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INTRODUCTION

To understand processes operating at different
spatial scales and how they generate patterns in nat-
ural communities has become a central focus in eco-
logical research. Studies on rocky intertidal shores
have explained the role of predators in the distribu-
tion of organisms in the inferior limit of the intertidal
region (Connell 1961, Dayton 1971, Menge 1976).
Paine (1966) investigated how the interspecific com-

petition for space affects the relative abundance of
species, and Bertness (1989) discussed facilitation.
Menge et al. (1997) found that nearshore primary
productivity levels control differences in rocky inter-
tidal community structure. These studies have been
very important for understanding the processes that
shape the rocky intertidal communities.

Intertidal zones experience large changes over the
daily tidal cycle, with higher shore elevations having
longer periods of immersion and greater exposure to
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physically harsh conditions (Murray et al. 2002). In
addition, local meteorological conditions such as wind,
precipitation and climate anomalies can cause large
impacts on ecosystems (Mantua & Hare 2002). The
species that live in these habitats survive in variable
and sometimes extreme physical conditions. One
 factor that correlates well with the abundance and
diversity of species is water temperature, particularly
over latitudinal gradients (Rohde 1992). Many other
factors also correlate with species distributions and
patterns of abundance (e.g. physical interactions be -
tween organisms and their habitats, behavioural and
physiological adaptations; Burrows & Hughes 1989).

Changes in the structure of assemblages of inter-
tidal species at the scales of hundreds of kilometres
and hundreds of metres may be attributed to differ-
ences in topography, substrate type, hydrodynamic
conditions, intertidal elevation, wave exposure, cli-
matic differences or variation in primary productivity
(Araujo et al. 2005, Liuzzi & López Gappa 2008, Bur-
rows et al. 2009). Spatial variability at the scale of
tens to hundreds of metres along shores is mainly a
consequence of differences in recruitment and/or
mortality as well as topography and elevation (Under -
wood & Chapman 1996, Bownes & McQuaid 2009).
At the smallest spatial scale, such differences can be
explained by a random scattering of suitable micro-
habitats and behavioural processes in species with
limited adult dispersal (Underwood & Chapman
1996). For example, in Oregon (USA), barnacles such
as Balanus glandula, which are dominant in the high
intertidal zone, reduce population sizes of subordi-
nate adults by increasing the rate at which the bar -
nacles settle on and kill subordinates (Connolly &
Roughgarden 1998). This could explain the replace-
ment of one species by another along a shore, since
larvae that successfully return to shore could com-
pete and cause a decrease in abundances of other
species by increasing mortality and decreasing the
available substrate.

In coastal hard substrate habitats, sessile plants
and animals cover most of the surface and could be
important in structuring the associated invertebrate
assemblages (Tsuchiya & Nishihira 1985, Prado &
Castilla 2006). Some species can modulate the avail-
ability of resources by the creation of structural
microhabitats that could facilitate other species (i.e.
ecosystem engineers, Jones et al. 1994, 1997). Modi-
fication of the physical environment may have cas-
cading effects on associated fauna (Badano & Mar-
quet 2008, Cole & McQuaid 2010). At a landscape
scale, species richness and abundance of generalist
taxa are increased by the facilitation activity of mus-

sel species, through production of shells that intro-
duce complexity into benthic assemblages (Gutiérrez
et al. 2003, Borthagaray & Carranza 2007, Palomo et
al. 2007). Given the extreme physical and weather
conditions that an organism may tolerate in the inter-
tidal zone, the expectation is to find greater diversity
of species in areas associated with the presence or
activity of ecosystem engineers than in areas without
them. On rocky intertidal shores, the complex struc-
ture of mussel matrices provides refuge from thermal
stress and traps fine-grained sediment and organic
particles, favouring occupancy by small animals by
creating habitat that is much cooler and more humid
than elsewhere during low tides. Mussels can also
provide space for algae and epifauna to settle and
better protection from predators (Tsuchiya & Nishi-
hira 1985, Prado & Castilla 2006, Cole 2010). Never-
theless, in some cases, invasive engineers may
decrease species diversity by changing habitat com-
plexity and by replacing more heterogeneous native
assemblages (Crooks 2002, Hastings et al. 2007).

Nearshore oceanographic conditions have been
shown to determine community structure along the
coast (Menge et al. 1997, Blanchette et al. 2006) such
as influencing larval delivery, which in turn affects
community structure. Environmental and/or physio-
logical stress periods could reflect an irregular shell
growth break period in which shell deposition is
interrupted (Richardson 2001). Annual shell growth
rates in many bivalves are related to sea surface
water temperature (SST) (Jones 1981), but sizes can
also vary due to differences in longevity, rates of pre-
dation (Peacor et al. 2007) or environmental stresses
other than temperature.

We examined the scale-dependent population size
structure patterns and abundance of the mussels
Brachidontes rodriguezii and Perumytilus (Brachi-
dontes) purpuratus as well as the range-edge dynam-
ics of these 2 bioengineer species, which potentially
modify the diversity and structure of the associated
assemblages. In addition, we studied whether assem-
blage structure is influenced by oceanographic con-
ditions (e.g. SST) and local effects (e.g. hardness
of substratum) along 4 degrees of latitude. Because
marine ecosystem engineers are able to produce
local effects in combination with environmental vari-
ables, we evaluated different hypotheses at different
spatial scales. At the scale of hundreds of  kilometres,
we predicted that there would be associations be -
tween structure of assemblages and SST and chloro-
phyll a (chl a) concentration. The average length of
mussels increases with temperature (Blanchette et
al. 2007); therefore, we hypothesized that mussels
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would be larger at the northern sites where it is
warmer than in the south. Furthermore, in areas of
overlap, some interspecific competition would be
expected. Competition could affect abundance and
growth rates of mussels (Blanchette & Gaines 2007).
We hypothesized that in areas where B. rodriguezii
and P. purpuratus overlap, sizes and biomasses
would be smaller and densities greater than in areas
at similar latitudes where they occur by themselves.
We hypothesized that a detriment in size generates
more available substrate per square metre and as a
consequence, an increase in mussel density. We fur-
ther hypothesized that different assemblages of
invertebrates would be associated with beds of dif-
ferent species of mussels. At the scale of hundreds of
metres, we predicted that there would be a relation-
ship between the assemblage structure, substratum
hardness and sediment content of the matrix, assum-
ing that the hardness of the substratum generates
differences in mussel structure as soft sediments are
less stable and more susceptible to erosion than hard
ones. Understanding the variation among inverte-
brate assemblages associated with intertidal rocky
shores at different spatial scales will provide crucial
information about the importance of different factors
that might be associated with these assemblages and
the way they might interact (Underwood 2000).

MATERIALS AND METHODS

Study area

The present study was carried out along the north-
ern shores of Argentina from 38° 01’ S to 41° 43’ S.
Brachidontes rodriguezii is the dominant species in
the north of the Argentinean coast down to 41°, where
B. rodriguezii and Perumytilus purpuratus coexist
(Adami et al. 2004, Bertness et al. 2006, Prado &
Castilla 2006). In the coastal area of Mar del Plata
(Buenos Aires province) sandy beaches alternate with
quartzitic outcrops and abrasion platforms, with a mi-
crotidal regime (Elías et al. 2003). The coastal area in
Río Negro province consists of sandy, gravelly strips
in northern regions and rocky volcanic outcrops in
southern regions (Kokot et al. 2004). This province has
a macrotidal regime with cliffs and  sedimentary abra-
sion platforms that alternate with sandy beaches. The
average tidal range in Buenos Aires is ~0.8 m with a
yearly maximal range of 1.6 m, while in Río Negro the
range is ~4 m. The sampled shores were Mar del Plata
(38° 1’ 26.04’’ S, 57° 31’ 37.96’’ W, hereafter MDQ), La
Lobería (41° 9’ 19.32’’ S, 63° 7’ 26.24’’ W, hereafter LO),

Playa Los Suecos (41° 40’ 6.52’’ S, 65° 1’ 33.31’’ W,
hereafter PS) and Punta Colorada (41° 42’ 7.20’’ S,
65° 1’ 22.65’’ W, hereafter PC; Fig. 1).

Sampling

To test whether oceanographic conditions and local
characteristics affect the structure of the mussel beds
and their related assemblages, we sampled 4 rocky
shores along 900 km of coastline between 4 and
570 km apart. Each shore (MDQ, LO, PC and PS)
included 2 sites between 100 and 500 m apart and 4
replicate cores 1 to 3 m apart from each other. Sam-
ples were collected at the mid-intertidal level by
scraping out the contents of a core (10 cm diameter)
placed in the mussel bed. Samples were stored in
96% ethanol; organisms >0.5 mm were identified
and counted. The sediment trapped in the mussel
matrix was collected with the core, dried, sorted and
weighed. Sediment was sieved through a series of
6 different mesh sizes from 2000 to 62 µm, and sedi-
ment size was expressed according to the phi scale
(Gray 1981).

The mussels were dried (70°C for 72 h) to a con-
stant weight to calculate biomass (B, g m−2). For
 individuals >5 mm, shell lengths of 50 individuals
in each replicate core (when possible) were meas-
ured to the nearest 0.01 mm using callipers. Mussel
length measurements were pooled (from the 4 cores
in each site) for each shore, according to species, so
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that size frequency distributions of mussel popula-
tions could be assessed visually.

To test whether species diversity differs between
samples containing different mussel species (Brachi-
dontes rodri guezii vs. Perumytilus purpuratus), sam-
ples were sorted using a stereoscopic microscope
and all organisms were identified to the lowest taxo-
nomic level possible. The total number of species,
Shannon-Wiener diversity index (H ’), Pielou’s even-
ness (J ’) and abundance were calculated for each
sampling unit. Algae species were only included
in the total number of species as they were only
measured in terms of presence/absence.

To test whether substratum hardness is associated
with the structure of intertidal assemblages, hard-
ness was first assessed by drilling into the rock with a
power drill for a fixed period of time (6 mm drill bit
for 10 s). Depths of the holes (n = 3) at each site were
measured with callipers to the nearest 0.01 mm.
Mean depth was converted to an index of hardness
using its reciprocal value. A hardness scale was
established from the results of the drilling experi-
ments. The softer rock (LO in this study) was arbitrar-
ily assigned a hardness of 1.0. The scale consisted of
the ratio of depth of penetration for LO rock to depth
of penetration in other rock (see Evans 1968, Pinn et
al. 2005). To ensure that the force used to drill was
identical in all cases, the same person operated the
drill without exerting any downward force.

To test whether SST and chl a concentration (mg
m–3) were associated with differences in assemblages
among shores, we estimated data from satellite
images (NOAA; http://oceancolor.gsfc.nasa.gov). We
used standard mapped images (SMIs) of seasonally
satellite-derived SST and chl a concentrations from
MODIS Aqua for the period May 2008 to May 2009.
The images have a spatial resolution of approxi-
mately 9.2 km. The global SMI data were subsam-
pled from the region bounded by 33 to 43° S and 49
to 65° W. Satellite data were extracted around 2 km
from the coast.

Data analysis

To test the hypotheses that mussels will be larger in
warmer than in colder shores, and that in the areas of
overlap some interspecific competition would be ex -
pected, hence, mussel structure will depend on both
mussel species, a nested ANOVA was carried out.
Brachidontes rodriguezii was analysed including the
factor Site (2 levels, random) nested within Shore
(2 levels,  random). Perumytilus purpuratus was ana-

lysed including the factor Site (2 levels, random)
nested within Shore (3 levels, random). Heterogene-
ity of variances was checked by means of Cochran’s
test, and data were appropriately transformed when
necessary (Underwood 1997). For P. purpuratus size,
the homogeneity of variances could not be achieved
by transformation; data were analysed nonetheless,
since ANOVA is robust for departure from this as -
sumption when there are many independent repli-
cates and sizes of samples are equal (Underwood
1997). A cautious approach is recommended when
interpreting these results, and only probabilities of
p < 0.01 were considered.

All mussel length measurements were pooled (4
replicate cores from each of 2 sites) for each shore so
that size frequency distributions of mussel popula-
tions could be assessed visually. Chi-squared tests
were done to compare the size frequency distribution
of the 2 mussel species in the 4 shores.

To evaluate the hypothesis that different assem-
blages of invertebrates would be associated with
beds of the different species of mussels, H ’, J ’, total
number of species and mean abundance of inverte-
brates associated with mussel beds were tested with
nested ANOVAs, including the factor Site (2 levels,
random) nested within Shore (4 levels, random).

The structures of assemblages were compared
among shores and sites using multivariate ANOVA
(PERMANOVA) of Bray-Curtis dissimilarities calcu-
lated for fourth-root transformed data to meet the
assumption of homogeneity of variance. The transfor-
mation was applied to reduce the effect of dominant
groups in the samples. In some situations in PERM-
ANOVA, there are not enough possible permutations
to get a reasonable test. When there is a large num-
ber of possible permutations, p-values and the Monte
Carlo p-value should be very close to one another,
but when the number of permutations is low, the
p-value associated with the permutation test may be
quite different. Because of this limitation, in these
cases we used the Monte Carlo p-value (Anderson
et al. 2005).

A nonmetric multidimensional scaling ordination
(nMDS), using pairwise Bray-Curtis similarities (Bray
& Curtis 1957), was also done to visualize the possi-
ble differences in mid-intertidal mussel assemblages
and in abundance of intertidal invertebrates asso -
ciated to mussel matrix at 4 shores.

Canonical correspondence analysis (CCA) was
used to elucidate the relationships between the pres-
ence/absence of intertidal species and environmental
variables (SST and chl a) operating at the scale of
hundreds of kilometres and between the presence/
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absence of species and local factors (latitude, sediment
and rock hardness) operating at the scale of hundreds
of metres (Legendre & Legendre 1998). The statistical
significance was assessed by a Monte-Carlo permuta-
tion test involving 999 permutations at p < 0.05.

RESULTS

Mussels

Brachidontes rodriguezii reached mean densities
of 55 000 to 172 000 ind. m−2, with a mean ± SE size of
13.70 ± 4.72 mm (maximal size 29.67 mm; Fig. 2a,c).
Perumytilus purpuratus reached densities of 5400 to
42 000 ind. m−2, with a mean size of 15.41 ± 6.23 mm
(maximal size 25.94 mm; Fig. 2a,c). B. rodriguezii was
present from MDQ to LO and decreased in biomass
at the southern location. B. rodriguezii was absent
between PS and PC.

Density and biomass of Brachidontes rodriguezii
and Perumytilus purpuratus showed significant dif-
ferences; B. rodriguezii showed differences between
sites, while P. purpuratus differed among shores

and between sites (Fig. 2a,b, Table 1). Mean size
of P. purpuratus decreased from PS to PC and LO
(Fig. 2c), showing significant differences among
shores (Table 1). Size frequency distributions of B.
rodri guezii and P. purpuratus populations were sig-
nificantly different among shores (Fig. 3, Table 2).
B. rodriguezii presented a wider range of sizes at
MDQ than at LO. P. purpuratus at LO occurred in
a wider range of sizes than at PS or PC.

Invertebrate assemblages

Twentyfour invertebrate taxa were identified, of
which the most abundant were the isopod Sphae -
roma serratum in MDQ, Tanaidacea in LO and the
isopod Exo sphaeroma sp. in PS and PC. Seaweeds
found included Enteromorpha sp. in MDQ and LO,
Ulva rigida in LO, Ceramium virgatum and Poly -
siphonia fucoides in MDQ.

H ’ and the total number of species differed signifi-
cantly be tween sites, although there were no differ-
ences among shores (Fig. 4a,c, Table 3). Evenness did
not differ among shores or sites (Fig. 4b, Table 3). The
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Fig. 2. Brachidontes rodriguezii and Perumytilus purpura-
tus. Mean ± SE (a) density (b) biomass (dry weight) and (c)
size at all sampling locations (see Fig. 1). 1 and 2 correspond 

to the different sites

Source Brachidontes Perumytilus 
rodriguezii purpuratus

df MS F df MS F

Densitya b

Shore 1 42044.21 1.71 2 7.3382 15.82*
Sites (Sh) 2 24612.34 5.78* 3 0.4637 1.71
Residual 12 4260.73 18 0.2714

Average sizec

Shore 1 23.91 8.99 2 56.65 48.24**
Sites (Sh) 2 2.66 2.44 3 1.17 2.18
Residual 12 1.09 18 0.54

Average biomassa,b

Shore 1 1.32 7.98 2 6325.31 14.74*
Sites (Sh) 2 0.16 7.36** 3 429.06 4.03*
Residual 12 0.02 18 106.42
aSquare-root transformation was applied to B. rodriguezii den-
sity and to P. purpuratus biomass

bln(x) transformation was applied to B. rodriguezii biomass and
P. purpuratus density

cVariances were heterogeneous in P. purpuratus size (Cochran’s
C test, p < 0.05)

Table 1. Nested ANOVA testing factors governing mussel density
(ind. m−2), average biomass per m2 and average size of mussels per
core (mm) at 4 shores on the Argentinean coast. Differences in de-
grees of freedom between species are due to the presence of B. ro-
driguezii on 2 shores and P. purpuratus on 3 shores of the 4 shores 

analysed. *p < 0.05, **p < 0.01
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mean abundance of invertebrates per core associated
with mussel beds showed significant differences
among shores (Fig. 4d, Table 3). When both mussels
species overlapped in distribution, H ’ showed a slight
decrease, but significant differences were not found
(ANOVA, MS = 0.07, F2,29 = 0.49, p > 0.05, Fig. 5). The
structure of intertidal assemblages differed significantly
at both spatial scales (PERMANOVA, Shores, MS =
13670, F3,31 = 12.96, p (Monte Carlo) < 0.001; Sites, MS
= 1054, F4,31 = 2.87, p (permutation) < 0.05; Fig. 6).

Environmental variables

Sediment retained in mussel beds at MDQ and
LO was composed mainly of fine sand (mean phi

value = 3) and that at PS and PC was mainly coarse
sand (−1). The maximal weight of sediment trapped
in a mussel core was 6591 g m−2 at MDQ and the min-
imum weight was 122 g m−2 at LO. LO had a signifi-
cantly smaller amount of sediment than the other
shores (ANOVA, MS = 7868, F3,31 = 15.67, p < 0.05).
The hardness of the rock was greater at MDQ (hard-
ness index 4) followed by PS and PC (3), and LO (1).

Maximal mean ±SE SST from satellite data was
15.76 ± 3.52°C at MDQ, followed by PS, LO and PC
(Fig. 7a). The maximal mean chl a from satellite data
was 3.78 ± 1.39 mg m−3 at MDQ, followed by PC,
LO and PS (Fig. 7b).

The CCA indicated significant differences be tween
assemblage structure and local factors (p = 0.004),
although no significant differences were found be -
tween assemblage structure and environmental vari-
ables (p = 0.842). CCA between assemblages and
local factors showed that Axis 1 explained 33.14% of
the variation in community structure, and Axes 2 and
3 explained an additional 17.47 and 10.06%, respec-
tively (Table 4a). Latitude was the local factor most
closely correlated with Axis 1, followed by rock hard-
ness; Axis 2 was most closely correlated with rock
hardness, followed by sediment content. For Axis 3,
the  magnitude of latitude and rock hardness was
weak. Sediment content was the variable most
strongly correlated with Axis 3 (Table 5a, Fig. 8a).
CCA between assemblages and environmental vari-
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Fig. 3. Brachidontes rodriguezii and Peru -
mytilus purpuratus. Size frequencies (>5 mm)
for populations of both mussels at all sampling
locations (see Fig. 1), measured for 50 indi -
viduals per replicate core when possible (sites 

pooled per shore) showing sample size (n)

Species (sites compared) χ2

Brachidontes (MDQ−LO) 743.90
Perumytilus (LO−PS) 238.92
Perumytilus (LO−PC) 174.77
Perumytilus (PS−PC) 613.71
Brachidontes and Perumytilus (LO) 256.55

Table 2. Brachidontes rodriguezii and Perumytilus purpura-
tus. Chi-squared test for differences in size frequency dis -
tributions of 2 mussel species (>5 mm) at 4 shores on the
 Argentinean coast. See Fig. 1 for sites and abbreviations. 

In all cases, df = 13, p < 0.001
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ables showed that Axis 1 explained 30.86% of the
variation in com munity structure and Axis 2
explained an additional 5.61% (Table 4b). SST was
the variable most strongly correlated with Axis 1 and
chl a with Axis 2 (Table 5b, Fig. 8b).

Perumytilus purpuratus was strongly correlated with
southern latitudes (sites: PS1, PS2, PC1 and PC2),
while Brachidontes rodriguezii was correlated with
northern latitudes (sites: MDQ1, MDQ2, LO1 and
LO2) along Axis 1 (Fig. 8a). Along Axis 2, CCA sepa-
rated Mytilus edulis, mussel recruits, Idotea baltica,
Syllis prolixa, chironomidae larvae, nemerteans and
the seaweeds Enteromorpha sp. and Ulva rigida,
tending toward northern latitude, lower sediment
content and lower rock hardness. The sites LO1 and
LO2 were also associated with low sediment content
and low rock hardness. Polychaetes (S. gracilis, Har-
mothoe sp., Cirriformia and unidentified Polychaeta),
the isopod Sphaeroma serratum, the amphipod Hyale
grandicornis, the limpet Si pho naria lessoni, the bar-
nacle Balanus glandula, little bivalves (Phlyctiderma
semiaspera and Lasaea adansoni) and the sea -
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Source df MS F

Shannon-Wiener index
Shore 3 0.19 0.56
Sites (Sh) 4 0.35 3.40*
Residual 24 0.10

Evenness
Shore 3 0.09 2.31
Sites (Sh) 4 0.04 1.95
Residual 24 0.02

Total number of species
Shore 3 5.58 0.49
Sites (Sh) 4 11.44 4.77**
Residual 24 2.39

Mean abundance of invertebrates
Shore 3 6543.1 7.63*
Sites (Sh) 4 857.2 1.19
Residual 24 721.8

Table 3. Nested ANOVA for Shannon-Wiener diversity in-
dex, Pielou’s evenness, total number of species and mean
abundance of invertebrates at 4 shores on the Argentinean 

coast. *p < 0.05, **p < 0.01
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Fig. 4. Brachidontes rodriguezii and Peru mytilus purpura-
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weeds Polysiphonia fucoides and Ceramium virgatum
showed an opposite pattern, tending toward higher
sediment content and higher rock hardness (Fig. 8a).
The shore at MDQ was the most strongly correlated

with SST and chl a (Fig. 8b). LO, PS and PC shores
were associated with low SST and chl a concentration.
Spe cies such as B. rodriguezii, polychaetes (S. prolixa,
S. gracilis and Harmothoe sp.), nemerteas,  chironomid
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(a) Canonical axes
1 2 3

Eigenvalues 0.419 0.221 0.127
Variance explained (%) 33.14 17.47 10.06
CV explained (%) 33.14 50.61 60.67

(b) 1 2

Eigenvalues 0.275 0.050
Variance explained (%) 30.86 5.610
CV explained (%) 30.86 36.47

Table 4. Canonical correspondence analysis (CCA) axes
summary. (a) Assemblage structure and local factors. (b)
 Assemblage structure and environmental variables. CV: 

cumulative variance

(a)                                  Axis 1              Axis 2           Axis 3

Latitude                        −0.969              0.192            0.153
Sediment content        −0.109              0.774            0.624
Rock hardness             −0.334              0.935            0.116

(b)                                  Axis 1              Axis 2

SST                               −0.945              0.327
Chl a                             −0.811              −0.585

Table 5. Bi-plot scores and coefficients of correlation
of (a) local factors and (b) environmental variables in
the canonical correspondence analysis. SST: sea surface 

temperature

Stress: 0.13

a

b

MDQ LO PS PC

Stress: 0.08

Fig. 6. Two-dimensional nonmetric multidimensional scaling plot
(n = 8 sites) comparing (a) species assemblages in  mid-intertidal
mussel beds (fourth-root transformation) and (b) abundance of
intertidal invertebrates associated with mussel beds (square root 

transformation) at 4 shores (see Fig. 1)
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larvae, the amphipod H. grandicornis, the isopod S.
serratum and seaweeds were more  correlated with
higher SST and higher chl a  concentrations.

DISCUSSION

Three main findings emerged from this study. First,
we found a shift in ecosystem engineers along
shores; Brachidontes rodriguezii was present at
MDQ and LO, and southward it was replaced by
Perumytilus purpuratus at PS and PC. At 1 location,
both mussel species coexisted, creating particular
trends. Second, although both mussel species were
similar in morphology and biology, significant dif -
ferences in the structure of mussel beds occurred
between them. Third, each species acted as an
 ecosystem engineer, modulating the physical condi-
tions of the habitat, and each one was associated with
different benthic assemblages.

Mussels

Along the Buenos Aires coast, Brachidontes rodri -
guezii is the dominant mid-intertidal species and is
replaced towards the south by Perumytilus purpura-
tus, which dominates Patagonian shores almost
 completely. In the study area, the 2 mussel species
were remarkably dissimilar in density and biomass.
B. rodriguezii showed differences at a small scale,
whereas P. purpuratus showed differences at a large
scale. Size frequency distributions of both  species
also differed among shores. For each species, the
largest size classes disappeared or became less
abundant toward the biogeographic limits of the
 species (southward toward LO for B. rodriguezii and
northward toward LO for P. purpuratus). In South
Africa, Cole & McQuaid (2010) showed the same pat-
tern towards the biogeographic limits for Perna
perna and Mytilus galloprovincialis.

Although we hypothesized that parapatric mussels
would display different patterns of size structure,
body mass and density on the shore where they
overlapped (i.e. LO), we did not observe variation in
Brachidontes rodriguezii structure, although we did
see differences in Perumytilus purpuratus mussel
beds. In beds of P. purpuratus, density, biomass and
size were always smaller at LO. Oceanographic and
physical variables such as wave exposure, primary
productivity or local meteorological conditions could
be modulating such variability. The abundance and
growth rates of mussels could also be affected by
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intra- and interspecific competition (Boaventura et
al. 2002, Rius & McQuaid 2006, Firth & Crowe
2010). When intraspecific competition within the
superior competitor is stronger than competition
between species, coexistence can occur (Boaventura
et al. 2002). In our study, the biomass, density and
size of P. purpuratus at LO were less than at PS and
PC. This could be attributed to competition between
the 2 species. For example, the limpet Scutellastra
argenvillei was smaller when living in mussel beds
than those living on cleared patches (Steffani &
Branch 2005). An increase in density can cause
increased mortality, reduced length and reduced
weight in species of the same genus (e.g. Patella;
Boaventura et al. 2002). In B. rodriguezii, the differ-
ences found between sites could be caused by lar-
val behaviour, reflected by variation in recruitment
or by mortality after recruitment (Underwood &
 Chapman 1996).

We expected mussels to be larger due to faster
growth resulting from warmer temperatures at the
northern sites. The largest mean size of Perumytilus
purpuratus was found at PS, where SST is warmer
than in other areas where the species is present.
Simi larly, at Point Conception, California (USA),
Mytilus californianus was found to be larger at
southern sites, where warmer water temperature is
characteristic (Blanchette & Gaines 2007). Differ-
ences in the sizes of mussels between shores in the
present study could be attributed to  differential
growth, which tends to be greater in warmer
waters. An increase in shell size of Brachidontes
rodriguezii was observed from colder to warmer
shores, although we did not find significant differ-
ences (Fig. 2c, Table 1). In our case, these 2 species
of mytilids are very similar in morphology and biol-
ogy. As a result, competition for food or primary
space (Dayton 1971, Boaventura et al. 2002) may
cause a decrease in density and biomass.

Invertebrate assemblages

Much descriptive work on rocky intertidal assem-
blages along the northern Argentinean coast has
provided evidence for low biodiversity in these areas
(Adami et al. 2004, Bertness et al. 2006, Penchas -
zadeh et al. 2007). We found 24 species of inverte-
brate taxa and 4 seaweeds associated with mussel
beds, which was similar to results of another study
(24 invertebrate taxa and 3 seaweeds, Adami et al.
2004 in Quequén, Argentina) but fewer than re -
ported from some previous studies (e.g. 32 inverte-

brate taxa, Scelzo et al. 1996 in artificial substrata at
Mar del Plata, Argentina; 41 invertebrate taxa during
the NaGISA project in Mar del Plata, M. G. Palomo et
al. unpubl. data). In the present study, the most abun-
dant species associated with Brachidontes rodri -
guezii was the isopod Sphae roma serratum, while the
isopod Exo sphaeroma sp. was the most abundant in
Perumytilus purpuratus beds.

On intertidal rocky shores, diversity of inverte-
brates is dependent on foundation species that buffer
physical stress (Bertness et al. 2006) and provide
refuge (Burrows et al. 2009). The total number of spe-
cies was lower in northern mussel beds than in south-
ern beds, although significant differences were only
found at the site level. In this study, some species
were found associated with only 1 species of mussel,
e.g. the bivalve Lasaea adansoni with Perumytilus
purpuratus, or Mytilus edulis with Brachidontes
rodriguezii. M. edulis was also found at the low inter-
tidal in PS and PC, and therefore tolerance to stress
in the mid-intertidal could be an important factor in
determining the presence of some species at dif -
ferent intertidal heights (Cole 2010) and may be
dependent on the tidal regime of the coast (Bene -
detti-Cecchi 2001). In shores such as LO, the pres-
ence of both bioengineers could be generating an
unstable habitat for associated species, since de -
creased size or an increase in density could affect
 larval settlement of associated species or decrease
protection against physical conditions, resulting in
reduced biodiversity levels as a consequence. Even
though no differences were found in the total
 number of species, biodiversity or evenness among
shores, differences were found in invertebrate abun-
dance. Mussels on southern shores provide refuge
for invertebrates that are usually unable to survive
over bare rock (Bertness et al. 2006). However, the
provision of these microhabitats seems to have little
effect on the abundance of invertebrates on northern
shores, possibly because most species living in mus-
sel matrices can also survive on bare rock, owing to
environmental conditions that are not as harsh as in
Patagonian shores.

Differences in assemblages between sites are
likely to be influenced by physical features of the
habitat that create spatial heterogeneity, and as a
consequence spatial variation in organisms (Bene -
detti-Cecchi 2001, Burrows et al. 2009). Furthermore,
intertidal organisms with nondispersing larvae pres-
ent greater small-scale variability (Burrows et al.
2009). As a result, mid-intertidal mussel assemblages
showed clear differences among shores due to the
foundation species and their structure.
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Environmental variables

The general latitudinal pattern in species numbers
must be related to some climatic factor, or combina-
tion of factors, that changes in a consistent manner
with latitude. Such factors could include average
temperature, annual rainfall and seasonality (Rohde
1992). For example, one factor that affects mussel
distribution is the substrate type, since mussels
require appropriate substrate to anchor (Harman
1972, Morales et al. 2006). Moreover, nearby bed
 currents and substrate stability also may affect their
distribution (Holland-Bartels 1990, Hardison & Layzer
2001). We found few associated species correlated
with low rock hardness, which could be due to low
substrate stability, since low hardness is correlated
with higher erosion (Pinn et al. 2005), increasing
the susceptibility of mussels to dislodgment and,
as consequence generating an unstable habitat for
associated fauna.

The number of species found in mussel beds in -
creases with the amount of sediment trapped (Prado
& Castilla 2006). It is possible that accumulation of a
large amount of sediment can produce a change in
fauna or decreases in the density or diversity of asso-
ciated animals (Tsuchiya & Nishihira 1985). In our
study, we found a correlation between rock hard-
ness, the amount of sediment retained and the bio-
logical assemblage. At LO, the shore with the small-
est amount of sediment trapped and the lowest rock
hardness index, the diversity of invertebrates was not
significantly different from the other shores, but the
abundance of invertebrates was lower compared to
the other shores. CCA analysis showed that organ-
isms such as annelids or small bivalves and arthro-
pods  appear to benefit from large amounts of accu-
mulated sediments, possibly due to biodeposits re -
tained in mussel beds (Thiel & Ullrich 2002). Hence,
sediment accumulation in the mussel matrix was an
important factor that modulated species composition
along the coast. The strong correlations between
assemblage structure and local characteristics sug-
gest that these have a large influence on intertidal
community structure patterns along the northern
Argentinean coast.

Large-scale processes such as oceanographic con-
ditions influence the presence of species along the
coast (Anderson et al. 2005). Most intertidal organ-
isms are faced with the risk of desiccation; therefore,
the role of heat stress on organisms associated with
habitats engineered by mussels is likely to be an
important driving factor (Bertness et al. 2006, Cole
2010). Consequently, differences in the composition

of species in mussel beds are likely to be due
to large-scale processes, while variation in relative
abundance is driven by medium-scale processes.
Salinity gradients at large scales and wave exposure
gradients at intermediate scales are good predictors
for the distribution of mussels (Westerbom et al.
2008). One of the most frequently identified drivers
of the distribution of species is temperature, which is
related to latitudinal gradients (Gray 2001). More-
over, the abundance of intertidal assemblages has
been correlated with SST (Kelaher et al. 2007). Our
results did not show a significant correlation between
environmental variables and invertebrate assem-
blages; however, this does not mean that tempera-
ture and chl a concentration do not shape community
assemblages as the contrary was shown in other
studies (Menge et al. 1997, Blanchette et al. 2006). In
our case, the non-significant correlation could be
attributed to the fact that our shores are not as differ-
ent in environmental variables as they are in local
characteristics or that in situ environmental measure-
ments are needed to complement the satellite data.

The main difference be tween mussel species was
that the population traits of Brachidontes rodriguezii
differed significantly among sites (distance between
100 and 500 m), while for Perumytilus purpuratus it
varied among shores (distance between 4 and 570 km).
Local factors were good predictors for spatial-scale
patterns in the composition of assemblages in the
rocky intertidal and in the distribution of mussels
along the coast. LO  differed from the other shores,
with both mussel species having smaller size and
lower biomass although only significant for P. purpu-
ratus populations. Competitive interactions between
the 2 mussel species may generate populations with
different traits and arran gements of individuals. The
2 mytilids coexist over a very short geographic range
(LO shore), and the associated fauna was found to
differ from the other shores, although it was more
similar to MDQ than to PS or PC. A review of the
effects of ecosystem engineers on other species sug-
gested that they provide refuge and microhabitats
(Gutiérrez et al. 2003). Even though the mussel
 species are very similar in habitat, occupation and
source of food, the assemblages associated with them
are very different and the distributions of these asso-
ciated species and the mussel species are clearly
linked with local factors. Our study shows that mus-
sel beds at the edge of their distributional range,
despite their low biomass and small individual size,
promote and maintain a richly diverse faunal com-
munity. The specific species of mussels together with
local factors are the main determinants of associated
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assemblages living within mussel matrices. Efforts
aimed at investigating ecosystem engineers will ben-
efit from identifying and quantifying the resources
affected, including developing and utilizing bio -
logically meaningful metrics of habitat structure
(Crooks 2002).
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