
$$\cong \mathbf{Tw}(Free_{\mathbb{GH}}(2), \nabla),$$

where $\nabla = \mathbf{G}_2 \times \mathbf{G}_2 \times \mathbf{G}_2$.

PROOF. We need to prove that for every triplet

 $((p_1,q_1),(p_2,q_2),(p_3,q_3)) \in \mathbf{Tw}(\mathbf{G}_3,\mathbf{G}_2) \times \mathbf{Tw}(\mathbf{G}_2,\mathbf{G}_2) \times \mathbf{Tw}(\mathbf{G}_3,\mathbf{G}_2),$

there is a one-variable term t(x) in the language of NPc-lattices, such that

$$((p_1,q_1),(p_2,q_2),(p_3,q_3)) = t(((a_1,b_1),(a_2,b_2),(a_3,b_3))),$$

where $((a_1, b_1), (a_2, b_2), (a_3, b_3))$ is the chosen triplet in Lemma 5.5.

We consider the terms: $\tau_1(x) := \sim ((\sim x) * (\sim x)) * \sim ((\sim x) * (\sim x)), \ \tau_2(x) := \sim ((x \leftrightarrow \sim x) * (x \leftrightarrow \sim x)), \ and \ \tau_3(x) := \sim (x * x) * \sim (x * x).$

Notice that:

$$\tau_1(((a_1,b_1),(a_2,b_2),(a_3,b_3))) = ((a_1,1),(1,a_2),(1,b_3)),$$

$$\tau_2(((a_1,b_1),(a_2,b_2),(a_3,b_3))) = ((1,a_1),(a_2,1),(1,b_3))$$

and

$$\tau_3(((a_1,b_1),(a_2,b_2),(a_3,b_3))) = ((1,a_1),(1,a_2),(b_3,1))$$

Now, by the proofs of Lemmas 5.3 and 5.4, we have that for each $i \in \{1, 2, 3\}$, there is a one-variable term

$$t_i(x) \in \{e, x, \sim x, x \land e, x \lor e, \sim x \lor e, \sim x \land e, x \lor (\sim x \land e), x \land (\sim x \lor e)\}$$

such that $\pi_i(t_i(((a_1, b_1), (a_2, b_2), (a_3, b_3)))) = (p_i, q_i)$ where π_i is the *i*-th projection. Observe then that

$$(t_1 \lor \tau_1)(((a_1, b_1), (a_2, b_2), (a_3, b_3))) = ((p_1, q_1), (1, a_2), (1, b_3))$$

$$(t_2 \lor \tau_2)(((a_1, b_1), (a_2, b_2), (a_3, b_3))) = ((1, a_1), (p_2, q_2), (1, b_3)),$$

and

$$(t_3 \vee \tau_3)(((a_1, b_1), (a_2, b_2), (a_3, b_3))) = ((1, a_1), (1, a_2), (p_3, q_3)).$$

The proof is settled by checking that

$$\left(\bigwedge_{i=1}^{3} (t_i \vee \tau_i)\right) (((a_1, b_1), (a_2, b_2), (a_3, b_3))) = ((p_1, q_1), (p_2, q_2), (p_3, q_3)).$$

Since the operator Tw commutes with direct products (Theorem 4.2), we equivalently have

$$\operatorname{Free}_{\mathbb{GNPC}}(1) \cong \operatorname{Tw}(\mathbf{G}_3 \times \mathbf{G}_2 \times \mathbf{G}_3, \mathbf{G}_2 \times \mathbf{G}_2 \times \mathbf{G}_2),$$

(see Fig. 3 for a display of the two components of the twist-product above) and the last isomorphism follows from (12) for n=2:

$$\operatorname{Free}_{\mathbb{GH}}(2) \cong \mathbf{G}_3 \times \mathbf{G}_2 \times \mathbf{G}_3.$$

FIGURE 3. The Gödel hoop $G_3 \times G_2 \times G_3$ together with its filter $G_2 \times G_2 \times G_2$.

Notice that, for every finite Gödel hoop **A**, with Spec^{*}(**A**) \cong *T*, it holds that Spec^{*}(**A**_{\perp}, **A**) \cong (*T*_{\perp}, *T*_{\perp}), since the only pair (*a*, *b*) \in *A*²_{\perp} such that $a \lor b \notin A$ is (*a*, *b*) $=(\bot, \bot)$. On the other hand, Spec^{*}(**A**_{\perp}, **A**_{\perp}) \cong (*T*_{\perp}, \emptyset_{\perp}). We recall that *S* : GNPC \rightarrow *T*_{*t*,*fin*} is the functor realising the duality as in Theorem 4.5.

LEMMA 5.7 $S(\operatorname{Free}_{\mathbb{GNPC}}(1)) \cong (H_2, (2H_1)_{\perp}).$

PROOF. By Theorem 5.6,

 $S(\operatorname{Free}_{\mathbb{GNPC}}(1)) \cong S(\operatorname{Tw}(\mathbf{G}_3 \times \mathbf{G}_2 \times \mathbf{G}_3, \mathbf{G}_2 \times \mathbf{G}_2 \times \mathbf{G}_2)).$

Recall that $\mathbf{G}_3 \cong \operatorname{Free}_{\mathbb{GH}}(1)_{\perp}$ and $\mathbf{G}_2 \cong \operatorname{Free}_{\mathbb{GH}}(1) \cong \operatorname{Free}_{\mathbb{GH}}(0)_{\perp}$. So,

$$S(\operatorname{Free}_{\mathbb{GNPC}}(1)) \cong S(\operatorname{Tw}(\operatorname{Free}_{\mathbb{GH}}(1)_{\perp} \times \operatorname{Free}_{\mathbb{GH}}(0)_{\perp} \times \operatorname{Free}_{\mathbb{GH}}(1)_{\perp}, \\ \operatorname{Free}_{\mathbb{GH}}(1) \times \operatorname{Free}_{\mathbb{GH}}(0)_{\perp} \times \operatorname{Free}_{\mathbb{GH}}(1))) \\ \cong S(\operatorname{Tw}(\operatorname{Free}_{\mathbb{GH}}(0)_{\perp}, \operatorname{Free}_{\mathbb{GH}}(0)_{\perp})) \\ \oplus S(\operatorname{Tw}(\operatorname{Free}_{\mathbb{GH}}(1)_{\perp}, \operatorname{Free}_{\mathbb{GH}}(0)_{\perp}))) \\ \cong (H_{1\perp}, H_{1\perp}) \oplus (H_{0\perp}, \emptyset_{\perp}) \oplus (H_{1\perp}, H_{1\perp})) \\ \cong (H_{1\perp} \oplus H_{0\perp} \oplus H_{1\perp}, H_{1\perp} \oplus \emptyset_{\perp} \oplus H_{1\perp}) \\ \cong (H_{2}, (2H_{1})_{\perp}).$$

5.2 The case of n generators

We plan now to use the results from sections 4.1, 4.2 and 5.1 to obtain the free GNPc-lattice with *n* generators.

Since $H_n = \text{Spec}^*(\text{Free}_{\mathbb{GH}}(n))$, it immediately follows that

$$H_i \times H_j \cong \operatorname{Spec}^*(\operatorname{Free}_{\mathbb{GH}}(i) \sqcup \operatorname{Free}_{\mathbb{GH}}(j)) \cong \operatorname{Spec}^*(\operatorname{Free}_{\mathbb{GH}}(i+j)) \cong H_{i+j}$$

where \amalg is the coproduct in $\mathbb{GH}.$

Let now $T_n = S(\text{Free}_{\mathbb{GNPC}}(n))$. Note that $T_n \cong T_{n-1} \times T_1$ and by Lemma 5.7:

$$T_1 \cong (H_2, (2H_1)_\perp).$$

Set, for $i = 0, ..., n-1, c_{i,n} = 0$ and for i = n, ..., 2n:

$$c_{i,n} = 2^{2n-i} \binom{n}{2n-i}.$$

Lemma 5.8

For
$$i = n+2, ..., 2n$$
 it holds $c_{i,n+1} = c_{i-2,n} + 2c_{i-1,n}$

PROOF. By definition $c_{i-1,n} = 2^{2n+1-i} \binom{n}{2n+1-i}$, $c_{i-2,n} = 2^{2n+2-i} \binom{n}{2n+2-i}$, and $c_{i,n+1} = 2^{2n+2-i} \binom{n+1}{2n+2-i}$. The claim follows by properties of binomial coefficients, since:

$$\binom{n+1}{2n+2-i} = \binom{n}{2n+1-i} + \binom{n}{2n+2-i}.$$

Lemma 5.9

 $T_n \cong (H_{2n}, t_n)$ where t_n is the uniquely determined (up to isomorphisms) subtree of H_{2n} given by

$$t_n = \left(\sum_{i=n}^{2n-1} c_{i,n} H_i\right)_{\perp}.$$

PROOF. As $T_1 \cong (H_2, (2H_1)_{\perp})$, $T_{n+1} \cong T_n \times T_1$ and $(H_2)^n \cong H_{2n}$, we only need to check the subtree part. We proceed by induction on *n*.

Assume by induction hypothesis, that $T_n \cong (H_{2n}, t_n)$ with

$$t_n = \left(\sum_{i=n}^{2n-1} c_{i,n} H_i\right)_{\perp}.$$

We are going to prove that $T_{n+1} \cong (H_{2(n+1)}, t_{n+1})$ with

$$t_{n+1} = \left(\sum_{i=n+1}^{2n+1} c_{i,n+1} H_i\right)_{\perp}.$$

By definition of product

$$t_{n+1} \cong \left(\left(t_n^{\uparrow} \times H_2 \right) + \left(t_n^{\uparrow} \times 2H_1 \right) + \left(H_{2n} \times 2H_1 \right) \right)_{\perp}$$
$$\cong \left(\sum_{i=n}^{2n-1} c_{i,n} H_{i+2} + \sum_{i=n}^{2n-1} 2c_{i,n} H_{i+1} + 2H_{2n+1} \right)_{\perp}$$

Notice that, by index shifting,

$$\sum_{i=n}^{2n-1} c_{i,n} H_{i+2} \cong \sum_{i=n+2}^{2n+1} c_{i-2,n} H_i$$

and

$$\sum_{i=n}^{2n-1} 2c_{i,n}H_{i+1} \cong \sum_{i=n+1}^{2n} 2c_{i-1,n}H_i.$$

Hence, by Lemma 5.8,

$$t_{n+1}^{\uparrow} \cong \sum_{i=n}^{2n-1} c_{i,n}H_{i+2} + \sum_{i=n}^{2n-1} 2c_{i,n}H_{i+1} + 2H_{2n+1}$$
$$\cong \sum_{i=n+1}^{2n} 2c_{i-1,n}H_i + \sum_{i=n+2}^{2n+1} c_{i-2,n}H_i + 2H_{2n+1}$$
$$\cong 2c_{n,n}H_{n+1} + \sum_{i=n+2}^{2n} 2c_{i-1,n}H_i + \sum_{i=n+2}^{2n+1} c_{i-2,n}H_i + 2H_{2n+1}$$
$$\cong 2c_{n,n}H_{n+1} + \sum_{i=n+2}^{2n} (c_{i-2,n} + 2c_{i-1,n})H_i + c_{2n-1,n}H_{2n+1} + 2H_{2n+1}$$
$$\cong 2c_{n,n}H_{n+1} + \sum_{i=n+2}^{2n} c_{i,n+1}H_i + (2+c_{2n-1,n})H_{2n+1}.$$

Since

$$2c_{n,n} = 2 \cdot 2^{n} = 2^{n+1} = 2^{n+1} \binom{n+1}{n+1} = c_{n+1,n+1}$$

$$2+c_{2n-1,n}=2+2n=2\binom{n+1}{1}=c_{2n+1,n+1}$$

we have

$$t_{n+1} \cong \left(\sum_{i=n+1}^{2n+1} c_{i,n+1} H_i \right)_{\perp}$$

and the claim follows.

So we have that $T_n \cong (H_{2n}, t_n)$, with

$$H_{2n} = \left(\sum_{i=0}^{2n-1} \binom{2n}{i} H_i\right)_{\perp}, \quad t_n = \left(\sum_{i=n}^{2n-1} c_{i,n} H_i\right)_{\perp}.$$

Rewriting them using coproducts in the category of trees, we obtain

$$H_{2n} = \bigoplus_{i=0}^{2n-1} \binom{2n}{i} (H_i)_{\perp}, \quad t_n = \bigoplus_{i=n}^{2n-1} c_{i,n} (H_i)_{\perp}.$$

Combining the fact that coproducts in the category $\mathcal{T}_{t,fin}$ are given coordinatewise, that \emptyset_{\perp} is both the terminal and the initial object in \mathcal{T}_{fin} , and that $c_{i,n}=0$ for $i=0,\ldots,n-1$, we have that

$$T_n \cong \bigoplus_{i=0}^{2n-1} \left(\binom{2n}{i} - c_{i,n} \right) ((H_i)_{\perp}, \emptyset_{\perp}) \oplus \bigoplus_{i=n}^{2n-1} c_{i,n} ((H_i)_{\perp}, (H_i)_{\perp}).$$

Notice now that the NPc-lattice dual of the pair $((H_i)_{\perp}, \emptyset_{\perp})$ is the full twist-product $\mathbf{K}((\operatorname{Free}_{\mathbb{GH}}(i))_{\perp})$ and that the NPc-lattice dual of the pair $((H_i)_{\perp}, (H_i)_{\perp})$ is

Tw((Free_{GH}(*i*)) $_{\perp}$, Free_{GH}(*i*)).

Finally, recalling that the carrier of this algebra is $K((\text{Free}_{\mathbb{GH}}(i))_{\perp}) \setminus \{(\perp, \perp)\}$, we conclude the following theorem.

THEOREM 5.10

$$\operatorname{Free}_{\mathbb{GNPC}}(n) \cong \\ \cong \prod_{i=0}^{2n-1} \mathbf{K}((\operatorname{Free}_{\mathbb{GH}}(i))_{\perp})^{\binom{2n}{i}-c_{i,n}} \times \prod_{i=n}^{2n-1} \mathbf{Tw}((\operatorname{Free}_{\mathbb{GH}}(i))_{\perp}, \operatorname{Free}_{\mathbb{GH}}(i))^{c_{i,n}} \\ \cong \mathbf{Tw}(\operatorname{Free}_{\mathbb{GH}}(2n), \nabla),$$

where

$$\nabla = \prod_{i=0}^{2n-1} ((\operatorname{Free}_{\mathbb{GH}}(i))_{\perp})^{\binom{2n}{i}-c_{i,n}} \times \prod_{i=n}^{2n-1} (\operatorname{Free}_{\mathbb{GH}}(i))^{c_{i,n}}.$$

PROOF. By Lemma 5.9.

COROLLARY 5.11

For each integer $n \ge 0$, the cardinality of Free_{GNPC}(*n*) is given by the following recurrences:

$$|\text{Free}_{\mathbb{GNPC}}(n)| = \prod_{i=0}^{2n-1} (h_i+1)^{2\binom{2n}{i}-c_{i,n}} \cdot (h_i^2+2h_i)^{c_{i,n}},$$

where $h_0 = 1$ and, for all integers $k \ge 0$,

$$h_k = \prod_{i=0}^{k-1} (h_i + 1)^{\binom{k}{i}}$$

PROOF. By [1, Theorem 4.3.1], the cardinality of $\operatorname{Free}_{\mathbb{GH}}(k)$ is h_k , for all integers $k \ge 0$. Then, clearly, the cardinality of $\mathbf{K}((\operatorname{Free}_{\mathbb{GH}}(i))_{\perp})$ is $(h_i + 1)^2$ and the cardinality of $\operatorname{Tw}((\operatorname{Free}_{\mathbb{GH}}(i))_{\perp}, \operatorname{Free}_{\mathbb{GH}}(i))$ is $(h_i + 1)^2 - 1$. The claim follows by Theorem 5.10.

References

- S. Aguzzoli, S. Bova and B. Gerla. *Chapter IX: Free Algebras and Functional Representation for Fuzzy Logics* from Handbook of Mathematical Fuzzy Logic. Vol. II. Studies in Logic. College Publications, 2011.
- [2] S. Aguzzoli and P. Codara. Recursive Formulas to Compute Coproducts of Finite Gödel Algebras and Related Structures. In *Proceedings of IEEE International Conference on Fuzzy Systems, FUZZ-IEEE 2016, Vancouver, Canada*, IEEE Computer Society Press, doi: 10.1109/FUZZ-IEEE.2016.7737688.
- [3] A. Almukdad and D. Nelson. Constructible falsity and inexact predicates. *Journal of Symbolic Logic*, 49, 231–233, 1984.
- [4] K. Blount and C. Tsinakis. The Structure of residuated lattices. *Internat. Journal of Algebra Comput.*, 13, 437–461, 2003.
- [5] M. Busaniche and R. Cignoli. Constructive logic with strong negation as a substructural logic. *Journals of Logic and Computation*, 20, 761–793, 2010.
- [6] M. Busaniche and R. Cignoli. Residuated lattices as an algebraic semantics for paraconsistent Nelson logic. *Journals of Logic and Computation*, 19, 1019–1029, 2009.
- [7] M. Busaniche and R. Cignoli. Remarks on an algebraic semantics for paraconsistent Nelson's logic. *Manuscrito, Center of Logic, Epistemology and the History of Science* 34, 99–114, 2011.
- [8] M. Busaniche and R. Cignoli. Commutative residuated lattices represented by twist-products. *Algebra Universatis*, 71, 5–22, 2014.
- [9] J. L. Castiglioni, M. Menni and M. Sagastume. On some categories of involutive centered residuated lattices. *Stud. Log.*, 90, 93–124, 2008.
- [10] R. Cignoli. The class of Kleene algebras satisfying an interpolation property and Nelson algebras. *Algebra Universalis*, **23**, 262–292, 1986.
- [11] P. M. Cohn. Universal Algebra, Revised Edition, D. Reidel Pub. Co., 1981.
- [12] O. D'Antona and V. Marra. Computing coproducts of finitely generated Gödel algebras. Annals of Pure and Applied Logic, 142, 202–211, 2006.
- [13] L. Esakia. Topological Kripke models. Soviet Mathematics Dokaolyl, 15, 147–151, 1974.
- [14] M. M. Fidel. An algebraic study of a propositional system of Nelson. In *Mathematical Logic*, *Proceedings of the First Brazilian Conference*, A. I. Arruda, N. C. A. da Costa and R. Chuaqui, eds, Vol. 39 of *Lectures in Pure and Applied Mathematics*, pp. 99–117. Marcel Dekker, 1978.
- [15] N. Galatos and J. G. Raftery. Adding involution to residuated structures. *Studia Logica*, 77, 181–207, 2004.
- [16] N. Galatos, P. Jipsen, T. Kowalski and H. Ono. Residuated Lattices: An Algebraic Glimpse at Substructural Logics. *Studies in Logics and the Foundations of Mathematics*, Vol. 151, Elsevier, 2007.
- [17] B. Gerla. A note on functions associated with Gödel formulas. Soft Computing, 4, 206–209, 2000.
- [18] J. B. Hart, L. Rafter and C. Tsinakis. The structure of commutative residuated lattices. *International Journal of Algebra Computation*, **12**, 509–524, 2002.
- [19] A. Horn. Free L-algebras. Journal of Symbolic Logic, 34, 475–480, 1969.
- [20] J. Kalman. Lattices with involution. Transactions of the American Mathematical Society, 87, 485–491, 1958.
- [21] M. Kracht. On extensions of intermediate logics by strong negation. *Journal of Philosophical Logic*, 27, 49–73, 1998.

- [22] S. Mac Lane. Categories for the Working Mathematician. 2nd edn, Graduate Texts in Mathematics, Vol. 5, Springer, 1998.
- [23] D. Nelson. Constructible falsity. Journals of Symbolic Logic, 14, 16–26, 1949.
- [24] S. P. Odintsov. Algebraic semantics for paraconsistent Nelson's logic. *Journals of Logic and Computation*, 13, 453–468, 2003.
- [25] S. P. Odintsov. On the representation of N4-lattices. Studia Logica, 76, 385-405, 2004.
- [26] S. P. Odintsov. Constructive Negations and Paraconsistency. *Trends in Logic-Studia Logica Library* 26. Springer, 2008.
- [27] A. Sendlewski. Nelson algebras through Heyting ones I. Studia Logica, 49, 105–126, 1990.
- [28] M. Spinks and R. Veroff. Constructive logic with strong negation is a substructural logic I. Studia Logica, 88, 325–348, 2008.
- [29] M. Spinks and R. Veroff. Constructive logic with strong negation is a substructural logic II. *Studia Logica*, 89, 401–425, 2008.
- [30] C. Tsinakis and A. M. Wille. Minimal Varieties of Involutive Residuated Lattices. *Studia Logica*, 83, 407–423, 2006.
- [31] D. Vakarelov. Notes on N-lattices and constructive logic with strong negation. *Studia Logica*, 34, 109–125, 1977.

Received 21 July 2016