On the category of Nelson paraconsistent lattices

STEFANO AGUZZOLI, DI, University of Milano, Italy.
E-mail: aguzzoli@di.unimi.it
MANUELA BUSANICHE, Instituto de Matemática Aplicada del Litoral, UNL, CONICET, FIQ, Argentina.
E-mail: mbusaniche@santafe-conicet.gov.ar
BRUNELLA GERLA, DiSTA, University of Insubria, Varese, Italy.
E-mail: brunella.gerla@uninsubria.it
MIGUEL ANDRÉS MARCOS, Instituto de Matemática Aplicada del Litoral, UNL, CONICET, FIQ, Argentina.
E-mail: mmarcos@santafe-conicet.gov.ar

Abstract

We present an equivalence between the category of Nelson Paraconsistent lattices (NPc-lattices) and a category of pairs of Brouwerian algebras and regular filters. Specializing such category of pairs to Gödel hoops, we get the subvariety of Gödel NPc-lattices and, using the dual equivalence of finite Gödel hoops with finite trees, we obtain a duality for finite Gödel NPc-lattices. This duality is used to describe finitely generated free Gödel NPc-lattices..

Keywords: Nelson paraconsistent lattices, Brouwerian algebras, Gödel hoops, dual equivalences, free algebras.

1 Introduction

Nelson's paraconsistent logic $\mathbf{N 4}$ is the paraconsistent variant of Nelson's system [26]. We recall that Paraconsistent logics are those logics that admit inconsistent but non-trivial theories and Nelson's system (constructive logic with strong negation, [3,23]) is an expansion of intuitionistic logic by a new negation symbol that behaves as an involutive negation.

It turns out that $\mathbf{N} 4$ is algebraizable and the corresponding algebraic structures are N4-lattices, which were studied and analysed by Odintsov in [24, 26].

Following some of the ideas of [28,29] and [6], in [5] a class of residuated lattices with involution is defined, called Nelson paraconsistent lattices (NPc-lattices for short). There it is proved that NPclattices and $e \mathrm{~N} 4$-lattices (an extension of N 4 -lattices by a constant e) are termwise equivalent. This situates Nelson's paraconsistent logic within the framework of substructural logics [16], providing an alternative semantics in terms of well-known algebraic structures.
The most interesting property of NPc-lattices is that they can be represented by twist-products of Brouwerian algebras, sometimes also known as generalized Heyting algebras, which are bottom-free reducts of Heyting algebras. By a twist-product of a lattice \mathbf{L} we mean a suitably defined sublattice
© The Author, 2017. Published by Oxford University Press. All rights reserved.
For Permissions, please email: journals.permissions@oup.com
doi:10.1093/logcom/exx002

2 NPc-lattices

of the cartesian product of \mathbf{L} with its order-dual \mathbf{L}^{∂} equipped with the natural order involution $(x, y) \mapsto(y, x)$ for all $(x, y) \in L \times L^{\partial}$.

The idea of considering this kind of construction to deal with order involutions on lattices goes back to Kalman's 1958 paper [20], and it has been used widely to represent many involutive lattices with additional operations (see [5, 6, 9, 10, 14, 21, 25-27, 30, 31]).
In the present article the fact that NPc-lattices are representable by twist-products of Brouwerian algebras is exploited to obtain some results about these residuated lattices. To begin with, we give a categorical equivalence between the category of NPc-lattices and morphisms and a category whose objects are pairs consisting of a Brouwerian algebra and a regular filter of it. The equivalence follows the ideas given by Sendlewski [27] and by Odsintov [26], but we rephrase them in the context of residuated lattices.

Then we focus our attention on Gödel NPc-lattices. These structures form the proper subvariety of NPc-lattices that can be represented by twist-products of Gödel hoops (prelinear Brouwerian algebras). As is well known, Esakia duality [13] can be specialized to a duality between finite prelinear Heyting algebras and finite forests with order preserving open maps [12, 19]. In [1, 2] the latter duality is adapted to Gödel hoops: finite Gödel hoops are dually equivalent with finite trees and order preserving open maps. In particular, each finite Gödel hoop arises as the set of all non-empty downward closed subsets of a tree, equipped with suitably defined operations. Based on this duality, we present a duality for finite Gödel NPc-lattices and we use it to describe finitely generated free algebras in this subvariety.

We refer to [22] for all results and notions of Category Theory needed along the paper.

2 Brouwerian algebras and NPc-lattices

By a commutative residuated lattice we mean a residuated lattice-ordered commutative monoid, that is, an algebra $\mathbf{A}=(A, \vee, \wedge, *, \Rightarrow, e)$ of type $(2,2,2,2,0)$ such that (A, \vee, \wedge) is a lattice, $(A, *, e)$ is a commutative monoid and the following residuation condition is satisfied:

$$
\begin{equation*}
x * y \leq z \text { if and only if } x \leq y \Rightarrow z \tag{1}
\end{equation*}
$$

where x, y, z denote arbitrary elements of A and \leq is the order given by the lattice structure.
It is well known that commutative residuated lattices form a variety that we shall denote by $\mathbb{C R} \mathbb{L}$ (see, for instance, $[4,16,18]$).
A commutative residuated lattice \mathbf{A} is called integral if $x \leq e$ for all $x \in A$. The negative cone of $\mathbf{A} \in \mathbb{C} \mathbb{R} \mathbb{L}$ is the set $A^{-}=\{x \in A: x \leq e\}$. It is easy to see that A^{-}is closed under the operations $\vee, \wedge, *$, and if the binary operation \Rightarrow_{e} is defined as

$$
\begin{equation*}
x \Rightarrow_{e} y=(x \Rightarrow y) \wedge e \tag{2}
\end{equation*}
$$

then $\mathbf{A}^{-}=\left(A^{-}, \vee, \wedge, *, \Rightarrow_{e}, e\right)$ is an integral commutative residuated lattice. An integral commutative residuated lattice is a Brouwerian algebra [16, Chapter 2] (also a generalized Heyting algebra or an implicative lattice) if it satisfies the equation $x * x=x^{2}=x$.

2.1 Regular filters on Brouwerian algebras

Let \mathbf{L} be a Brouwerian algebra (also known as implicative lattice). In Brouwerian algebras both products $*$ and \wedge coincide and the neutral element of the product e is also the greatest element of the algebra. We say an element $x \in L$ is dense if it is of the form $x=w \vee(w \Rightarrow z)$, with $w, z \in L$.

Proposition 2.1

The set F_{d} of dense elements of L is a (lattice) filter.
Proof. Assume first L has a minimum element \perp. Then an element x is dense iff $x \Rightarrow \perp=\perp$. In details, if $x \Rightarrow \perp=\perp$ then x is clearly dense as $x=x \vee(x \Rightarrow \perp)$. Conversely, if x is dense then $x=w \vee(w \Rightarrow z)$ and

$$
\begin{aligned}
x \Rightarrow \perp & =(w \vee(w \Rightarrow z)) \Rightarrow \perp=(w \Rightarrow \perp) \wedge((w \Rightarrow z) \Rightarrow \perp) \\
& \leq(w \Rightarrow z) \wedge((w \Rightarrow z) \Rightarrow \perp) \leq \perp
\end{aligned}
$$

In this case F_{d} is a filter. Now consider the case L unbounded. Take $\left\langle F_{d}\right\rangle$, the filter generated by F_{d} and let $x \in\left\langle F_{d}\right\rangle$. Then x is of the form

$$
x \geq \bigwedge_{i=1}^{n} w_{i} \vee\left(w_{i} \Rightarrow z_{i}\right)
$$

for some $w_{i}, z_{i} \in L$, and take $m=\bigwedge_{i=1}^{n}\left(w_{i} \wedge z_{i}\right)$, so $L_{m}=\{y: y \geq m\}$ is a subalgebra of L with $x, w_{i}, z_{i} \in$ L_{m} and minimum element m. Then x is dense in L_{m} (as it is greater than or equal to the infimum of finitely many dense elements of L_{m}) and we have $x \Rightarrow m=m$ (in L_{m} but also in L as the former is a subalgebra of the latter) and therefore $x=x \vee(x \Rightarrow m)$, obtaining $x \in F_{d}$.

Observe that if L is a chain, we have $x \Rightarrow y=\top$ if $x \leq y$ and $x \Rightarrow y=y$ if $x>y$, then every nonbottom element (in case it exists) will be dense, as given $x \in L$ if there exists y with $x>y$, we will have $x=x \vee(x \Rightarrow y)$.

We will work with filters containing the filter F_{d}, which we call regular. It turns out that they have a specific structure.

Lemma 2.2
If the filter F is an intersection of maximal filters, then it is regular.
Proof. Assume first F maximal and take $a, b \in L$. If $a \in F$ then $a \vee(a \Rightarrow b) \in F$ and we are done. If $a \notin F$, then $\langle F \cup\{a\}\rangle=L$, being F maximal, and therefore $b \in\langle F \cup\{a\}\rangle$. Then there will exist $c \in F$ such that $b \geq a \wedge c$. But this is equivalent to $c \leq a \Rightarrow b$, so $(a \Rightarrow b) \in F$ and $a \vee(a \Rightarrow b) \in F$. This way $F_{d} \subseteq F$ for F maximal.

If F is an intersection of maximal filters, clearly $F_{d} \subseteq F$, as it is contained in each one of them.

Lemma 2.3

If L bounded, then every regular proper filter is an intersection of maximal filters.
Proof. Take \perp to be the minimum of L and let F be a proper regular filter. If $F \subseteq P$ with P a prime filter, then P must be maximal. Indeed, if not there would exist M maximal (and proper) such that $P \subsetneq M$ and given $a \in M \backslash P$, as $a \vee(a \Rightarrow \perp) \in F \subseteq P$ with P prime and $a \notin P$, it should be $a \Rightarrow \perp \in P$, then $a, a \Rightarrow \perp \in M$ and therefore $\perp=a \wedge(a \Rightarrow \perp) \in M$, absurd as M is proper. Then every prime filter containing F must be maximal.

As every proper filter is the intersection of every prime filter containing it, this last result implies F is an intersection of maximal filters.
Corollary 2.4
If L is bounded, then regular proper filters are exactly intersections of maximal filters.

4 NPC-lattices

2.2 NPc-lattices

An involution on $\mathbf{A} \in \mathbb{C} \mathbb{R} \mathbb{L}$ is a unary operation \sim satisfying the equations $\sim \sim x=x$ and $x \Rightarrow \sim y=$ $y \Rightarrow \sim x$. If $f:=\sim e$, then $\sim x=x \Rightarrow f$ and f satisfies the equation

$$
\begin{equation*}
(x \Rightarrow f) \Rightarrow f=x . \tag{3}
\end{equation*}
$$

The element f in Equation (3) is called a dualizing element.
Conversely, if $f \in A$ is a dualizing element and we define $\sim x=x \Rightarrow f$ for all $x \in A$, then \sim is an involution on \mathbf{A} and $\sim e=f$. Hence there is a bijective correspondence between involutions on \mathbf{A} and dualizing elements in A (see [15, 30] for details).

Taking $f=e$ in (3) we obtain an equation in the language of residuated lattices that determines a subvariety $\mathbb{I}_{e} \mathbb{C} \mathbb{R} \mathbb{L}$ of $\mathbb{C} \mathbb{R} L$. We call the elements of this subvariety e-involutive commutative residuated lattices or e-lattices for short (they were called residuated lattices with involution in $[6,7])$. It is easy to see that the involution \sim given by the prescription $\sim x=x \Rightarrow e$ for all $x \in A$, satisfies the following properties:
(1) $\sim \sim x=x$,
(2) $\sim(x \vee y)=\sim x \wedge \sim y$,
(3) $\sim(x \wedge y)=\sim x \vee \sim y$,
(4) $\sim(x * y)=x \Rightarrow \sim y$.

Moreover, we have that $\sim e=e$.
Lattice-ordered abelian groups with $x * y=x+y, x \rightarrow y=y-x$ and $e=0$ are examples of e-lattices. Other examples of e-lattices are given by twist structures, which will be defined in the next section.

Definition 2.5

(see Definition 2.1 in [7]) A Nelson Paraconsistent residuated lattice (NPc-lattice for short), is a distributive e-lattice $\mathbf{A}=(A, \vee, \wedge, *, \Rightarrow, e)$ satisfying the following equations:

$$
\begin{gather*}
(x * y) \wedge e=(x \wedge e) *(y \wedge e), \tag{4}\\
(x \wedge e)^{2}=x \wedge e, \tag{5}\\
((x \wedge e) \Rightarrow y) \wedge((\sim y \wedge e) \Rightarrow \sim x)=x \Rightarrow y . \tag{6}
\end{gather*}
$$

The reader can check that \mathbf{B}^{-}with the implication as defined in 2 is a Brouwerian algebra. It is also well known and easy to verify that NPc-lattices satisfy the quasiequation:

$$
\begin{equation*}
\text { if } x \wedge e=y \wedge e \text { and } \sim x \wedge e=\sim y \wedge e, \text { then } x=y . \tag{7}
\end{equation*}
$$

3 Representation of NPc-lattices

By a full twist-product of a lattice \mathbf{L} we mean the cartesian product of \mathbf{L} with its order-dual \mathbf{L}^{2} equipped with the natural order involution $(x, y) \mapsto(y, x)$ for all $(x, y) \in L \times L^{\partial}$. As far as we know the idea of considering this kind of construction to handle order involutions on lattices goes back to Kalman's 1958 paper [20], but the denomination 'twist' appeared thirty years later on Kracht's paper [21]. The following result is a particular case of [30, Corollary 3.6].

Theorem 3.1
Let $\mathbf{L}=(L, *, \Rightarrow, \vee, \wedge, e)$ be an integral commutative residuated lattice. Then

$$
\mathbf{K}(\mathbf{L})=(L \times L, \sqcup, \sqcap, *, \rightarrow,(e, e))
$$

with the operations $\sqcup, \sqcap, *, \rightarrow$ given by

$$
\begin{gather*}
(a, b) \sqcup(c, d)=(a \vee c, b \wedge d) \tag{8}\\
(a, b) \sqcap(c, d)=(a \wedge c, b \vee d) \tag{9}\\
(a, b) *(c, d)=(a * c,(a \Rightarrow d) \wedge(c \Rightarrow b)) \tag{10}\\
(a, b) \rightarrow(c, d)=((a \Rightarrow c) \wedge(d \Rightarrow b), a * d) \tag{11}
\end{gather*}
$$

is an e-lattice. Moreover, the correspondence

$$
(a, e) \mapsto a
$$

defines an isomorphism from $(\mathbf{K}(\mathbf{L}))^{-}$onto \mathbf{L}.
We refer to $\mathbf{K}(\mathbf{L})$ as the full twist-product obtained from \mathbf{L}, and every subalgebra \mathbf{A} of $\mathbf{K}(\mathbf{L})$ containing the set $\{(a, e): a \in L\}$ is called a twist-product obtained from \mathbf{L}. Thus if \mathbf{A} is a twist-product obtained from \mathbf{L} its negative cone is isomorphic to \mathbf{L}.

K-lattices, introduced in [8], are e-lattices satisfying equations (4), (6) and the distributive law of lattices when one of the variables is the neutral e. Thus NPc-lattices form a proper subvariety of the variety of K-lattices. But K-lattices are exactly those e-lattices that are isomorphic to a twist-product of their negative cone [8, Theorem 3.7]. As a particular case one can verify the following result:

Theorem 3.2

If \mathbf{L} is a Brouwerian algebra, then $\mathbf{K}(\mathbf{L})$ is an NPc-lattice. Moreover, for every NPc-lattice \mathbf{B}, the application $\phi_{\mathbf{B}}: \mathbf{B} \rightarrow \mathbf{K}\left(\mathbf{B}^{-}\right)$given by

$$
x \mapsto(x \wedge e, \sim x \wedge e)
$$

is an injective morphism.
As it is clear from the definition of the operations in the twist-products, each term γ in the language of NPc-lattices, with variables $x_{1}, \ldots x_{n}$, can be uniquely identified with a couple of terms (γ^{1}, γ^{2}) in the language of Brouwerian algebras. A simple proof by induction on the complexity of γ yields the pair of terms. In details, let γ be a term in the language of NPc-lattices and assume that \mathbf{A} is an NPc-lattice, that by Theorem 3.2 can be identified with a subalgebra of $\mathbf{K}\left(\mathbf{A}^{-}\right)$. Let $\gamma_{\mathbf{A}}$ be the corresponding term function from \mathbf{A}^{n} to \mathbf{A}. If $\phi=\phi_{\mathbf{A}}: \mathbf{A} \rightarrow \mathbf{K}\left(\mathbf{A}^{-}\right)$as in Theorem 3.2, for each $\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in A^{n}$ if $\phi\left(a_{i}\right)=\left(b_{i}, c_{i}\right)$ for every $i=1,2, \ldots, n$, we get

$$
\begin{aligned}
\phi\left(\left(\gamma_{\mathbf{A}}\right)\left(a_{1}, \ldots, a_{n}\right)\right)= & \left.\gamma_{\mathbf{K}\left(\mathbf{A}^{-}\right)}\left(\phi\left(a_{1}\right), \ldots, \phi\left(a_{n}\right)\right)\right) \\
& =\gamma_{\mathbf{K}\left(\mathbf{A}^{-}\right)}\left(\left(b_{1}, c_{1}\right), \ldots,\left(b_{n}, c_{n}\right)\right) \\
& =\left(\gamma_{\mathbf{A}^{-}}^{1}\left(b_{1}, c_{1}, \ldots, b_{n}, c_{n}\right), \gamma_{\mathbf{A}^{-}}^{2}\left(b_{1}, c_{1}, \ldots, b_{n}, c_{n}\right)\right) .
\end{aligned}
$$

We now proceed to prove a categorical equivalence between the category of NPc-lattices and residuated lattices morphims and a category whose objects are pairs of Brouwerian algebras and regular filters. The idea is to reformulate the characterization of N4-lattices given by Odintsov [26]

6 NPC-lattices

in terms of residuated lattices. In Section 6 of [8] it is proved that some varieties of e-lattices can be represented by pairs formed by a bounded integral residuated lattices and a lattice filter of it. But those ideas cannot be applied directly to the present case, since the lower bound of the residuated lattice plays a crucial role. Following Odintsov's notation [26], in the sequel we shall often denote with ∇ the regular filter of a Brouwerian algebra \mathbf{L} used to build a twist-product.

Theorem 3.3
Let \mathbf{L} be a Brouwerian algebra and ∇ a regular filter of \mathbf{L}. Then the subset

$$
T w(L, \nabla)=\{(a, b) \in L \times L: a \vee b \in \nabla\},
$$

of the NPc-lattice $\mathbf{K}(\mathbf{L})$ is a twist-product obtained from \mathbf{L}, whose negative cone is isomorphic with L.

Moreover, if \mathbf{L}^{\prime} is another Brouwerian algebra and ∇^{\prime} a regular filter in \mathbf{L}^{\prime}, for each morphism $f: \mathbf{L} \rightarrow \mathbf{L}^{\prime}$ satisfying $f(\nabla) \subseteq \nabla^{\prime}$ we obtain an NPc-lattice morphism

$$
\mathbf{f}: \mathbf{T w}(\mathbf{L}, \nabla) \rightarrow \mathbf{T w}\left(\mathbf{L}^{\prime}, \nabla^{\prime}\right)
$$

given by $\mathbf{f}((a, b))=(f(a), f(b))$.
Proof. For the first part we prove that $B=T w(L, \nabla)$ is the universe of a subalgebra of $\mathbf{K}(\mathbf{L})$ whose negative cone is isomorphic to \mathbf{L}, i.e., the operations are closed in B and $(a, e) \in B$ for each $a \in L$. Take $(a, b),(c, d) \in B$, then

- $(a, b) \sqcap(c, d) \in B$, as $(a, b) \sqcap(c, d)=(a \wedge c, b \vee d)$ and therefore $(a \wedge c) \vee(b \vee d)=(a \vee b \vee d) \wedge$ $(c \vee d \vee b) \geq(a \vee b) \wedge(c \vee d) \in \nabla$.
- $(a, b) \sqcup(c, d) \in B$, as $(a, b) \sqcup(c, d)=(a \vee c, b \wedge d)$ and therefore $(a \vee c) \vee(b \wedge d)=(a \vee b \vee c) \wedge$ $(a \vee c \vee d) \geq(a \vee b) \wedge(c \vee d) \in \nabla$.
- $(a, b) \cdot(c, d) \in B$, as $(a, b) \cdot(c, d)=(a \wedge c,(a \Rightarrow d) \wedge(c \Rightarrow b))$ and therefore

$$
\begin{aligned}
(a \wedge c) & \vee((a \Rightarrow d) \wedge(c \Rightarrow b))= \\
& =(a \vee(a \Rightarrow d)) \wedge(c \vee(a \Rightarrow d)) \wedge(a \vee(c \Rightarrow b)) \wedge(c \vee(c \Rightarrow b)) \\
\quad \geq & (a \vee(a \Rightarrow d)) \wedge(c \vee d) \wedge(a \vee b) \wedge(c \vee(c \Rightarrow b)) \in \nabla .
\end{aligned}
$$

- $\sim(a, b) \in B$, this is immediate as $\sim(a, b)=(b, a)$ and $b \vee a=a \vee b \in \nabla$.
- $(a, b) \rightarrow(c, d) \in B$, as $x \rightarrow y=\sim(x \cdot \sim y)$ in e-lattices.
- $(a, e) \in B$ for each $a \in L$, as $a \vee e=e \in \nabla$ (in particular $(e, e) \in B$).

Finally, assume \mathbf{L}^{\prime} is another Brouwerian algebra with ∇^{\prime} a regular filter in it, and take a morphism $f: \mathbf{L} \rightarrow \mathbf{L}^{\prime}$ satisfying $f(\nabla) \subseteq \nabla^{\prime}$. We will show that $\mathbf{f}(a, b)=(f(a), f(b))$ is well defined and is a morphism from $\mathbf{T w}(\mathbf{L}, \nabla)$ to $\mathbf{T w}\left(\mathbf{L}^{\prime}, \nabla^{\prime}\right)$. The condition $f(\nabla) \subseteq \nabla^{\prime}$ guarantees that if $a \vee b \in \nabla$, then $f(a) \vee f(b)=f(a \vee b) \in \nabla^{\prime}$, then \mathbf{f} is well defined. From the fact that f is a morphism and the definition of the operations for $\mathbf{T w}(\mathbf{L}, \nabla)$ and $\mathbf{T w}\left(\mathbf{L}^{\prime}, \nabla^{\prime}\right)$, we obtain that \mathbf{f} is an NPc-lattice morphism.

Now we will assign to each NPc-lattice \mathbf{B} a pair composed by a Brouwerian algebra \mathbf{L} and a regular filter ∇ such that $\mathbf{B} \cong \mathbf{T w}(\mathbf{L}, \nabla)$. This is achieved by gluing the result of Theorem 3.2 and the following theorem:

Theorem 3.4

Given a twist-product \mathbf{B} obtained from \mathbf{L}, the set $\nabla=\{a \vee b:(a, b) \in B\}$ is a regular filter in \mathbf{L}, and

$$
\mathbf{B}=\mathbf{T w}(\mathbf{L}, \nabla) .
$$

Moreover, let \mathbf{L}^{\prime} be another Brouwerian algebra and \mathbf{B}^{\prime} be a twist-product obtained from \mathbf{L}^{\prime}. Let further $\pi_{1}: \mathbf{B}^{\prime} \rightarrow \mathbf{L}^{\prime}$ be the projection on the first coordinate, and $\nabla^{\prime}=\left\{c \vee d:(c, d) \in B^{\prime}\right\}$. Then for each NPc-lattice morphism $\mathbf{f}: \mathbf{B} \rightarrow \mathbf{B}^{\prime}$ we obtain a Brouwerian morphism $f: \mathbf{L} \rightarrow \mathbf{L}^{\prime}$ given by

$$
f(a)=\pi_{1}(\mathbf{f}((a, e)))
$$

that satisfies $f(\nabla) \subseteq \nabla^{\prime}$.
Proof. We first observe that if $a \in \nabla$, then there exists $b \leq a$ such that $(a, b) \in B$. Indeed, if $a \in \nabla$ there exists $(c, d) \in B$ such that $a=c \vee d$, then $(c \vee d, c \wedge d)=(c, d) \sqcup \sim(c, d) \in B$ and taking $b=c \wedge d$ we obtain $b \leq a$ and $(a, b) \in B$.

Now we show that ∇ is a regular filter.

- $e \in \nabla$, as $(e, e) \in B$ and $e=e \vee e$.
- if $a, c \in \nabla$, then $a \wedge c \in \nabla$. In fact, by the observation above there exist $b, d \in L$ such that $b \leq$ $a, d \leq c$ and $(a, b),(c, d) \in B$. Then since $(b, e),(d, e)$ are also in $B,(b \wedge d, e) \in B$ and

$$
\begin{aligned}
(a, b) \sqcap((a, b) \rightarrow(b \wedge d, e)) & =(a, b) \sqcap((a \Rightarrow(b \wedge d)) \wedge b, a) \\
& =(a, b) \sqcap(b \wedge(a \Rightarrow d), a) \\
& =(b \wedge d, a),
\end{aligned}
$$

we have $(b \wedge d, a) \in B$, and similarly $(b \wedge d, c) \in B$. Finally $(b \wedge d, a \wedge c)=(b \wedge d, a) \sqcup(b \wedge d, c) \in$ B and as $b \wedge d \leq a \wedge c$ we obtain $a \wedge c \in \nabla$.

- if $a \in \nabla$ and $c \geq a$, again from the observation there exists $b \leq a$ such that $(a, b) \in B$, and as we also have $(c, e) \in B$, we obtain $(c, b)=(a, b) \sqcup(c, e) \in B$, and as $b \leq a \leq c$, we get $c=c \vee b \in \nabla$.
- if $a, b \in L$, then $a \vee(a \Rightarrow b) \in \nabla$, as $(a, e),(b, e) \in B$ and $(a \Rightarrow b, a)=(a, e) \rightarrow(b, e) \in B$.

For the next part, observe that if $\tilde{B}=\{(a, b) \in L \times L: a \vee b \in \nabla\}$, then it is clear that $B \subseteq \tilde{B}$. For the other inclusion take $(a, b) \in \tilde{B}$ with $a, b \in L$. Since B is an algebra that contains all the elements of the form (x, e) with $x \in L$ we have that (e, b) and (e, a) are in B. Then the element $(a \Rightarrow b, a)=(e, b) \rightarrow$ (e, a) is also in B. From the definition of ∇ there exists $(c, d) \in B$ such that $a \vee b=c \vee d$. Hence $(c, d) \sqcap(d, c)=(c \vee d, c \wedge d)=(a \vee b, c \wedge d)$ is also in B. Then

$$
\begin{aligned}
(a \vee b, c \wedge d) \sqcap(a \Rightarrow b, a) \sqcap(e, b) & =((a \wedge(a \Rightarrow b)) \vee(b \wedge(a \Rightarrow b)), a \vee b) \\
& =(b, a \vee b),
\end{aligned}
$$

so $(b, a \vee b) \in B$ and similarly $(a, a \vee b) \in B$. From this we obtain $(a \wedge b, a \vee b) \in B$, and as $(b, a)=$ $(a \vee b, a \wedge b) \sqcap(a \Rightarrow b, a) \in B$, we get what we wanted.

For the last part, take \mathbf{L}^{\prime} another Brouwerian algebra, \mathbf{B}^{\prime} a twist-product obtained from \mathbf{L}^{\prime} and $\mathbf{f}: \mathbf{B} \rightarrow \mathbf{B}^{\prime}$ an NPc-lattice morphism. As \mathbf{f} sends negative cones to negative cones, f is well defined from L to L^{\prime}, and it is also clear that it is a lattice morphism and $f(e)=e$. We now check that it also preserves implication, define $c=f(a), d=f(b)$, then

$$
\begin{aligned}
f(a \Rightarrow b) & =\pi_{1}(\mathbf{f}(a \Rightarrow b, e))=\pi_{1}(\mathbf{f}(((a, e) \rightarrow(b, e)) \sqcap(e, e))) \\
& =\pi_{1}((\mathbf{f}(a, e) \rightarrow \mathbf{f}(b, e)) \sqcap \mathbf{f}(e, e)) \\
& =\pi_{1}(((c, e) \rightarrow(d, e)) \sqcap(e, e))=\pi_{1}(c \Rightarrow d, e) \\
& =f(a) \Rightarrow f(b) .
\end{aligned}
$$

8 NPc-lattices

Finally, if $\nabla^{\prime}=\left\{c \vee d:(c, d) \in B^{\prime}\right\}$, taking $a \vee b \in \nabla$ define $(c, d)=\mathbf{f}(a, b) \in B^{\prime}$ and observe that

$$
\begin{aligned}
\mathbf{f}(a \vee b, e) & =\mathbf{f}(((a, b) \sqcup \sim(a, b)) \sqcap(e, e)) \\
& =(\mathbf{f}(a, b) \sqcup \sim \mathbf{f}(a, b)) \sqcap \mathbf{f}(e, e) \\
& =((c, d) \sqcup(d, c)) \sqcap(e, e) \\
& =(c \vee d, e),
\end{aligned}
$$

so $c \vee d=\pi_{1}(\mathbf{f}(a \vee b, e))=f(a \vee b)$, and thus $f(\nabla) \subseteq \nabla^{\prime}$.
Theorem 3.5
Let \mathbf{B} be an NPc-lattice. Then the set $\nabla=\{(x \vee \sim x) \wedge e: x \in B\}$ is a regular filter in \mathbf{B}^{-}, and

$$
\mathbf{B} \cong \mathbf{T w}\left(\mathbf{B}^{-}, \nabla\right) .
$$

Moreover, if \mathbf{B}^{\prime} is another NPc-lattice, for each NPc-lattice morphism $\mathbf{f}: \mathbf{B} \rightarrow \mathbf{B}^{\prime}$ we obtain a Brouwerian morphism $f: \mathbf{B}^{-} \rightarrow\left(\mathbf{B}^{\prime}\right)^{-}$given by $f=\left.\mathbf{f}\right|_{\mathbf{B}^{-}}$, that satisfies $f(\nabla) \subseteq \nabla^{\prime}$, where $\nabla^{\prime}=\{(y \vee \sim$ $\left.y) \wedge e: y \in B^{\prime}\right\}$.

Proof. As $\mathbf{B} \cong \phi_{\mathbf{B}}(\mathbf{B})$, and the latter is a twist-product of \mathbf{B}^{-}(and \mathbf{B}^{-}is a Brouwerian algebra), the set

$$
\begin{aligned}
\nabla & =\left\{\pi_{1}\left(\phi_{\mathbf{B}}(x)\right) \vee \pi_{2}\left(\phi_{\mathbf{B}}(x)\right): x \in B\right\} \\
& =\{(x \wedge e) \vee(\sim x \wedge e): x \in B\} \\
& =\{(x \vee \sim x) \wedge e: x \in B\}
\end{aligned}
$$

is a regular filter in \mathbf{B}^{-}and

$$
\phi_{\mathbf{B}}(\mathbf{B})=\mathbf{T w}\left(\mathbf{B}^{-}, \nabla\right) .
$$

For the second part, if $\mathbf{f}: \mathbf{B} \rightarrow \mathbf{B}^{\prime}$ is an NPc-lattice morphism, it maps negative cones into negative cones, so f is well defined. To check that it is a Brouwerian algebra morphism only need to see that $f\left(x \Rightarrow_{e} y\right)=f(x) \Rightarrow_{e} f(y)$. To see this, let $x, y \in B^{-}$,

$$
\begin{aligned}
f\left(x \Rightarrow_{e} y\right) & =\mathbf{f}\left(x \Rightarrow_{e} y\right)=\mathbf{f}((x \Rightarrow y) \wedge e) \\
& =\left(\mathbf{f}(x) \Rightarrow_{\mathbf{f}}(y)\right) \wedge e=\mathbf{f}(x) \Rightarrow_{e} \mathbf{f}(y) \\
& =f(x) \Rightarrow_{e} f(y) .
\end{aligned}
$$

Finally, to check that $f(\nabla) \subseteq \nabla^{\prime}$, if $(x \vee \sim x) \wedge e \in \nabla$, then it is clear that if $y=\mathbf{f}(x) \in B^{\prime}$,

$$
\begin{aligned}
f((x \vee \sim x) \wedge e) & =\mathbf{f}((x \vee \sim x) \wedge e) \\
& =(\mathbf{f}(x) \vee \sim \mathbf{f}(x)) \wedge e=(y \vee \sim y) \wedge e \in \nabla^{\prime} .
\end{aligned}
$$

We now obtain a categorical equivalence. Consider the category $\mathbb{N P C}$ of NPc-lattices together with NPc-lattice morphisms, and the category $\mathbb{B} \mathbb{F}$ that has as objects pairs of the form (\mathbf{L}, ∇) where \mathbf{L} is a Brouwerian algebra and $\nabla \subseteq L$ is a regular filter, and as arrows $f:(\mathbf{L}, \nabla) \rightarrow\left(\mathbf{L}^{\prime}, \nabla^{\prime}\right)$ such that $f: \mathbf{L} \rightarrow \mathbf{L}^{\prime}$ is a Brouwerian morphism that satisfies $f(\nabla) \subseteq \nabla^{\prime}$.

Theorem 3.6

The functor $F: \mathbb{B F} \rightarrow \mathbb{N P C}$ that acts on objects as

$$
F((\mathbf{L}, \nabla))=\mathbf{T w}(\mathbf{L}, \nabla)
$$

and on arrows, for $f:(\mathbf{L}, \nabla) \rightarrow\left(\mathbf{L}^{\prime}, \nabla^{\prime}\right)$ obtaining $F(f): \mathbf{T w}(\mathbf{L}, \nabla) \rightarrow \mathbf{T w}\left(\mathbf{L}^{\prime}, \nabla^{\prime}\right)$ given by

$$
F(f)(x, y)=(f(x), f(y)),
$$

gives an equivalence of categories.
Proof. F is well defined from Theorems 3.3 and 3.4, and it is clearly functorial, as $F\left(\mathrm{id}_{(\mathbf{L}, \nabla)}\right)=$ $\operatorname{id}_{F((\mathbf{L}, \nabla))}$, and for arrows $g:(\mathbf{L}, \nabla) \rightarrow\left(\mathbf{L}^{\prime}, \nabla^{\prime}\right)$ and $f:\left(\mathbf{L}^{\prime}, \nabla^{\prime}\right) \rightarrow\left(\mathbf{L}^{\prime \prime}, \nabla^{\prime \prime}\right)$, if $(x, y) \in \mathbf{T w}(\mathbf{L}, \nabla)$,

$$
\begin{aligned}
F(f \circ g)(x, y) & =(f \circ g(x), f \circ g(y)) \\
& =F(f)(g(x), g(y)) \\
& =F(f) \circ F(g)(x, y) .
\end{aligned}
$$

Now, to prove it is an equivalence of categories, we will prove that F is full, faithful and essentially surjective:

- full. Let $\mathbf{f}: \mathbf{T w}(\mathbf{L}, \nabla) \rightarrow \mathbf{T w}\left(\mathbf{L}^{\prime}, \nabla^{\prime}\right)$ be an NPc-lattice morphism. Take $f(x)=\pi_{1}(\mathbf{f}(x, e))$, for $x \in L$. From Theorem 3.4, it is a morphism from (\mathbf{L}, ∇) to $\left(\mathbf{L}^{\prime}, \nabla^{\prime}\right)$, let us see now that $\mathbf{f}=F(f)$. In the negative cone, it is clear that $\mathbf{f}(x, e)=(f(x), e)=F(f)(x, e)$. Then, as they are NPc-lattice morphisms, they must be equal everywhere. Indeed, if $\mathbf{g}, \mathbf{h}: \mathbf{B} \rightarrow \mathbf{B}^{\prime}$ are NPc-lattice morphisms such that $\mathbf{g}(x \wedge e)=\mathbf{h}(x \wedge e)$, for each $x \in B$, then if $y=\mathbf{g}(x)$ and $z=\mathbf{h}(x)$, from $y \wedge e=\mathbf{g}(x \wedge e)=$ $\mathbf{h}(x \wedge e)=z \wedge e$ and $\sim y \wedge e=\mathbf{g}(\sim x \wedge e)=\mathbf{h}(\sim x \wedge e)=\sim z \wedge e$ we obtain $y=z$, as NPc-lattices satisfy the quasiequation (7).
- faithful. If $F(f): \mathbf{T w}(\mathbf{L}, \nabla) \rightarrow \mathbf{T w}\left(\mathbf{L}^{\prime}, \nabla^{\prime}\right)$ and $F(g): \mathbf{T w}(\mathbf{L}, \nabla) \rightarrow \mathbf{T w}\left(\mathbf{L}^{\prime}, \nabla^{\prime}\right)$ satisfy $F(f)=$ $F(g)$, in particular they coincide on the negative cone, $(f(x), e)=F(f)(x, e)=F(g)(x, e)=$ $(g(x), e)$ for all $x \in L$, so $f=g$.
- essentially surjective. From Theorem 3.5, every object \mathbf{B} on $\mathbb{N P C}$ satisfies $\mathbf{B} \cong \mathbf{T w}\left(\mathbf{B}^{-}, \nabla\right)$.

Lemma 3.7

In the category $\mathbb{B F}$, finite products are given coordinatewise. That is, if $\left(\mathbf{L}_{1}, \nabla_{1}\right), \ldots,\left(\mathbf{L}_{n}, \nabla_{n}\right)$ are objects in $\mathbb{B} \mathbb{F}$, then

$$
\prod_{i=1}^{n}\left(\mathbf{L}_{i}, \nabla_{i}\right) \cong\left(\prod_{i=1}^{n} \mathbf{L}_{i}, \prod_{i=1}^{n} \nabla_{i}\right)
$$

where $\prod_{i=1}^{n} L_{i}$ and $\prod_{i=1}^{n} \nabla_{i}$ are products in the category of Brouwerian algebras (filters are subalgebras, products are defined as set-products with operations defined pointwise), and projections coincide with the projections in $\prod_{i=1}^{n} \mathbf{L}_{i}$.
Proof. It suffices to prove the result for $n=2$. Let $\left(L_{1}, \nabla_{1}\right),\left(L_{2}, \nabla_{2}\right)$ be objects in $\mathbb{B} \mathbb{F}$, take $L=L_{1} \times L_{2}$, $\nabla=\nabla_{1} \times \nabla_{2}$ and $\pi_{i}=\pi_{i}^{L}$, where π_{i}^{L} is the projection from L onto L_{i}, for $i=1,2$. Clearly ∇ is a filter and contains all the dense elements, as operations are given coordinatewise. Then π_{1}, π_{2} are clearly

10 NPc-lattices

morphisms in $\mathbb{B} \mathbb{F}$, as they are morphisms in the category \mathbb{B} of Brouwerian algebras, and besides $\pi_{i}(\nabla)=\pi_{i}^{L}\left(\nabla_{1} \times \nabla_{2}\right)=\nabla_{i}$.
Let $\left(L^{\prime}, \nabla^{\prime}\right)$ be another object in $\mathbb{B F}$ and take $f_{i}:\left(L^{\prime}, \nabla^{\prime}\right) \rightarrow\left(L_{i}, \nabla_{i}\right)$ morphisms. Define $f: L^{\prime} \rightarrow L$ by $f\left(x^{\prime}\right)=\left(f_{1}\left(x^{\prime}\right), f_{2}\left(x^{\prime}\right)\right)$ for $x^{\prime} \in L^{\prime}$, we will show that it is a morphism in $\mathbb{B} \mathbb{F}$ and that $\pi_{i} \circ f=f_{i}$. The fact that it is a morphism in \mathbb{B} and that $\pi_{i} \circ f=f_{i}$ follow from the fact that L is the product of L_{1} and L_{2} in the category of Brouwerian algebras, we only need to show that it is a morphism in $\mathbb{B} \mathbb{F}$. To see this, observe that $f\left(\nabla^{\prime}\right)=\left\{\left(f_{1}\left(x^{\prime}\right), f_{2}\left(x^{\prime}\right)\right): x^{\prime} \in L^{\prime}\right\} \subseteq f_{1}\left(\nabla^{\prime}\right) \times f_{2}\left(\nabla^{\prime}\right)$, but as $f_{i}\left(\nabla^{\prime}\right) \subseteq \nabla_{i}$, we obtain that $f\left(\nabla^{\prime}\right) \subseteq \nabla_{1} \times \nabla_{2}=\nabla$.

Theorem 3.8
In the category $\mathbb{N P} \mathbb{C}$, finite products are characterized as follows: let $\mathbf{B}_{1}, \ldots, \mathbf{B}_{n}$ be objects in $\mathbb{N P} \mathbb{C}$ and for each i, let ∇_{i} be the regular filter in B_{i}^{-}such that $\mathbf{B}_{i} \cong \mathbf{T w}\left(\mathbf{B}_{i}^{-}, \nabla_{i}\right)$. Then

$$
\prod_{i=1}^{n} \mathbf{B}_{i} \cong \mathbf{T w}\left(\prod_{i=1}^{n} \mathbf{B}_{i}^{-}, \prod_{i=1}^{n} \nabla_{i}\right) .
$$

Proof. This follows from Lemma 3.7 and the fact that $\mathbb{N P C}$ and $\mathbb{B F}$ are categorically equivalent.

4 Gödel hoops and Gödel NPc-lattices

A Gödel hoop is a Brouwerian algebra satisfying the prelinearity equation $(x \Rightarrow y) \vee(y \Rightarrow x)=e$. Every linearly ordered set can be equipped with a structure of Gödel hoop in a unique way. We denote by $[0,1]_{\mathbf{G}}$ the Gödel hoop on $[0,1]$ and by \mathbf{G}_{n} the finite linearly ordered Gödel hoop with n elements. Gödel hoops form a variety that is generated by $[0,1]_{\mathbf{G}}$. Given a Gödel hoop $\mathbf{G}=(G, \vee, \wedge, *, \Rightarrow, e)$ and a new element \perp, we extend operations of \mathbf{G} on $G \cup\{\perp\}$ by setting \perp smaller than all the elements of G and $x * \perp=\perp=\perp * \perp=\perp * x, x \Rightarrow \perp=\perp, \perp \Rightarrow x=e=\perp \Rightarrow \perp$ for every $x \in G$. Then $\mathbf{G}_{\perp}=(G \cup\{\perp\}, \vee, \wedge, *, \Rightarrow, e)$ is a Gödel hoop which is lower bounded.

Definition 4.1
A Gödel NPc-lattice is a NPc-lattice satisfying the equation

$$
(((x \wedge e) \rightarrow y) \vee((y \wedge e) \rightarrow x)) \wedge e=e .
$$

Then, as a consequence of Theorem 3.6 we have the following.

Theorem 4.2

The restriction of the functor F to the category $\mathbb{G} \mathbb{H} \mathbb{F}$ of pairs consisting of Gödel hoops and regular filters, gives an equivalence of categories between $\mathbb{G H} \mathbb{H}$ and the full subcategory $\mathbb{G N P C}$ of $\mathbb{N P C}$ having Gödel NPc-lattices as objects.

4.1 Duality for Gödel hoops

In [1] it is shown that the category of finite Gödel hoops is dually equivalent to the category $\mathcal{T}_{\text {fin }}$ of finite trees and open maps. We recall here some details of such construction. A forest is a poset F such that $\downarrow x=\{y \in F \mid y \leq x\}$ is totally ordered for any $x \in F$. If P is a poset, by P_{\perp} we denote the poset obtained by adding a new bottom element \perp to P. A tree is a forest with a minimum element
(the root of the tree), hence for each forest F, F_{\perp} is a tree. We hence denote by \emptyset_{\perp} the singleton tree only consisting of its root. Given a tree T we denote by T^{\uparrow} the unique forest such that $T=\left(T^{\uparrow}\right)_{\perp}$.
A downset (i.e. a downward closed set) of a forest (tree) is itself a forest (tree), and we shall call it a subforest (subtree) of F.
Given two forests F and G, an order preserving map $f: F \rightarrow G$ is open if $x^{\prime} \leq f(x)$ in G implies that there exists $y \leq x$ in F such that $f(y)=x^{\prime}$. Open maps carry downsets to downsets.
We denote by $\mathcal{F}_{\text {fin }}$ and $\mathcal{T}_{\text {fin }}$ the category of finite forests and finite trees, respectively, with open maps.
In $\mathcal{F}_{\text {fin }}$ the coproduct, denoted by + from here on, is just the disjoint union, whereas in $\mathcal{T}_{\text {fin }}$ it is given by

$$
S \oplus T \cong\left(S^{\uparrow}+T^{\uparrow}\right)_{\perp}
$$

(i.e. all roots merge in a single root). It is clear that \emptyset_{\perp} is the neutral element of the coproduct (that is, the initial object) in $\mathcal{T}_{\text {fin }}$.

Given two trees S and T, their product in the category $\mathcal{T}_{\text {fin }}$ of finite trees coincide with the product in the category $\mathcal{F}_{\text {fin }}$ of finite forests, and it can be calculated by the following recursive laws [2]:

- $\emptyset_{\perp} \times T \cong T$ (i.e. \emptyset_{\perp} is the neutral element of the product, being the terminal object, in both $\mathcal{T}_{\text {fin }}$ and $\mathcal{F}_{\text {fin }}$);
- $S \times T \cong\left(S^{\uparrow} \times T+S^{\uparrow} \times T^{\uparrow}+S \times T^{\uparrow}\right)_{\perp}$;
- If F, G, H are finite forests, $(F+G) \times H \cong(F \times H)+(G \times H)$.

Then the projection maps π_{S} and π_{T} are recursively defined as follows (we focus on π_{S}, the other projection being analogous): if $x \in S \times T$ then either x is the root of $S \times T$ and in this case we set $\pi_{S}(x)$ equal to the root of S, or $x \in S^{\uparrow} \times T+S^{\uparrow} \times T^{\uparrow}+S \times T^{\uparrow}$. In turns, if $x \in S^{\uparrow} \times T+S^{\uparrow} \times T^{\uparrow}$ then we set $\pi_{S}(x)=\iota_{S}\left(\pi_{S \uparrow}(x)\right)$, where ι_{S} is the inclusion function of S^{\uparrow} in S and $\pi_{S \uparrow}$ is the projection function of $S^{\uparrow} \times T$ or $S^{\uparrow} \times T^{\uparrow}$. If $x \in S \times T^{\uparrow}$ then $\pi_{S}(x)$ coincides with the projection function in S of the product $S \times T^{\uparrow}$.

Note that an atom x of $S \times T$ satisfies that either $\pi_{S}(x)$ is the root of S and $\pi_{T}(x)$ is an atom of T, or $\pi_{S}(x)$ is an atom of S and $\pi_{T}(x)$ is the root of T; or both $\pi_{S}(x)$ and $\pi_{T}(x)$ are atoms of S and T respectively.

Theorem 4.3

[1] The category $\mathcal{T}_{\text {fin }}$ is dually equivalent to the category $\mathbb{G}_{\mathbb{H}_{f i n}}$ of finite Gödel hoops and (Brouwerian) morphisms.

The duality is given by the functor Spec^{*} that sends a Gödel hoop \mathbf{L} to its prime filter tree $(\operatorname{Spec}(\mathbf{L}))_{\perp}$ (identifying L with the root of the tree, that is $\operatorname{Spec}^{*}(L)=\{\mathfrak{p}: \mathfrak{p}$ is a prime filter of L or $\mathfrak{p}=L\}$), and given a morphism $f: \mathbf{L} \rightarrow \mathbf{L}^{\prime}$, its image under the functor is $f^{-1}:\left(\operatorname{Spec}\left(\mathbf{L}^{\prime}\right)\right)_{\perp} \rightarrow(\operatorname{Spec}(\mathbf{L}))_{\perp}$.
We recall from [1, Thm. 4.3.1] that the free Gödel hoop $\operatorname{Free}_{\mathbb{G H}}(n)$ over n generators is inductively defined as follows: Free $\mathbb{G H H}^{(1)}=\mathbf{G}_{2}$ and

$$
\begin{equation*}
\operatorname{Free}_{\mathbb{G H}}(n)=\prod_{i=0}^{n-1} \operatorname{Free}_{\mathbb{G} H}(i)_{\perp}^{\binom{n}{i}} \tag{12}
\end{equation*}
$$

Finally, from [1, Theorem 4.3.1] we have that the dual of the free Gödel hoop over n generators

$$
H_{n}=\operatorname{Spec}^{*}\left(\operatorname{Free}_{\mathbb{G} H}(n)\right)
$$

12 NPc-lattices

Figure 1. A tree and all of its atomic upward closed subtrees.
is given by $H_{0}=\emptyset_{\perp}$ and

$$
H_{n}=\left(\sum_{i=0}^{n-1}\binom{n}{i} H_{i}\right)_{\perp},
$$

where the sum here is taken as the coproduct in forest (i.e. the disjoint union).

4.2 Duality for Gödel NPc-lattices

To establish a duality for Gödel NPc-lattices, we will introduce another category, consisting of pairs of trees, as follows.

Definition 4.4
Given a finite tree T, a subtree t of T is an atomic upward closed subtree of T if t contains the root of T and whenever an atom a of T belongs to t and $b \in T$ with $b \geq a$, then $b \in t$.
We consider the following category denoted by $\mathcal{T}_{t, \text { fin }}$: objects are pairs (T, t) where T is a finite tree and t is an atomic upward closed subtree of T; arrows $\phi:(T, t) \rightarrow\left(T^{\prime}, t^{\prime}\right)$ are open maps $\phi: T \rightarrow T^{\prime}$ such that $\phi(t) \subseteq t^{\prime}$.

In contrast with general embeddings of subtrees, note that if T is a tree and t is another tree embeddable in T in such a way that its image is an atomic upward closed subtree of T, then this embedding is unique up to isomorphism. See Fig. 1 and Fig. 2 for examples. Notice further that given a tree T, the only atomic upward closed subtrees of T_{\perp} are \emptyset_{\perp} (that is the root of T_{\perp}) and T_{\perp} itself.

Theorem 4.5

$\mathcal{T}_{t, f i n}$ is the dual of the category $\mathbb{G N P P}_{\text {fin }}$ of finite Gödel NPc-lattices.
Proof. Since $\mathbb{G N P}_{\text {fin }}$ is equivalent to the category $\mathbb{G H P}_{f i n}$ of pairs of finite Gödel hoops and regular filters (Theorem 4.2), it is enough to see the duality of $\mathcal{T}_{t, f i n}$ and $\mathbb{G H} \mathbb{F}_{\text {fin }}$. As the functor Spec* gives the dual isomorphism with $\mathbb{G} \mathbb{H}_{f i}$, we only need to check that it is well-behaved with respect to atomic upward closed subtrees and regular filters.
Given a regular filter ∇, define

$$
t(\nabla)=\{\mathfrak{p} \in \operatorname{Spec}(L): \exists \mathfrak{m} \in \operatorname{Spec}(L), \nabla \subseteq \mathfrak{m}, \mathfrak{p} \subseteq \mathfrak{m}\}_{\perp},
$$

(observe that if $\nabla=L$, then $t(\nabla)=\emptyset_{\perp}=\{L\}$). Clearly $t(\nabla)$ is an atomic upward closed subtree of Spec $^{*}(L)$ with the order \supseteq (the filters \mathfrak{m} are the maximals of L or all of L, i.e. they are atoms or the root of $\operatorname{Spec}^{*}(L)$). From Corollary 2.4, one can recover ∇ from $t(\nabla)$,

$$
\nabla=\cap\{\mathfrak{m} \in t(\nabla): \mathfrak{m} \text { is the root or an atom of } t(\nabla)\} .
$$

We now define

$$
\operatorname{Spec}^{*}(\mathbf{L}, \nabla)=\left(\operatorname{Spec}^{*}(\mathbf{L}), t(\nabla)\right) .
$$

We still need to check that it is well-behaved with respect to arrows. Let $f: L \rightarrow L^{\prime}$ be a (Brouwerian) morphism and let ∇, ∇^{\prime} be regular filters in L and L^{\prime}, respectively. We will check that $f(\nabla) \subseteq \nabla^{\prime}$ if and only if $f^{-1}\left(t\left(\nabla^{\prime}\right)\right) \subseteq t(\nabla)$, so Spec* sends arrows in $\mathbb{G F}_{\text {fin }}$ into arrows in $\mathcal{T}_{t, f i n}$, and vice-versa.

- If $f(\nabla) \subseteq \nabla^{\prime}$, then $\nabla \subseteq f^{-1}\left(\nabla^{\prime}\right)$. Now if $\mathfrak{p}^{\prime} \in t\left(\nabla^{\prime}\right)$, we should check that $f^{-1}\left(\mathfrak{p}^{\prime}\right) \in t(\nabla)$. This is clear if \mathfrak{p}^{\prime} is the root or an atom of $t\left(\nabla^{\prime}\right)$, as $\nabla^{\prime} \subseteq \mathfrak{p}^{\prime}$ so by hypothesis $f(\nabla) \subseteq \mathfrak{p}^{\prime}$, which in turn gives $\nabla \subseteq f^{-1}\left(\mathfrak{p}^{\prime}\right)$ and therefore $f^{-1}\left(\mathfrak{p}^{\prime}\right) \in t(\nabla)\left(\right.$ as f^{-1} is an open map, $f^{-1}\left(\mathfrak{p}^{\prime}\right)$ is the root or an atom of $\operatorname{Spec}^{*}\left(L^{\prime}\right)$). Now, if \mathfrak{p}^{\prime} is not the root or an atom, let \mathfrak{m}^{\prime} be the unique atom (maximal filter) such that $\mathfrak{p}^{\prime} \subseteq \mathfrak{m}^{\prime}$. As $\mathfrak{m}^{\prime} \in t\left(\nabla^{\prime}\right)$ is an atom, we just proved that $f^{-1}\left(\mathfrak{m}^{\prime}\right) \in t(\nabla)$, but as $f^{-1}\left(\mathfrak{p}^{\prime}\right) \subseteq f^{-1}\left(\mathfrak{m}^{\prime}\right)$ the fact that $t(\nabla)$ is an atomic upward closed subtree gives us $f^{-1}\left(\mathfrak{p}^{\prime}\right) \in t(\nabla)$.
- If $f^{-1}\left(t\left(\nabla^{\prime}\right)\right) \subseteq t(\nabla)$, we need to check that $f(\nabla) \subseteq \nabla^{\prime}$, or equivalently that $\nabla \subseteq f^{-1}\left(\nabla^{\prime}\right)$. As

$$
\nabla^{\prime}=\cap\left\{\mathfrak{m}^{\prime} \in t\left(\nabla^{\prime}\right): \mathfrak{m}^{\prime} \text { is the root or an atom of } t\left(\nabla^{\prime}\right)\right\},
$$

we have that

$$
f^{-1}\left(\nabla^{\prime}\right)=\cap\left\{f^{-1}\left(\mathfrak{m}^{\prime}\right): \mathfrak{m}^{\prime} \text { is the root or an atom of } t\left(\nabla^{\prime}\right)\right\} .
$$

By hypothesis, each of these \mathfrak{m}^{\prime} satisfies $f^{-1}\left(\mathfrak{m}^{\prime}\right) \in t(\nabla)$, and as they are the root or an atom of $t(\nabla)\left(f^{-1}\right.$ being an open map), we have $\nabla \subseteq f^{-1}\left(\mathfrak{m}^{\prime}\right)$ and we conclude $\nabla \subseteq f^{-1}\left(\nabla^{\prime}\right)$.
The functor $S: \mathbb{G N P} \mathbb{C}_{f i n} \rightarrow \mathcal{T}_{t, \text { fin }}$ obtained as composition of $F^{-1}: \mathbb{G N P}_{\text {fin }} \rightarrow \mathbb{G H}^{H} \mathbb{F}_{\text {fin }}$ of Theorem 4.2 and Spec* $: \mathbb{G H} \mathbb{F}_{f i n} \rightarrow \mathcal{T}_{t, \text { fin }}$ is the desired duality.

In the category $\mathcal{T}_{t, f i n}$, the coproduct is given coordinatewise, i.e.

$$
(S, s) \oplus(T, t) \cong(S \oplus T, s \oplus t) .
$$

This fact can be easily proven directly, but it is also a consequence of Theorem 3.8.
To define the product in the category $\mathcal{T}_{t, \text { fin }}$, first observe that for any (S, s) in $\mathcal{T}_{t, \text { fin }}$

$$
(S, s) \times\left(\emptyset_{\perp}, \emptyset_{\perp}\right) \cong(S, s)
$$

as $\left(\emptyset_{\perp}, \emptyset_{\perp}\right)$ is the terminal object in $\mathcal{T}_{t, \text { fin }}$. Now set, for every other (T, t) in $\mathcal{T}_{t, \text { fin }}$,

$$
r=\left(\left(s^{\uparrow} \times T\right)+\left(s^{\uparrow} \times t^{\uparrow}\right)+\left(S \times t^{\uparrow}\right)\right)_{\perp}
$$

and we are going to prove that

$$
(S, s) \times(T, t) \cong(S \times T, r) .
$$

Proposition 4.6
With the notation as before, r is an atomic upward closed subtree of $S \times T$.

14 NPC-lattices

Figure 2. The dual in $\mathbb{G}_{\mathbb{H}_{f i n}}$ of the tree in Figure 1 and all of its regular filters, in correspondence to its atomic upward closed subtrees.

Proof. Clearly r is a subtree of $S \times T$ and the set of atoms of r is $\{a \in r \mid a$ is an atom of $S \times T\}$.
Let us denote by a^{0} and b^{0} the roots of S and T (hence of s and t) and by $a_{1}^{1}, \ldots, a_{n}^{1}$ and $b_{1}^{1}, \ldots, b_{m}^{1}$ the atoms of s and t, respectively. If x is an atom of $S \times T$ and $x \in r$, then x is the root of a tree in one of the forests $s^{\uparrow} \times T$ or $s^{\uparrow} \times t^{\uparrow}$ or $S \times t^{\uparrow}$. Suppose x is the root of a tree in $s^{\uparrow} \times T$ hence the root of a tree in $S^{\uparrow} \times T$. Then $\pi_{T}(x)=b^{0}$ while $\pi_{S}(x)=a_{i}^{1}$ for some $i \in\{1, \ldots, n\}$. Now if $y \geq x$ and $y \in S \times T$, then it must be $\pi_{T}(y) \geq b^{0}$ and $\pi_{S}(y) \geq a_{i}^{1}$, hence $\pi_{T}(y) \in T$ and $\pi_{S}(y) \in s^{\uparrow}$ and so $y \in s^{\uparrow} \times T \subseteq r$. The other cases are similar, hence r is an atomic upward closed subtree of $S \times T$.
Theorem 4.7
($S \times T, r$) is the product of (S, s) and (T, t) in the category $\mathcal{T}_{t, f i n}$.
Proof. Note that the projection map $\pi_{S}: S \times T \rightarrow S$ is such that $\pi_{S}(r) \subseteq s$, hence it is a map in the category $\mathcal{T}_{t, f i n}$ and we set $\pi_{(S, s)}=\pi_{S}$. Analogously, we set $\pi_{(T, t)}=\pi_{T}$.

The proof follows by the properties of product in the category $\mathcal{T}_{\text {fin }}$.

5 Free GNPc-lattices

Theorem 5.1

Let $[0,1]_{\mathbf{G}}$ denote the standard Gödel hoop over the real interval $[0,1]$. The variety $\mathbb{G N P P}$ of Gödel NPc-lattices is generated by the full twist product $\mathbf{K}\left([0,1]_{\mathbf{G}}\right)$.

Proof. We have to prove that given two terms τ, γ in the language of NPc-lattices, an equation $\tau=\gamma$ holds in $\mathbb{G N P P}$ if and only if it holds in $\mathbf{K}\left([0,1]_{\mathbf{G}}\right)$. One direction is immediate, since $\mathbf{K}\left([0,1]_{\mathbf{G}}\right) \in$ $\mathbb{G N P P}$. For the other direction, recall that if $\tau\left(x_{1}, \ldots, x_{n}\right)$ is a term in the language of NPc-lattices there are unique terms τ^{1}, τ^{2} in the language of Gödel hoops such that if $\mathbf{A} \in \mathbb{G N P} \mathbb{C}$, then replacing x_{i} by the pair of variables $\left(y_{i}, z_{i}\right)$ we get

$$
\tau_{\mathbf{K}\left(\mathbf{A}^{-}\right)}\left(x_{1}, \ldots x_{n}\right)=\tau_{\mathbf{K}\left(\mathbf{A}^{-}\right)}\left(\left(y_{1}, z_{1}\right), \ldots\left(y_{n}, z_{n}\right)\right)
$$

and

$$
\tau_{\mathbf{K}\left(\mathbf{A}^{-}\right)}\left(\left(y_{1}, z_{1}\right), \ldots\left(y_{n}, z_{n}\right)\right)=\left(\tau_{\mathbf{A}^{-}}^{1}\left(y_{1}, z_{1}, \ldots, y_{n}, z_{n}\right), \tau_{\mathbf{A}^{-}}^{2}\left(y_{1}, z_{1}, \ldots, y_{n}, z_{n}\right)\right) .
$$

Now assume that $\tau=\gamma$ does not hold in $\mathbb{G N P C}$ and let $\tau^{1}, \tau^{2}, \gamma^{1}, \gamma^{2}$ be the corresponding terms in the language of Gödel hoops. Then there is an algebra \mathbf{A} in $\mathbb{G N P \mathbb { C }}$ and elements $a_{1}, \ldots a_{n} \in A$ such that

$$
\tau_{\mathbf{A}}\left(a_{1}, \ldots, a_{n}\right) \neq \gamma_{\mathbf{A}}\left(a_{1}, \ldots, a_{n}\right)
$$

Since \mathbf{A} can be identified with a subalgebra of the full twist-product $\mathbf{K}\left(\mathbf{A}^{-}\right)$(see Theorem 3.2) there are elements $b_{1}, c_{1}, b_{2}, c_{2}, \ldots, b_{n}, c_{n} \in A^{-}$such that if $a_{i}=\left(b_{i}, c_{i}\right)$ for each $i=1, \ldots, n$ one of the equations

$$
\tau_{\mathbf{A}^{-}}^{1}\left(b_{1}, c_{1} \ldots, b_{n}, c_{n}\right)=\gamma_{\mathbf{A}^{-}}^{1}\left(b_{1}, c_{1} \ldots, b_{n}, c_{n}\right)
$$

or

$$
\tau_{\mathbf{A}^{-}}^{2}\left(b_{1}, c_{1} \ldots, b_{n}, c_{n}\right)=\gamma_{\mathbf{A}^{-}}^{2}\left(b_{1}, c_{1} \ldots, b_{n}, c_{n}\right)
$$

does not hold in \mathbf{A}^{-}. But since \mathbf{A}^{-}is in the variety of Gödel hoops and this variety is generated by $[0,1]_{\mathbf{G}}$, we can assert that there are elements $f_{1}, g_{1}, \ldots, f_{n}, g_{n}$ in $[0,1]_{\mathbf{G}}$ such that either

$$
\tau_{\mathbf{A}^{-}}^{1}\left(f_{1}, g_{1}, \ldots, f_{n}, g_{n}\right) \neq \gamma_{\mathbf{A}^{-}}^{1}\left(f_{1}, g_{1}, \ldots, f_{n}, g_{n}\right)
$$

or

$$
\tau_{\mathbf{A}^{-}}^{2}\left(f_{1}, g_{1}, \ldots, f_{n}, g_{n}\right) \neq \gamma_{\mathbf{A}^{-}}^{2}\left(f_{1}, g_{1}, \ldots, f_{n}, g_{n}\right) .
$$

Take $d_{i}=\left(f_{i}, g_{i}\right) \in\left([0,1]_{\mathbf{G}}\right)^{2}$ and $\mathbf{B}=\mathbf{K}\left([0,1]_{\mathbf{G}}\right)$ and we get

$$
\tau_{\mathbf{B}}\left(d_{1}, \ldots, d_{n}\right) \neq \gamma_{\mathbf{B}}\left(d_{1}, \ldots, d_{n}\right)
$$

Therefore the equation $\tau=\gamma$ does not hold in $\mathbf{K}\left([0,1]_{\mathbf{G}}\right)$.
The following is a well known result of universal algebra.
Theorem 5.2
([11, Chapter IV, Theorem 3.13]) If a variety \mathcal{V} of algebras is generated by an algebra \mathbf{A}, then the free algebra in \mathcal{V} with α generators is isomorphic to the subalgebra of functions $f: \mathbf{A}^{\alpha} \rightarrow \mathbf{A}$ generated by the projection functions.

5.1 The case of one generator

We intend to use Theorem 5.1 and Theorem 5.2 to describe the free Gödel NPc-lattice with one generator Free ${ }_{G N P \mathbb{C}}(1)$.

Now, the carrier of $\mathbf{K}\left([0,1]_{\mathbf{G H}}\right)$ is just $[0,1]^{2}$, so we have to characterize exactly the class of functions $\left\{f:[0,1]^{2} \rightarrow[0,1]^{2}\right\}$ generated, with the pointwise operations of $\mathbf{K}\left([0,1]_{\mathbf{G H}}\right)$, by the identity function $(a, b) \mapsto(a, b)$. This is equivalent to the determination of all functions $f:[0,1]^{2} \rightarrow$ $[0,1]^{2}$ such that there is a term τ in one variable such that $f(a, b)=\tau(a, b)$ for all $(a, b) \in[0,1]^{2}$. We first prove some necessary results taking finite subalgebras of the Gödel hoop $[0,1]$:

Lemma 5.3
Consider the three-element Gödel chain $\mathbf{G}_{3}=\{a, b, 1\}$ with $a<b<1$. Then the Gödel NPc-lattices respectively generated by the elements (a, b) or (b, a), i.e. the smallest subalgebras of the full-twist $\mathbf{K}\left(\mathbf{G}_{3}\right)$ respectively containing the elements (a, b) or (b, a), are in both cases $\mathbf{T w}\left(\mathbf{G}_{3},\{b, 1\}\right)$, whose carrier is $K\left(\mathbf{G}_{3}\right) \backslash\{(a, a)\}$. Moreover, they coincide with the Gödel NPc-lattice generated by the elements $(a, 1)$ and $(b, 1)$.

16 NPc-lattices

Proof. First notice that the carrier of $\mathbf{T w}\left(\mathbf{G}_{3},\{b, 1\}\right)$ is clearly $K\left(\mathbf{G}_{3}\right) \backslash\{(a, a)\}$. Let us focus on (a, b) and let $\langle(a, b)\rangle$ be the subalgebra generated by (a, b). As $K\left(\mathbf{G}_{3}\right) \backslash\{(a, a)\}$ is a subalgebra and contains the element (a, b), for it is the twist-product $\operatorname{Tw}\left(\mathbf{G}_{3}, \nabla\right)$ with $\nabla=\{b, 1\}$, it only remains to be shown that every element of $K\left(\mathbf{G}_{3}\right)$ different from (a, a) belongs to $\langle(a, b)\rangle$.

- $(1,1),(a, b) \in\langle(a, b)\rangle$ trivially.
- $(b, a) \in\langle(a, b)\rangle$, as $(b, a)=\sim(a, b)$.
- $(a, 1) \in\langle(a, b)\rangle$, as $(a, 1)=(a, b) \sqcap(1,1)$.
- $(1, a) \in\langle(a, b)\rangle$, as $(1, a)=\sim(a, 1)$.
- $(b, 1) \in\langle(a, b)\rangle$, as $(b, 1)=(b, a) \sqcap(1,1)$.
- $(1, b) \in\langle(a, b)\rangle$, as $(1, b)=\sim(b, 1)$.
- $(b, b) \in\langle(a, b)\rangle$, as $(b, b)=(a, b) \sqcup(b, 1)$.

For the other part, $(a, 1),(b, 1) \in\langle(a, b)\rangle$, and as $(b, 1) \rightarrow(a, 1)=(a, b)$, the result follows. The case $\langle(b, a)\rangle$ is promptly settled by noticing that $(a, b)=\sim(b, a)$.

Lemma 5.4

Consider the two-element Gödel chain $\mathbf{G}_{2}=\{a, 1\}$ with $a<1$. Then:
(1) The Gödel NPc-lattice generated by the element (a, a) is $\mathbf{K}\left(\mathbf{G}_{2}\right)$.
(2) The smallest subalgebras of the full-twist $\mathbf{K}\left(\mathbf{G}_{2}\right)$ generated either by the element ($a, 1$) or by $(1, a)$, are both isomorphic with $\mathbf{T w}\left(\mathbf{G}_{2},\{1\}\right)$ whose carrier is $K\left(\mathbf{G}_{2}\right) \backslash\{(a, a)\}$.

Proof. 1) Just notice that $(a, a) \sqcap(1,1)=(a, 1)$ and $(a, a) \sqcup(1,1)=(1, a)$.
2) As in Lemma 5.3, $(a, a) \notin\langle(a, 1)\rangle$. The rest follows trivially by $(1, a)=\sim(a, 1)$. Clearly, the carrier of $\mathbf{T w}\left(\mathbf{G}_{2},\{1\}\right)$ is $K\left(\mathbf{G}_{2}\right) \backslash\{(a, a)\}$.

We shall now determine the structure of the free Gödel NPc-lattice over one generator. The result hinges on the characterization given in [17] of the free prelinear Heyting algebras (or, Gödel algebras) as algebras of $[0,1]$-valued functions.

Lemma 5.5
In the variety $\mathbb{G N P C}$, the algebra Free $_{G N P P C}(1)$ embeds into the following product:

$$
\operatorname{Tw}\left(\mathbf{G}_{3}, \mathbf{G}_{2}\right) \times \operatorname{Tw}\left(\mathbf{G}_{2}, \mathbf{G}_{2}\right) \times \operatorname{Tw}\left(\mathbf{G}_{3}, \mathbf{G}_{2}\right) .
$$

Proof. Consider the following subsets of $[0,1]^{2}: A=\left\{(a, b) \in[0,1]^{2}, a<b\right\}, B=\left\{(a, b) \in[0,1]^{2}, a=\right.$ $b\}, C=\left\{(a, b) \in[0,1]^{2}, a>b\right\}$. Clearly, $\{A, B, C\}$ forms a partition of $[0,1]^{2}$.
Now, pick two distinct points $\left(a_{1}, b_{1}\right),\left(a_{1}^{\prime}, b_{1}^{\prime}\right) \in A$, with $b_{1} \neq 1 \neq b_{1}^{\prime}$. By Lemma 5.3, the algebras $\left\langle\left(a_{1}, b_{1}\right)\right\rangle,\left\langle\left(a_{1}^{\prime}, b_{1}^{\prime}\right)\right\rangle$ singly generated by these two points are isomorphic. Moreover, the function from $\left\langle\left(a_{1}, b_{1}\right)\right\rangle$ into $\left\langle\left(a_{1}, b_{1}\right)\right\rangle \times\left\langle\left(a_{1}^{\prime}, b_{1}^{\prime}\right)\right\rangle$ that maps $\left(a_{1}, b_{1}\right)$ to $\left(\left(a_{1}, b_{1}\right),\left(a_{1}^{\prime}, b_{1}^{\prime}\right)\right)$ yields an isomorphism

$$
\left\langle\left(a_{1}, b_{1}\right)\right\rangle \cong\left\langle\left(\left(a_{1}, b_{1}\right),\left(a_{1}^{\prime}, b_{1}^{\prime}\right)\right)\right\rangle,
$$

and clearly $\left\langle\left(\left(a_{1}, b_{1}\right),\left(a_{1}^{\prime}, b_{1}^{\prime}\right)\right)\right\rangle$ embeds into $\left\langle\left(a_{1}, b_{1}\right)\right\rangle \times\left\langle\left(a_{1}^{\prime}, b_{1}^{\prime}\right)\right\rangle$.
Pick now $\left(a_{1}^{\prime}, b_{1}^{\prime}\right) \in A$, with $b_{1}^{\prime}=1$. By Lemma 5.4, $\left\langle\left(a_{1}^{\prime}, b_{1}^{\prime}\right)\right\rangle$ is isomorphic to the quotient of $\left\langle\left(a_{1}, b_{1}\right)\right\rangle$, given by the congruence θ generated by $\left(\left(b_{1}, 1\right),(1,1)\right)$. Therefore

$$
\left\langle\left(a_{1}, b_{1}\right)\right\rangle \cong\left\langle\left(\left(a_{1}, b_{1}\right),\left(a_{1}^{\prime}, 1\right)\right)\right\rangle
$$

via the maps $\left(a_{1}, b_{1}\right) \mapsto\left(\left(a_{1}, b_{1}\right),\left(a_{1}, b_{1}\right) / \theta\right) \mapsto\left(\left(a_{1}, b_{1}\right),\left(a_{1}^{\prime}, 1\right)\right)$. Repeating the argument above for each point in A, it turns out that the embedding from $\left\langle\left(a_{1}, b_{1}\right)\right\rangle$ into $\prod_{(a, b) \in A}\langle(a, b)\rangle$ given by

$$
\left(a_{1}, b_{1}\right) \mapsto((a, b))_{(a, b) \in A}
$$

is an isomorphism between $\left\langle\left(a_{1}, b_{1}\right)\right\rangle$ and $\left\langle((a, b))_{(a, b) \in A}\right\rangle$.
But $\left\langle((a, b))_{(a, b) \in A}\right\rangle$ is by its very definition the algebra of all functions $f: A \rightarrow[0,1]^{2}$ generated by the identity function $i d_{A}: A \rightarrow A$. The latter, in turn, by Lemma 5.3 is isomorphic with $\operatorname{Tw}\left(\mathbf{G}_{3}, \mathbf{G}_{2}\right)$.

In a completely analogous fashion, one shows that the algebra of all functions $f: B \rightarrow[0,1]^{2}$ generated by the identity function over B is isomorphic to $\mathbf{K}\left(\mathbf{G}_{2}\right) \cong \mathbf{T w}\left(\mathbf{G}_{2}, \mathbf{G}_{2}\right)$, and that the algebra of all functions $f: C \rightarrow[0,1]^{2}$ generated by the identity function over C is isomorphic to $\operatorname{Tw}\left(\mathbf{G}_{3}, \mathbf{G}_{2}\right)$.
To end the proof, notice that every element of Free $_{\mathbb{G N P C}}(1)$ can be expressed as a triplet of functions (f, g, h), with $f: A \rightarrow[0,1]^{2}, g: B \rightarrow[0,1]^{2}$, and $h: C \rightarrow[0,1]^{2}$. Therefore the generator of Free $_{\mathbb{G N P C}}(1)$ can be chosen as a triplet

$$
\left(\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right),\left(a_{3}, b_{3}\right)\right),
$$

for some arbitrarily fixed choice of $a_{1}, b_{1}, a_{2}, b_{2}, a_{3}, b_{3} \in[0,1]$ such that $a_{1}<b_{1}<1, a_{2}=b_{2}<1$ and $b_{3}<a_{3}<1$.

Notice that we cannot drop any of the three factors in $\operatorname{Tw}\left(\mathbf{G}_{3}, \mathbf{G}_{2}\right) \times \operatorname{Tw}\left(\mathbf{G}_{2}, \mathbf{G}_{2}\right) \times \operatorname{Tw}\left(\mathbf{G}_{3}, \mathbf{G}_{2}\right)$ without losing the property that $\operatorname{Free}_{\mathbb{G N P \mathbb { C }}}(1)$ embeds into the remaining algebra. As a matter of fact each of the maps $\left(a_{i}, b_{i}\right) \mapsto\left(a_{j}, b_{j}\right)$, for $i, j \in\{1,2,3\}$ and $a_{i}, b_{i}, a_{j}, b_{j}$ being the corresponding elements forming the chosen generator triplet in Lemma 5.5, is an isomorphism iff $i=j$.
Theorem 5.6
The following holds:

$$
\begin{aligned}
\operatorname{Free}_{G N P \mathbb{C}}(1) & \cong \mathbf{T w}\left(\mathbf{G}_{3}, \mathbf{G}_{2}\right) \times \mathbf{T w}\left(\mathbf{G}_{2}, \mathbf{G}_{2}\right) \times \mathbf{T w}\left(\mathbf{G}_{3}, \mathbf{G}_{2}\right) \\
& \cong \mathbf{T w}\left(\mathbf{G}_{3} \times \mathbf{G}_{2} \times \mathbf{G}_{3}, \mathbf{G}_{2} \times \mathbf{G}_{2} \times \mathbf{G}_{2}\right) \\
& \cong \mathbf{T w}\left(\text { Free }_{G \mathbb{H}}(2), \nabla\right),
\end{aligned}
$$

where $\nabla=\mathbf{G}_{2} \times \mathbf{G}_{2} \times \mathbf{G}_{2}$.
Proof. We need to prove that for every triplet

$$
\left(\left(p_{1}, q_{1}\right),\left(p_{2}, q_{2}\right),\left(p_{3}, q_{3}\right)\right) \in \operatorname{Tw}\left(\mathbf{G}_{3}, \mathbf{G}_{2}\right) \times \operatorname{Tw}\left(\mathbf{G}_{2}, \mathbf{G}_{2}\right) \times \mathbf{T w}\left(\mathbf{G}_{3}, \mathbf{G}_{2}\right),
$$

there is a one-variable term $t(x)$ in the language of NPc-lattices, such that

$$
\left(\left(p_{1}, q_{1}\right),\left(p_{2}, q_{2}\right),\left(p_{3}, q_{3}\right)\right)=t\left(\left(\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right),\left(a_{3}, b_{3}\right)\right)\right)
$$

where $\left(\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right),\left(a_{3}, b_{3}\right)\right)$ is the chosen triplet in Lemma 5.5.
We consider the terms: $\tau_{1}(x):=\sim((\sim x) *(\sim x)) * \sim((\sim x) *(\sim x)), \tau_{2}(x):=\sim((x \leftrightarrow \sim x) *(x \leftrightarrow \sim$ $x)$, and $\tau_{3}(x):=\sim(x * x) * \sim(x * x)$.

Notice that:

$$
\tau_{1}\left(\left(\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right),\left(a_{3}, b_{3}\right)\right)\right)=\left(\left(a_{1}, 1\right),\left(1, a_{2}\right),\left(1, b_{3}\right)\right),
$$

$$
\tau_{2}\left(\left(\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right),\left(a_{3}, b_{3}\right)\right)\right)=\left(\left(1, a_{1}\right),\left(a_{2}, 1\right),\left(1, b_{3}\right)\right),
$$

and

$$
\tau_{3}\left(\left(\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right),\left(a_{3}, b_{3}\right)\right)\right)=\left(\left(1, a_{1}\right),\left(1, a_{2}\right),\left(b_{3}, 1\right)\right)
$$

Now, by the proofs of Lemmas 5.3 and 5.4, we have that for each $i \in\{1,2,3\}$, there is a one-variable term

$$
t_{i}(x) \in\{e, x, \sim x, x \wedge e, x \vee e, \sim x \vee e, \sim x \wedge e, x \vee(\sim x \wedge e), x \wedge(\sim x \vee e)\}
$$

such that $\pi_{i}\left(t_{i}\left(\left(\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right),\left(a_{3}, b_{3}\right)\right)\right)\right)=\left(p_{i}, q_{i}\right)$ where π_{i} is the i-th projection.
Observe then that

$$
\begin{aligned}
& \left(t_{1} \vee \tau_{1}\right)\left(\left(\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right),\left(a_{3}, b_{3}\right)\right)\right)=\left(\left(p_{1}, q_{1}\right),\left(1, a_{2}\right),\left(1, b_{3}\right)\right), \\
& \left(t_{2} \vee \tau_{2}\right)\left(\left(\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right),\left(a_{3}, b_{3}\right)\right)\right)=\left(\left(1, a_{1}\right),\left(p_{2}, q_{2}\right),\left(1, b_{3}\right)\right),
\end{aligned}
$$

and

$$
\left(t_{3} \vee \tau_{3}\right)\left(\left(\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right),\left(a_{3}, b_{3}\right)\right)\right)=\left(\left(1, a_{1}\right),\left(1, a_{2}\right),\left(p_{3}, q_{3}\right)\right) .
$$

The proof is settled by checking that

$$
\left(\bigwedge_{i=1}^{3}\left(t_{i} \vee \tau_{i}\right)\right)\left(\left(\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right),\left(a_{3}, b_{3}\right)\right)\right)=\left(\left(p_{1}, q_{1}\right),\left(p_{2}, q_{2}\right),\left(p_{3}, q_{3}\right)\right)
$$

Since the operator Tw commutes with direct products (Theorem 4.2), we equivalently have

$$
\operatorname{Free}_{\mathbb{G N P C}}(1) \cong \mathbf{T w}\left(\mathbf{G}_{3} \times \mathbf{G}_{2} \times \mathbf{G}_{3}, \mathbf{G}_{2} \times \mathbf{G}_{2} \times \mathbf{G}_{2}\right)
$$

(see Fig. 3 for a display of the two components of the twist-product above) and the last isomorphism follows from (12) for $n=2$:

$$
\text { Free }_{\mathbb{G H}}(2) \cong \mathbf{G}_{3} \times \mathbf{G}_{2} \times \mathbf{G}_{3}
$$

Figure 3. The Gödel hoop $\mathbf{G}_{3} \times \mathbf{G}_{2} \times \mathbf{G}_{3}$ together with its filter $\mathbf{G}_{2} \times \mathbf{G}_{2} \times \mathbf{G}_{2}$.

Notice that, for every finite Gödel hoop \mathbf{A}, with $\operatorname{Spec}^{*}(\mathbf{A}) \cong T$, it holds that $\operatorname{Spec}^{*}\left(\mathbf{A}_{\perp}, \mathbf{A}\right) \cong$ $\left(T_{\perp}, T_{\perp}\right)$, since the only pair $(a, b) \in A_{\perp}^{2}$ such that $a \vee b \notin A$ is $(a, b)=(\perp, \perp)$. On the other hand, $\operatorname{Spec}^{*}\left(\mathbf{A}_{\perp}, \mathbf{A}_{\perp}\right) \cong\left(T_{\perp}, \emptyset_{\perp}\right)$. We recall that $S: \mathbb{G N P C} \rightarrow \mathcal{T}_{t, f i n}$ is the functor realising the duality as in Theorem 4.5.

Lemma 5.7
$S\left(\operatorname{Free}_{G N P C}(1)\right) \cong\left(H_{2},\left(2 H_{1}\right)_{\perp}\right)$.
Proof. By Theorem 5.6,

$$
S\left(\operatorname{Free}_{\mathbb{G N P C}}(1)\right) \cong S\left(\operatorname{Tw}\left(\mathbf{G}_{3} \times \mathbf{G}_{2} \times \mathbf{G}_{3}, \mathbf{G}_{2} \times \mathbf{G}_{2} \times \mathbf{G}_{2}\right)\right)
$$

Recall that $\mathbf{G}_{3} \cong \operatorname{Free}_{\mathbb{G} \mathbb{H}}(1)_{\perp}$ and $\mathbf{G}_{2} \cong \operatorname{Free}_{\mathbb{G H}}(1) \cong \operatorname{Free}_{\mathbb{G} H}(0)_{\perp}$. So,

$$
\begin{aligned}
& S\left(\operatorname{Free}_{\mathbb{G N P C}}(1)\right) \cong S\left(\operatorname { T w } \left(\text { Free }_{G H H}(1)_{\perp} \times \operatorname{Free}_{G \mathbb{H}}(0)_{\perp} \times \operatorname{Free}_{G \mathbb{H}}(1)_{\perp},\right.\right. \\
& \text { Free } \left.\left._{\mathbb{G} H}(1) \times \text { Free }_{G H H}(0) \perp \times \text { Free }_{G H H}(1)\right)\right) \\
& \cong S\left(\operatorname{Tw}\left(\operatorname{Free}_{G \mathbb{H}}(1)_{\perp}, \operatorname{Free}_{\mathbb{G H}}(1)\right)\right) \\
& \oplus S\left(\operatorname{Tw}\left(\operatorname{Free}_{\mathbb{G} H}(0)_{\perp}, \text { Free }_{\mathbb{G} H}(0)_{\perp}\right)\right) \\
& \oplus S\left(\mathbf{T w}\left(\operatorname{Free}_{G \mathbb{H}}(1)_{\perp}, \text { Free }_{G \mathbb{H}}(1)\right)\right) \\
& \cong\left(H_{1 \perp}, H_{1 \perp}\right) \oplus\left(H_{0 \perp}, \emptyset_{\perp}\right) \oplus\left(H_{1 \perp}, H_{1 \perp}\right) \\
& \cong\left(H_{1 \perp} \oplus H_{0 \perp} \oplus H_{1 \perp}, H_{1 \perp} \oplus \emptyset_{\perp} \oplus H_{1 \perp}\right) \\
& \cong\left(H_{2},\left(2 H_{1}\right)_{\perp}\right) \text {. }
\end{aligned}
$$

5.2 The case of n generators

We plan now to use the results from sections $4.1,4.2$ and 5.1 to obtain the free GNPc-lattice with n generators.

Since $H_{n}=\operatorname{Spec}^{*}\left(\operatorname{Free}_{\mathbb{G} H}(n)\right)$, it immediately follows that

$$
H_{i} \times H_{j} \cong \operatorname{Spec}^{*}\left(\operatorname{Free}_{\mathbb{G} H}(i) \operatorname{Free}_{\mathbb{G H}}(j)\right) \cong \operatorname{Spec}^{*}\left(\operatorname{Free}_{\mathbb{G} \mathbb{H}}(i+j)\right) \cong H_{i+j},
$$

where \amalg is the coproduct in $\mathbb{G H}$.
Let now $T_{n}=S\left(\operatorname{Free}_{G N P \mathbb{C}}(n)\right)$. Note that $T_{n} \cong T_{n-1} \times T_{1}$ and by Lemma 5.7:

$$
T_{1} \cong\left(H_{2},\left(2 H_{1}\right)_{\perp}\right)
$$

Set, for $i=0, \ldots, n-1, c_{i, n}=0$ and for $i=n, \ldots, 2 n$:

$$
c_{i, n}=2^{2 n-i}\binom{n}{2 n-i} .
$$

Lemma 5.8
For $i=n+2, \ldots, 2 n$ it holds $c_{i, n+1}=c_{i-2, n}+2 c_{i-1, n}$.
Proof. By definition $c_{i-1, n}=2^{2 n+1-i}\binom{n}{2 n+1-i}, \quad c_{i-2, n}=2^{2 n+2-i}\binom{n}{2 n+2-i}, \quad$ and $\quad c_{i, n+1}=$ $2^{2 n+2-i}\binom{n+1}{2 n+2-i}$. The claim follows by properties of binomial coefficients, since:

$$
\binom{n+1}{2 n+2-i}=\binom{n}{2 n+1-i}+\binom{n}{2 n+2-i}
$$

Lemma 5.9
$T_{n} \cong\left(H_{2 n}, t_{n}\right)$ where t_{n} is the uniquely determined (up to isomorphisms) subtree of $H_{2 n}$ given by

$$
t_{n}=\left(\sum_{i=n}^{2 n-1} c_{i, n} H_{i}\right)_{\perp}
$$

PRoof. As $T_{1} \cong\left(H_{2},\left(2 H_{1}\right)_{\perp}\right), T_{n+1} \cong T_{n} \times T_{1}$ and $\left(H_{2}\right)^{n} \cong H_{2 n}$, we only need to check the subtree part. We proceed by induction on n.

Assume by induction hypothesis, that $T_{n} \cong\left(H_{2 n}, t_{n}\right)$ with

$$
t_{n}=\left(\sum_{i=n}^{2 n-1} c_{i, n} H_{i}\right)_{\perp}
$$

We are going to prove that $T_{n+1} \cong\left(H_{2(n+1)}, t_{n+1}\right)$ with

$$
t_{n+1}=\left(\sum_{i=n+1}^{2 n+1} c_{i, n+1} H_{i}\right)_{\perp}
$$

By definition of product

$$
\begin{aligned}
t_{n+1} & \cong\left(\left(t_{n}^{\uparrow} \times H_{2}\right)+\left(t_{n}^{\uparrow} \times 2 H_{1}\right)+\left(H_{2 n} \times 2 H_{1}\right)\right)_{\perp} \\
& \cong\left(\sum_{i=n}^{2 n-1} c_{i, n} H_{i+2}+\sum_{i=n}^{2 n-1} 2 c_{i, n} H_{i+1}+2 H_{2 n+1}\right)_{\perp}
\end{aligned}
$$

Notice that, by index shifting,

$$
\sum_{i=n}^{2 n-1} c_{i, n} H_{i+2} \cong \sum_{i=n+2}^{2 n+1} c_{i-2, n} H_{i}
$$

and

$$
\sum_{i=n}^{2 n-1} 2 c_{i, n} H_{i+1} \cong \sum_{i=n+1}^{2 n} 2 c_{i-1, n} H_{i}
$$

Hence, by Lemma 5.8,

$$
\begin{aligned}
t_{n+1}^{\uparrow} & \cong \sum_{i=n}^{2 n-1} c_{i, n} H_{i+2}+\sum_{i=n}^{2 n-1} 2 c_{i, n} H_{i+1}+2 H_{2 n+1} \\
& \cong \sum_{i=n+1}^{2 n} 2 c_{i-1, n} H_{i}+\sum_{i=n+2}^{2 n+1} c_{i-2, n} H_{i}+2 H_{2 n+1} \\
& \cong 2 c_{n, n} H_{n+1}+\sum_{i=n+2}^{2 n} 2 c_{i-1, n} H_{i}+\sum_{i=n+2}^{2 n+1} c_{i-2, n} H_{i}+2 H_{2 n+1} \\
& \cong 2 c_{n, n} H_{n+1}+\sum_{i=n+2}^{2 n}\left(c_{i-2, n}+2 c_{i-1, n}\right) H_{i}+c_{2 n-1, n} H_{2 n+1}+2 H_{2 n+1} \\
& \cong 2 c_{n, n} H_{n+1}+\sum_{i=n+2}^{2 n} c_{i, n+1} H_{i}+\left(2+c_{2 n-1, n}\right) H_{2 n+1} .
\end{aligned}
$$

Since

$$
\begin{gathered}
2 c_{n, n}=2 \cdot 2^{n}=2^{n+1}=2^{n+1}\binom{n+1}{n+1}=c_{n+1, n+1}, \\
2+c_{2 n-1, n}=2+2 n=2\binom{n+1}{1}=c_{2 n+1, n+1}
\end{gathered}
$$

we have

$$
t_{n+1} \cong\left(\sum_{i=n+1}^{2 n+1} c_{i, n+1} H_{i}\right)_{\perp}
$$

and the claim follows.
So we have that $T_{n} \cong\left(H_{2 n}, t_{n}\right)$, with

$$
H_{2 n}=\left(\sum_{i=0}^{2 n-1}\binom{2 n}{i} H_{i}\right)_{\perp}, \quad t_{n}=\left(\sum_{i=n}^{2 n-1} c_{i, n} H_{i}\right)_{\perp} .
$$

22 NPc-lattices

Rewriting them using coproducts in the category of trees, we obtain

$$
H_{2 n}=\bigoplus_{i=0}^{2 n-1}\binom{2 n}{i}\left(H_{i}\right)_{\perp}, \quad t_{n}=\bigoplus_{i=n}^{2 n-1} c_{i, n}\left(H_{i}\right)_{\perp} .
$$

Combining the fact that coproducts in the category $\mathcal{T}_{t, \text { fin }}$ are given coordinatewise, that \emptyset_{\perp} is both the terminal and the initial object in $\mathcal{T}_{\text {fin }}$, and that $c_{i, n}=0$ for $i=0, \ldots, n-1$, we have that

$$
T_{n} \cong \bigoplus_{i=0}^{2 n-1}\left(\binom{2 n}{i}-c_{i, n}\right)\left(\left(H_{i}\right)_{\perp}, \emptyset_{\perp}\right) \oplus \bigoplus_{i=n}^{2 n-1} c_{i, n}\left(\left(H_{i}\right)_{\perp},\left(H_{i}\right)_{\perp}\right) .
$$

Notice now that the NPc-lattice dual of the pair $\left(\left(H_{i}\right)_{\perp}, \emptyset_{\perp}\right)$ is the full twist-product $\mathbf{K}\left(\left(\text { Free }_{G H}(i)\right)_{\perp}\right)$ and that the NPc-lattice dual of the pair $\left(\left(H_{i}\right)_{\perp},\left(H_{i}\right)_{\perp}\right)$ is

$$
\mathbf{T w}_{\mathbf{w}}\left(\left(\operatorname{Free}_{\mathbb{G} \mathbb{H}}(i)\right)_{\perp}, \operatorname{Free}_{G \mathbb{H}}(i)\right) .
$$

Finally, recalling that the carrier of this algebra is $K\left(\left(\operatorname{Free}_{\mathbb{G H}}(i)\right)_{\perp}\right) \backslash\{(\perp, \perp)\}$, we conclude the following theorem.

Theorem 5.10

$$
\begin{aligned}
& \operatorname{Free}_{\mathbb{G N P C}}(n) \cong \\
& \quad \cong \prod_{i=0}^{2 n-1} \mathbf{K}\left(\left(\operatorname{Free}_{\mathbb{G} H}(i)\right)_{\perp}\right)\left(\begin{array}{c}
\left.\left(2_{i}^{n}\right)-c_{i, n}\right)
\end{array} \prod_{i=n}^{2 n-1} \operatorname{Tw}\left(\left(\operatorname{Free}_{\mathbb{G} H}(i)\right)_{\perp}, \operatorname{Free}_{\mathbb{G H}}(i)\right)^{c_{i, n}}\right. \\
& \quad \cong \mathbf{T w}\left(\operatorname{Free}_{\mathbb{G} H}(2 n), \nabla\right)
\end{aligned}
$$

where

$$
\nabla=\prod_{i=0}^{2 n-1}\left(\left(\operatorname{Free}_{\mathbb{G} \mathbb{H}}(i)\right)_{\perp}\right)\left(\begin{array}{c}
\left.\binom{2 n}{i}-c_{i, n}\right)
\end{array} \prod_{i=n}^{2 n-1}\left(\operatorname{Free}_{\mathbb{G} \mathbb{H}}(i)\right)^{c_{i, n}} .\right.
$$

Proof. By Lemma 5.9.
Corollary 5.11
For each integer $n \geq 0$, the cardinality of $\operatorname{Free}_{\mathbb{G N P C}}(n)$ is given by the following recurrences:

$$
\left|\operatorname{Free}_{\mathbb{G N P C}}(n)\right|=\prod_{i=0}^{2 n-1}\left(h_{i}+1\right)^{2\left(\binom{2 n}{i}-c_{i, n}\right)} \cdot\left(h_{i}^{2}+2 h_{i}\right)^{c_{i, n}},
$$

where $h_{0}=1$ and, for all integers $k \geq 0$,

$$
h_{k}=\prod_{i=0}^{k-1}\left(h_{i}+1\right)^{\binom{k}{i}} .
$$

Proof. By [1, Theorem 4.3.1], the cardinality of $\operatorname{Free}_{\mathbb{G} H}(k)$ is h_{k}, for all integers $k \geq 0$. Then, clearly, the cardinality of $\mathbf{K}\left(\left(\operatorname{Free}_{\mathbb{G} H}(i)\right)_{\perp}\right)$ is $\left(h_{i}+1\right)^{2}$ and the cardinality of $\mathbf{T w}\left(\left(\operatorname{Free}_{G \mathbb{H}}(i)\right)_{\perp}, \operatorname{Free}_{\mathbb{G} H}(i)\right)$ is $\left(h_{i}+1\right)^{2}-1$. The claim follows by Theorem 5.10.

References

[1] S. Aguzzoli, S. Bova and B. Gerla. Chapter IX: Free Algebras and Functional Representation for Fuzzy Logics from Handbook of Mathematical Fuzzy Logic. Vol. II. Studies in Logic. College Publications, 2011.
[2] S.Aguzzoli and P. Codara. Recursive Formulas to Compute Coproducts of Finite Gödel Algebras and Related Structures. In Proceedings of IEEE International Conference on Fuzzy Systems, FUZZ-IEEE 2016, Vancouver, Canada, IEEE Computer Society Press, doi: 10.1109/FUZZIEEE.2016.7737688.
[3] A. Almukdad and D. Nelson. Constructible falsity and inexact predicates. Journal of Symbolic Logic, 49, 231-233, 1984.
[4] K. Blount and C. Tsinakis. The Structure of residuated lattices. Internat. Journal of Algebra Comput., 13, 437-461, 2003.
[5] M. Busaniche and R. Cignoli. Constructive logic with strong negation as a substructural logic. Journals of Logic and Computation, 20, 761-793, 2010.
[6] M. Busaniche and R. Cignoli. Residuated lattices as an algebraic semantics for paraconsistent Nelson logic. Journals of Logic and Computation, 19, 1019-1029, 2009.
[7] M. Busaniche and R. Cignoli. Remarks on an algebraic semantics for paraconsistent Nelson's logic. Manuscrito, Center of Logic, Epistemology and the History of Science 34, 99-114, 2011.
[8] M. Busaniche and R. Cignoli. Commutative residuated lattices represented by twist-products. Algebra Universatis, 71, 5-22, 2014.
[9] J. L. Castiglioni, M. Menni and M. Sagastume. On some categories of involutive centered residuated lattices. Stud. Log., 90, 93-124, 2008.
[10] R. Cignoli. The class of Kleene algebras satisfying an interpolation property and Nelson algebras. Algebra Universalis, 23, 262-292, 1986.
[11] P. M. Cohn. Universal Algebra, Revised Edition, D. Reidel Pub. Co., 1981.
[12] O. D'Antona and V. Marra. Computing coproducts of finitely generated Gödel algebras. Annals of Pure and Applied Logic, 142, 202-211, 2006.
[13] L. Esakia. Topological Kripke models. Soviet Mathematics Dokaolyl, 15, 147-151, 1974.
[14] M. M. Fidel. An algebraic study of a propositional system of Nelson. In Mathematical Logic, Proceedings of the First Brazilian Conference, A. I. Arruda, N. C. A. da Costa and R. Chuaqui, eds, Vol. 39 of Lectures in Pure and Applied Mathematics, pp. 99-117. Marcel Dekker, 1978.
[15] N. Galatos and J. G. Raftery. Adding involution to residuated structures. Studia Logica, 77, 181-207, 2004.
[16] N. Galatos, P. Jipsen, T. Kowalski and H. Ono. Residuated Lattices: An Algebraic Glimpse at Substructural Logics. Studies in Logics and the Foundations of Mathematics, Vol. 151, Elsevier, 2007.
[17] B. Gerla. A note on functions associated with Gödel formulas. Soft Computing, 4, 206-209, 2000.
[18] J. B. Hart, L. Rafter and C. Tsinakis. The structure of commutative residuated lattices. International Journal of Algebra Computation, 12, 509-524, 2002.
[19] A. Horn. Free L-algebras. Journal of Symbolic Logic, 34, 475-480, 1969.
[20] J. Kalman. Lattices with involution. Transactions of the American Mathematical Society, 87, 485-491, 1958.
[21] M. Kracht. On extensions of intermediate logics by strong negation. Journal of Philosophical Logic, 27, 49-73, 1998.

24 NPC-lattices

[22] S. Mac Lane. Categories for the Working Mathematician. 2nd edn, Graduate Texts in Mathematics, Vol. 5, Springer, 1998.
[23] D. Nelson. Constructible falsity. Journals of Symbolic Logic, 14, 16-26, 1949.
[24] S. P. Odintsov. Algebraic semantics for paraconsistent Nelson's logic. Journals of Logic and Computation, 13, 453-468, 2003.
[25] S. P. Odintsov. On the representation of N4-lattices. Studia Logica, 76, 385-405, 2004.
[26] S. P. Odintsov. Constructive Negations and Paraconsistency. Trends in Logic-Studia Logica Library 26. Springer, 2008.
[27] A. Sendlewski. Nelson algebras through Heyting ones I. Studia Logica, 49, 105-126, 1990.
[28] M. Spinks and R. Veroff. Constructive logic with strong negation is a substructural logic I. Studia Logica, 88, 325-348, 2008.
[29] M. Spinks and R. Veroff. Constructive logic with strong negation is a substructural logic II. Studia Logica, 89, 401-425, 2008.
[30] C. Tsinakis and A. M. Wille. Minimal Varieties of Involutive Residuated Lattices. Studia Logica, 83, 407-423, 2006.
[31] D. Vakarelov. Notes on N-lattices and constructive logic with strong negation. Studia Logica, 34, 109-125, 1977.

Received 21 July 2016

