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Abstract

We consider a nonvariational degenerate elliptic operator of the kind

Lu ≡
q∑

i,j=1

aij(x)XiXju

where X1, ..., Xq are a system of left invariant, 1-homogeneous, Hörmander’s
vector fields on a Carnot group in Rn, the matrix {aij} is symmetric, uni-
formly positive on a bounded domain Ω ⊂ Rn and the coefficients satisfy

aij ∈ VMOloc (Ω) ∩ L∞ (Ω) .

We give a new proof of the interior W 2,p
X estimates

‖XiXju‖Lp(Ω′) + ‖Xiu‖Lp(Ω′) ≤ c
{
‖Lu‖Lp(Ω) + ‖u‖Lp(Ω)

}
for i, j = 1, 2, ..., q, u ∈ W 2,p

X (Ω) , Ω′ b Ω and p ∈ (1,∞), first proved by
Bramanti-Brandolini in [3], extending to this context Krylov’ technique,
introduced in [15], consisting in estimating the sharp maximal function of
XiXju.

1 Introduction

Let us consider a linear second order elliptic operator in nondivergence form:

Lu ≡
n∑

i,j=1

aij (x)uxixj

∗Key words: Hörmander’s vector fields, Carnot groups, nonvariational operators, Lp es-
timates, local sharp maximal function; MSC: Primary: 35H10; Secondary: 35B45, 35R05,
42B25.
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with {aij} symmetric matrix of bounded measurable functions defined on some
domain Ω ⊂ Rn and satisfying the uniform ellipticity condition

µ |ξ|2 ≤
n∑

i,j=1

aij (x) ξiξj ≤
1

µ
|ξ|2

for some µ > 0, every ξ ∈ Rn, a.e. x ∈ Ω. While the classical W 2,p-theory of
elliptic equations, dating back to Agmon-Douglis-Nirenberg [1] and essentially
exploiting the Lp theory of singular integrals due to Calderón-Zygmund [8]
requires the uniform continuity of the coefficients aij (x), in 1993 Chiarenza-
Frasca-Longo [9] proved W 2,p estimates under the mere assumption aij ∈ L∞ ∩
VMO, which allows for some kind of discontinuities in the coefficients. Their
technique is based on representation formulas of uxixj by means of singular
integrals with variable kernels, and commutators of these singular integrals with
BMO functions. Thanks to a deep real analysis theorem by Coifman-Rochberg-
Weiss [10], these commutators have small operator norm on small balls, hence
the old idea of seeing a variable coefficient operator as a small perturbation
of the model operator with constant coefficients is ingeniously generalized to
an operator with possibly discontinuous coefficients. This technique, by now
classic, has been extended to several contexts, for instance parabolic operators
(see [5]) and nonvariational operators structured on Hörmander’s vector fields
(see [3], [4]).

In 2007 Krylov [15] introduced a differerent technique to prove similar and
more general results for elliptic and parabolic operators, based on the pointwise

estimate of the sharp maximal function of uxixj , that is
(
uxixj

)#
. The idea is

then again that of approximating the operator with variable coefficients with
a model operator with constant coefficients; these constants in this case are
not simply the original coefficients frozen at some point, but suitable integral
averages of these functions. The theory of singular integrals is not explicitly
used, but it is replaced by Fefferman-Stein maximal theorem, which allows to

control the Lp norm of uxixj by that of
(
uxixj

)#
. On the other hand, throughout

the computation which is carried out on the model operator, many classical
results are employed, implicitly involving also the classical Calderón-Zygmund
theory.

The research started with this paper aims to investigate whether Krylov’
technique can be extended also to the context of linear degenerate equations
structured on Hörmander’s vector fields, and if it can be used to get new results
not easily obtainable with the techniques previously used. We give a partial
positive answer to this question.

We are now going to describe the main results of this paper, postponing
to section 2 the precise definitions of all the concepts that are involved. We
consider the class of operators

Lu ≡
q∑

i,j=1

aij(x)XiXju,
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where X1, ..., Xq are a system of left invariant and 1-homogeneous Hörmander’s
vector fields on a Carnot group in Rn (see section 2.1), the matrix {aij} is
symmetric, the coefficients satisfy

aij ∈ VMOloc (Ω) ∩ L∞ (Ω) (1)

on a bounded domain Ω ⊂ Rn (see section 2.2), and the uniform positivity
condition holds: there exists µ > 0 such that

µ|ξ|2 ≤ aij(x)ξiξj ≤
1

µ
|ξ|2 (2)

for every ξ ∈ Rq and a.e. x ∈ Ω.
In this context we prove a pointwise bound on the local sharp maximal

function of XiXju. This, combined with an extension of Fefferman-Stein’s the-
orem to the context of locally homogeneous spaces, recently obtained in [6]
(see Theorem 3 in this paper) allows to get the local estimates first proved by
Bramanti-Brandolini in [3] with an approach that parallels that of Chiarenza-
Frasca-Longo. More precisely, the main result that can be proved is the follow-
ing:

Theorem 1 Under the previous assumptions, for any Ωm b Ω as in section
2.2 and p ∈ (1,∞) there exists a constant c such that

‖XiXju‖Lp(Ωm) + ‖Xiu‖Lp(Ωm) ≤ c
{
‖Lu‖Lp(Ω) + ‖u‖Lp(Ω)

}
for i, j = 1, 2, ..., q and any u ∈W 2,p

X (Ω).

(See section 2.3 for the definition of W 2,p
X (Ω)). What we will actually prove

here is the basic step towards the above theorem, namely:

Theorem 2 Under the previous assumptions, for any Ωm b Ω and p ∈ (1,∞)
the set Ωm can be covered with a finite number of balls BR (xi) such that for
every u ∈ C∞0 (BR)

q∑
i,j=1

‖XiXju‖Lp(BR) ≤ c ‖Lu‖Lp(BR)

where the constant c depends on Ω,Ωm, p, µ,G and the function a]m,r (defined
in (22)).

The proof of Theorem 2 is where the different real analysis approach of
this paper with respect to [3] plays its role. Proving Theorem 1 starting with
Theorem 2 is mainly a matter of cutoff functions and interpolation inequalities
for Sobolev norms, which can be performed exactly like in [3] and therefore will
not be repeated here.

As already explained, the main result in this paper is not original in itself;
the novelty lies in the approach, which allows some simplification with respect

3



to that of [3]. The assumption of existence of an underlying Carnot group
structure such that L is translation invariant and 2-homogeneous is quite natural
in consideration of the important role of dilations in Krylov’ approach. We hope
to extend in the future the present approach to different classes of degenerate
operators, getting some kind of new Lp estimate. Some natural candidates to
test this technique are operators of Kolmogorov-Fokker-Planck type. However,
the presence of a drift term in these operators poses substantial new difficulties,
preventing us to use some of the tools that we exploit in this paper, and requiring
some further new insight.

Acknowledgement. This research was carried out while Marisa Toschi was
visiting the Department of Mathematics of Politecnico di Milano, which we want
to thank for hospitality. This author was partially supported by CONICET and
Universidad Nacional del Litoral through grants CAI+D 50020110100009.

2 Preliminaries and known results

2.1 Carnot groups

We start recalling some standard terminology and known facts about Carnot
groups. For more details and for the proofs of known results the reader is
referred to [2, Chaps. 1, 2], [12], [18, Chap.XIII, §5].

We call homogeneous group the space Rn equipped with a Lie group struc-
ture, together with a family of dilations that are group automorphisms. Explic-
itly, assume that we are given a pair of mappings:

[(x, y) 7→ x ◦ y] : Rn × Rn → Rn and
[
x 7→ x−1

]
: Rn → Rn

that are smooth and such that Rn, together with these mappings, forms a
group, for which the identity is the origin. We will think to the operation ◦ as
a translation. Next, suppose that we are given an n-tuple of strictly positive
integers α1 ≤ α2 ≤ ... ≤ αn, such that the dilations

D(λ) : (x1, ..., xn)→ (λα1x1, ..., λ
αnxn) (3)

are group automorphisms, for all λ > 0. We will denote by G the space Rn with
this structure of homogeneous group, and we will say that a constant depend
on G if it depends on the numbers n, α1, ..., αn and the group law ◦.

We say that a differential operator Y on G is homogeneous of degree β > 0
if

Y (f (D(λ)x)) = λβ(Y f)(D(λ)(x))

for every test function f, λ > 0, x ∈ Rn. Also, we say that a function f is
homogeneous of degree α ∈ R if

f (D(λ)x) = λαf(x) for every λ > 0, x ∈ Rn \ {0} .

4



Clearly, if Y is a differential operator homogeneous of degree β and f is a
homogeneous function of degree α, then Y f is homogeneous of degree α− β.

We say that a differential operator Y on G is left invariant if for every
smooth function f : G→ R,

Y (f (Ly (x))) = (Y f) (y ◦ x) for every x, y ∈ G,
where Ly (x) = y ◦ x.

Let us now consider the Lie algebra ` associated to the group G, that is, the
Lie algebra of left invariant vector fields on G, endowed with the Lie bracket
given by the commutator of vector fields: [X,Y ] = XY − Y X. We can fix a
basis X1, ..., XN in ` choosing Xi as the (unique) left invariant vector field which
agrees with ∂

∂xi
at the origin. It turns out that Xi is homogeneous of degree αi.

Then, we can extend the dilations D(λ) to ` setting

D(λ)Xi = λαiXi.

D (λ) becomes a Lie algebra automorphism, i.e.,

D(λ)[X,Y ] = [D(λ)X,D(λ)Y ].

In this sense, ` is said to be a homogeneous Lie algebra; as a consequence, ` is
nilpotent.

We will assume that the first q vector fields X1, ..., Xq are 1-homogeneous
and generate ` as a Lie algebra. In other words, X1, ..., Xq are a system of
Hörmander’s vector fields in Rn: there exists a positive integer s, called the step
of the Lie algebra, such thatX1, ..., Xq, together with their iterated commutators
of length ≤ s span Rn at every point. Under these assumptions we say that `
is a stratified homogeneous Lie algebra and that G is a stratified homogeneous
group, or briefly a Carnot group.

As any system of Hörmander’s vector fields, X1, ..., Xq induce in Rn a dis-
tance d called the control distance. The explicit definition of d will never be
used, hence we do not recall it (see [17]). Since G is a Carnot group, d turns
out to be left invariant and 1-homogeneous, that is

d (x, y) = d (z ◦ x, z ◦ y)

d (D (λ)x,D (λ) y) = λd (x, y)

for any x, y, z ∈ G and λ > 0. Then, if we set

‖x‖ = d (x, 0) ,

it turns out that ‖·‖ is a homogeneous norm, satisfying the following properties:

(i) ‖D(λ)x‖ = λ‖x‖ for every x ∈ Rn, λ > 0;

(ii) the function x 7→ ‖x‖ is continuous;
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(iii) for every x, y ∈ Rn

‖x ◦ y‖ ≤ ‖x‖+ ‖y‖ and
∥∥x−1

∥∥ = ‖x‖;

(iv) there exists a constant c ≥ 1 such that

1

c
|y| ≤ ‖y‖ ≤ c |y|1/s if ‖y‖ ≤ 1,

where s is the step of the Lie algebra.

Note that from (iii) we have that

‖y−1 ◦ x‖ ≥ ‖y‖ − ‖x‖. (4)

We also define the balls with respect to d as

B(x, r) ≡ Br(x) ≡ {y ∈ Rn : d(x, y) < r},

and denote Br = B(0, r).
Note that B(0, r) = D(r)B(0, 1). It can be proved that the Lebesgue mea-

sure in Rn is the Haar measure of G and

|B(x, r)| = |B(0, 1)| rQ, (5)

for every x ∈ Rn and r > 0, where

Q = α1 + ...+ αn

with αi as in (3). We will call Q the homogeneous dimension of G.

2.2 Real analysis tools

We start noting that (5) in particular implies that the Lebesgue measure dx
is a doubling measure with respect to d, and therefore (Rn, d, dx) is a space of
homogenous type in the sense of Coifman-Weiss (see [11]).

In this context, for a given locally integrable function f , the Hardy-Littlewood
maximal operator is given by

Mf(x) = sup
B3x

1

|B|

∫
B

|f(y)|dy, (6)

where the supremum is taken over all the d-balls (containing the point x). By
the general theory of spaces of homogeneous type, it is known that for every
p ∈ (1,∞) there exists a constant c > 0 such that

‖Mf‖Lp(Rn) ≤ c‖f‖Lp(Rn). (7)

Since we will study a differential operator defined on a bounded domain
Ω ⊂ Rn and we will prove interior estimates in Ω, a natural framework for the
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real analysis tools we need is that of locally homogeneous spaces, as developed
in [7] and [6]. We are going to introduce the minimum amount of definitions
in order to apply this abstract theory in our concrete context. So, for a fixed
bounded domain Ω ⊂ Rn, fix a strictly increasing sequence {Ωm}∞m=1 of bounded
domains such that

∞⋃
m=1

Ωm = Ω

and such that for any m there exists εm > 0 such that

{x ∈ Ω : d(x, y) < 2εm for some y ∈ Ωm} ⊂ Ωm+1

where d is, as above, the distance induced in Rn by the vector fields Xi. Then
(Ω, {Ωm}∞m=1, d, dx) (where dx stands for the Lebesgue measure) is a locally
homogeneous space in the sense of [7].

With respect to this structure, we can define the local sharp maximal oper-
ator : for any function f ∈ L1

loc (Ωm+1) and x ∈ Ωm, let

f#
Ωm,Ωm+1

(x) = sup
B(x,r)3x

x∈Ωm,r≤εm

1

|B (x, r)|

∫
B(x,r)

∣∣f (y)− fB(x,r)

∣∣ dy, (8)

where fB = 1
|B|
∫
B
fdx.

Note that the supremum is taken over all the d-balls containing the point
x ∈ Ωm and having radius small enough so that the ball itself is contained in
the larger set Ωm+1 where the function f is defined. Thus, we focus on the
behavior of f on a bounded domain but on the other hand avoid the necessity
of integrating over restricted balls B (x, r)∩Ωm+1. The continuity of the sharp
maximal operator is contained in the next result:

Theorem 3 (Local Fefferman-Stein inequality, see [6, Corollary 3.9])
There exists δ ∈ (0, 1) such that for any m and for every integer k large enough,
the set Ωm can be covered by a finite union of balls BR of radii comparable to δk,
such that for any such ball BR and every f supported in BR, with f ∈ L1 (BR),∫
BR

f = 0, and f#
Ωm+2,Ωm+3

∈ Lploc (Ωm+1) for some p ∈ [1,∞) one has

‖f‖Lp(BR) ≤ c
∥∥∥f#

Ωm+2,Ωm+3

∥∥∥
Lp(BγR)

with γ > 1 absolute constant and c only depending on p, the sets Ωk and the
constants εk for a finite number of indices k.

Let us also define the local VMO spaces. For a fixed Ωm, f ∈ L1
loc (Ωm+1)

and 0 < r ≤ εm, let

ηm,f (r) = sup
x∈Ωm,ρ≤r

1

|B (x, ρ)|

∫
B(x,ρ)

∣∣f (y)− fB(x,ρ)

∣∣ dy.
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We say that f ∈ VMOloc (Ωm,Ωm+1) if ηm,f (r) → 0 for r → 0+ and we say
that a function f ∈ L1

loc (Ω) belongs to VMOloc (Ω) if

ηf (r) ≡ sup
x∈Ω,ρ≤r,B(x,ρ)bΩ

1

|B (x, ρ)|

∫
B(x,ρ)

∣∣f (y)− fB(x,ρ)

∣∣ dy → 0 for r → 0+.

Note that the requirement B (x, ρ) b Ω is meaningful because the distance
d is define in the whole Rn, not only in Ω. Observe that

VMOloc (Ω) ⊂
∞⋂
m=1

VMOloc (Ωm,Ωm+1) . (9)

2.3 Sobolev spaces and fundamental solutions

Let us introduce some useful notation. For X1, ..., Xq the vector fields as above
and any multiindex I = (i1, ..., ik) with ij ∈ {1, 2, ..., q} we set

XIu = Xi1Xi2 ...Xiku, |I| = k.

We then define, for any positive integer k,

Dku ≡
∑
|I|=k

|XIu| .

(We will writeDu instead ofD1u). Here theXi-derivatives are meant in classical

or weak sense. For Ω a domain in Rn and p ∈ [1,∞] the space W k,p
X (Ω) will

consist of all Lp(Ω) functions such that

‖u‖Wk,p
X (Ω) =

k∑
h=0

‖Dhu‖Lp(Ω)

is finite (with ‖D0u‖Lp(Ω) = ‖u‖Lp(Ω)). We shall also denote by W k,p
X,0(Ω) the

closure of C∞0 (Ω) in W k,p
X (Ω). Note that the fields Xi, and therefore the defini-

tion of the above norms and spaces, are completely determined by the structure
of G.

A couple of standard facts about these Sobolev spaces on Carnot groups are
the following:

Theorem 4 (Poincaré’s inequality on stratified groups, see [13]) Let G
be a Carnot group with generators X1, ..., Xq. For every p ∈ [1,∞) there exist
constants c > 0,Λ > 1 such that for any ball B = B (x0, r) and any u ∈ C1

(
ΛB
)

(with ΛB = B (x0,Λr)) we have:(
1

|B|

∫
B

|u (x)− uB |p dx
)1/p

≤ cr
(

1

|ΛB|

∫
ΛB

|Du (x)|p dx
)1/p

.
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Note that the constants c,Λ in the previous Poincaré’s inequality are inde-
pendent of r and x0.

Proposition 5 (Interpolation inequality, see [3, Prop. 4.1]) Let X be a
left invariant vector field homogeneous of degree 1. Then for every ε > 0 and
u ∈W 2,p

X,0(Rn) with p ∈ [1,∞),

‖Xu‖Lp ≤ ε‖X2u‖Lp +
2

ε
‖u‖Lp .

Let us now consider the class of model operators

Lu(x) =

q∑
i,j=1

aijXiXju(x) (10)

where the matrix {aij} is constant, symmetric and satisfies the ellipticity con-
dition: there exists µ > 0 such that

µ|ξ|2 ≤ aijξiξj ≤
1

µ
|ξ|2 (11)

for every ξ ∈ Rq.
The operator L is a left invariant differential operator homogeneous of degree

two on G; it is easy to see that L can be rewritten in the form L =
∑q
i=1 Y

2
i

where Y1, ..., Yq are a different system of Hörmander’ vector fields (for details, see
[3, §2.4]); hence L is hypoelliptic, by Hörmander’s theorem (see [16]). By general
properties of Carnot groups, the formal transposed of Xi is X∗i = −Xi; hence

the transposed of L is still L; in particular, both L and L
∗

are hypoelliptic. We
can therefore apply the theory developed by Folland [12] about the fundamental
solution of L. The following theorem collects the properties we will need:

Theorem 6 (Homogeneous fundamental solution of L) The operator L
has a unique global fundamental solution Γa ≤ 0 with pole at the origin wich is
homogeneous of degree 2−Q and such that:

(a) Γa ∈ C∞(Rn \ {0});

(b) for every u ∈ C∞0 (Rn) and every x ∈ Rn,

u(x) = Lu ∗ Γa(x) =

∫
Rn

Γa(y−1 ◦ x)Lu(y)dy;

(c) for every f ∈ L2 (Rn) , f compactly supported, the function

u(x) = f ∗ Γa(x) =

∫
Rn

Γa(y−1 ◦ x)f(y)dy

belongs to W 2,2
X (Rn) and solves the equation Lu = f in Rn.
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We also need some uniform bound for Γa, with respect to the constant matrix
{aij} in a fixed ellipticity class. The next result is contained in [3, Thm. 12]:

Proposition 7 (Uniform estimate on Γa) There exists a positive constant,
depending on {aij} only through the number µ, such that

|Γa(x)| ≤ c

‖x‖Q−2
for every x ∈ Rn \ {0} .

Another key tool that we need from the general theory of Hörmander’s op-
erators is represented by the so-called subelliptic estimates. To formulate these,
we need to recall the standard definition of (Euclidean, isotropic) fractional
Sobolev spaces: for any s ∈ R the space Hs is defined as the set of functions
(or tempered distributions) such that

‖u‖2Hs =

∫
Rn

(
1 + |ξ|2

)s
|û (ξ)|2 dξ

is finite, where û (ξ) denotes the Fourier transform of u. Then:

Theorem 8 (Subelliptic estimates, see [14]) There exists ε > 0, depend-
ing on the Xi and, for every η, η1 ∈ C∞0 (Rn) with η1 = 1 on sprt η and any
σ, τ > 0, there exists a constant c depending on σ, τ, η, η1, Xi such that

‖ηu‖Hσ+ε ≤ c
(∥∥η1Lu

∥∥
Hσ

+ ‖η1u‖H−τ
)

where L is like in (10). Moreover, the constant c depends on the coefficients aij
only through the number µ.

Classical subelliptic estimates are proved for a fixed operator of Hörmander’s
type; however, the last statement about the dependence of c on the aij can be
directly checked following the proof.

For the operator L we can give a standard definition of weak solution to a
Dirichlet problem:

Definition 9 Let Ω a bounded domain. Given two functions f ∈ W 1,2
X (Ω), g ∈

L2 (Ω), we say that u ∈W 1,2
X (Ω) is a weak solution to the Dirichlet problem{

Lu = g in Ω
u = f on ∂Ω

(12)

if u− f ∈W 1,2
X,0(Ω) and

−
∫

Ω

q∑
i,j=1

aijXjuXiϕ =

∫
Ω

gϕ ∀ϕ ∈ C∞0 (Ω).
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The validity of Poincaré’s inequality allows to prove in the standard way, by
Lax-Milgram’s Lemma, the unique solvability of (12). We stress the fact that,
although the operator L is hypoelliptic, so that any distributional solution to
Lu = g is smooth in any open subset where g is smooth, the solvability of a
Dirichlet problem in classical sense is not a trivial result for L, but requires care-
ful assumptions on the domain. Also, W 2,p

X (Ω) estimates up to the boundary
are not known, so far, so that the Dirichlet problem is not even solvable in the
sense of strong solutions. This is a major difference between the present con-
text and that of elliptic and parabolic equations, in the application of Krylov’
technique.

A maximum principle for weak solutions can be easily proved in the standard
way. This requires some preliminary (standard) definition:

Definition 10 For u ∈W 1,2
X (Ω), we say that

Lu ≥ 0 in Ω

in weak sense if∫
Ω

q∑
i,j=1

aijXjuXiϕ ≤ 0 ∀ϕ ∈ C∞0 (Ω), ϕ ≥ 0 in Ω.

We say that
u ≤ 0 on ∂Ω

in weak sense if
max (u, 0) ∈W 1,2

X,0 (Ω) .

The following can be easily proved exactly like in the elliptic case:

Proposition 11 (Maximum Principle) Let Ω an open set of Rn. For any
u ∈ W 1,2

X (Ω), if Lu ≥ 0 in Ω and u ≤ 0 on ∂Ω (in weak sense), then u ≤ 0 in
Ω a.e.

3 Local estimates for the model operator

We start with several a priori estimates for the operator L, defined as in (10)
with constant {aij}. The constants in our estimates will depend on this matrix
only through the number µ. Recall that the operator L, which in our context is
the analog of the constant coefficient operator in the elliptic case, is hypoelliptic,
2-homogeneous and translation invariant on G.

Lemma 12 For any u ∈ C∞(Rn) and R > 0, let h ∈ W 1,2
X (BR) be the weak

solution to {
Lh = 0 in BR
h = u on ∂BR.

(13)
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(Here BR stands for BR (0)). Then h ∈ C∞(BR) and if R ≥ 4Λ2, where from
now on Λ is the constant appearing in Poincaré’s inequality (Thm. 4), the
following holds:

sup
B1

|XiXjXkh| ≤ c
q∑

i,j=1

‖XiXju‖L1(BR) (14)

for all i, j, k = 1, ..., q. The constant c only depends on G and µ. In particular
it is independent of u.

Proof. Let w ∈W 1,2
X (BR) be the unique weak solution to the Dirichlet problem{

Lw = −Lu in BR
w = 0 on ∂BR

and let h = u + w. Then h solves (13) and, since L is hypoelliptic in Rn and
−Lu ∈ C∞(BR), h ∈ C∞(BR).

To prove (14), let us now assume R ≥ 4Λ2 (in particular, R > 4) and let us
apply the subelliptic estimates (Thm. 8) with cutoff functions η, η1 ∈ C∞0 (B2),
η1 = 1 in sprt η:

‖ηh‖Hσ+ε ≤ c
{
‖η1Lh‖Hσ + ‖η1h‖H−τ

}
.

Then since Lh = 0 in BR, taking τ = 0 and σ large enough we have

sup
B1

|XiXjXkh| ≤ c‖ηh‖Hσ+ε ≤ c‖h‖L2(B2),

where the first inequality follows by the classical Sobolev embedding theorems.
Then, it is enough to prove that

‖h‖L2(B2) ≤ c
q∑

i,j=1

‖XiXju‖L1(BR). (15)

Let ϕ ∈ C∞(Rn) such that ϕ(x) = 1 if ‖x‖ ≥ 3.5 and ϕ(x) = 0 if ‖x‖ ≤ 3
and define

v = h− ϕu.

Then v ∈ C∞(BR) and

Lv = L(−ϕu) = −ϕLu− uLϕ− 2

q∑
i,j=1

aijXiϕXju =: −g.

Also, since h− u ∈W 1,2
X,0(BR) and ϕ = 1 near ∂BR, we have v ∈W 1,2

X,0(BR).
On the other hand, for

f =

∣∣ϕLu∣∣+
∣∣uLϕ∣∣+ 2

∣∣∣∣∣∣
q∑

i,j=1

aijXiϕXju

∣∣∣∣∣∣
χBR
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defined in Rn, and Γa the global homogeneous fundamental solution of L, let

w(x) = −
∫
Rn

Γa(y−1 ◦ x)f(y)dy.

Then −Lw = f in strong sense (that is, w ∈ W 2,2
X (BR) and −Lw (x) = f (x)

for a.e. x ∈ BR) and then also in the weak sense, and w ≥ 0 in Rn (since both
−Γa and f are nonnegative). Hence the functions v, w satisfy, in weak sense,{

L(v − w) = f − g ≥ 0 in BR
v − w ≤ 0 on ∂BR{
L(−v − w) = g + f ≥ 0 in BR
−v − w ≤ 0 on ∂BR

and since |g| ≤ f , by the maximum principle (Proposition 11) we conclude
|v| ≤ w in BR.

Now for x ∈ B2, since ϕ(x) = 0 if ‖x‖ ≤ 3 and f (x) 6= 0 only for 3 ≤ ‖x‖ ≤
R,

|h(x)| = |(v + ϕu) (x)| = |v(x)| ≤ w(x) = −
∫
Rn

Γa(y−1 ◦ x)f(y)dy

= −
∫
BR\B3

Γa(y−1 ◦ x)f(y)dy.

On the other hand, for x ∈ B2 and y ∈ BR \ B3 the function Γa(y−1 ◦ x) is
bounded. Actually, by Proposition 7 and (4)

0 ≤ −Γa(y−1 ◦ x) ≤ c

‖y−1 ◦ x‖Q−2
≤ c

(‖y‖ − ‖x‖)Q−2
≤ c.

Hence

|h(x)| ≤ c‖f‖1 ≤ c

‖Lu‖L1(BR) + ‖u‖L1(B3.5) +

q∑
j=1

‖Xju‖L1(B3.5)


which in particular gives

‖h‖L1(B2) ≤ c


q∑

i,j=1

‖XiXju‖L1(BR) + ‖u‖L1(B4) +

q∑
j=1

‖Xju‖L1(B4)

 . (16)

In order to prove (15) we should remove from the right-hand side of (16) the
terms in u and Xju. To this aim, let

ũ (x) = u (x) + c0 +

q∑
i=1

cixi

13



for some constants ci, i = 0, 1, 2, ..., q that we can choose so that∫
B4

ũ (x) dx = 0

and ∫
B4Λ

Xiũ (x) dx = 0 for i = 1, 2, ..., q.

Namely, since for i = 1, 2, ..., q the vector fields Xi have the structure

Xi = ∂xi +

n∑
j=q+1

bij (x) ∂xj ,

so that Xj ũ = Xju+ cj , we can choose

ci = − 1

|B4Λ|

∫
B4Λ

Xiu (x) dx for i = 1, 2, ..., q

and

c0 = − 1

|B4|

(∫
B4

u (x) dx+

q∑
i=1

ci

∫
B4

xidx

)
.

For this choice of ci, i = 0, 1, 2, ..., q and ũ, we can now repeat the above proof
defining h̃ as the solution to{

Lh̃ = 0 in BR
h̃ = ũ on ∂BR

(with R ≥ 4Λ2 as before). Clearly, one simply has

h̃ (x) = h (x) + c0 +

q∑
i=1

cixi

and

sup
B1

∣∣∣XiXjXkh̃
∣∣∣ ≤ c‖h̃‖L2(B2)

≤ c


q∑

i,j=1

‖XiXj ũ‖L1(BR) + ‖ũ‖L1(B4) +

q∑
j=1

‖Xj ũ‖L1(B4)

 .

Next, note that XiXj ũ = Xi (Xju+ cj) = XiXju and by Poincaré’s inequality
(Thm. 4)

‖ũ‖L1(B4) +

q∑
j=1

‖Xj ũ‖L1(B4)

=

∫
B4

|ũ (x)− ũB4 | dx+

q∑
j=1

‖Xj ũ‖L1(B4)

≤ c
q∑
i=1

∫
B4Λ

|Xiũ (x)| dx+

q∑
j=1

‖Xj ũ‖L1(B4Λ)

14



= c

q∑
i=1

∫
B4Λ

|Xiũ (x)−XiũB4Λ | dx

≤ c
q∑

i,j=1

∫
B4Λ2

|XjXiũ (x)| dx

= c

q∑
i,j=1

∫
B4Λ2

|XjXiu (x)| dx.

Also, XiXjXkh̃ = XiXjXkh hence

sup
B1

|XiXjXkh| ≤ c
q∑

i,j=1

‖XiXju‖L1(B4Λ2) ≤ c
q∑

i,j=1

‖XiXju‖L1(BR)

and we are done.

Lemma 13 For any k ≥ 4Λ3, r > 0 , u ∈ C∞(Rn) and h the weak solution to{
Lh = 0 in Bkr
h = u on ∂Bkr

we have that for i, j = 1, 2, ..., q

1

|Br|

∫
Br

|XiXjh (x)− (XiXjh)Br |dx ≤
c

k

q∑
i,j=1

1

|Bkr|

∫
Bkr

|XiXju (x) |dx, (17)

where the constant c depends on G and µ, but is independent of k and r.

Proof. It is enough to prove the result for r = 1. Namely, if we define h̃ (x) =
h(D(r)(x)) and ũ (x) = u(D(r)(x)), using the 1-homogenety of Xi, by dilations
we have

1

|Br|

∫
Br

|XiXjh(x)|dx =
1

rQ|B1|

∫
B1

| (XiXjh) (Dr(y))|rQdy

=
1

|B1|
r−2

∫
B1

|XiXj h̃(y)|dy

Analogously, we obtain

1

|Br|

∫
Br

|XiXjh(x)− (XiXjh)Br |dx =
1

|B1|
r−2

∫
B1

|XiXj h̃(y)− (XiXj h̃)B1
|dy

and

1

|Bkr|

∫
Bkr

|XiXju(x)|dx =
1

|Bk|
r−2

∫
Bk

|XiXj ũ(y)|dy

hence if the result holds for r = 1 it holds for every r > 0.
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Now, for k ≥ 4Λ3, let h ∈W 1,2
X (Bk) satisfy{
Lh = 0 in Bk
h = u on ∂Bk.

(18)

Let us assume that for every s, i, j = 1, ..., q and x ∈ BΛ ,

|XsXiXjh (x)| ≤ c

k

q∑
i,j

1

|Bk|

∫
Bk

|XiXju(x)|dx (19)

(with c independent of k) and let us prove (17) for r = 1.
By Theorem 4,

1

|B1|

∫
B1

|XiXjh(x)− (XiXjh)B1
|dx ≤ c

|BΛ|

q∑
s=1

∫
BΛ

|XsXiXjh(x)|dx

≤ c
q∑
s=1

sup
BΛ

|XsXiXjh|

≤ c

k

q∑
i,j

1

|Bk|

∫
Bk

|XiXju(x)|dx,

which is the assertion for r = 1.
It remains to prove (19). To do that, for x ∈ B4Λ2 we define h̃(x) =

h(D(k/4Λ2)(x)) and ũ(x) = u(D(k/4Λ2)(x)). Then Lh̃ = 0 in B4Λ2 with
boundary condition ũ and we can apply Lemma 12, which jointly with dilations
and homogenety gives for x ∈ B1(

k

4Λ2

)3 ∣∣(XsXiXjh) (D(k/4Λ2)(x))
∣∣ =

∣∣∣XsXiXj h̃(x)
∣∣∣

≤ c
q∑

i,j=1

∫
B4Λ2

|XiXj ũ(x)| dx

= c |B4Λ2 |
q∑

i,j=1

1

|B4Λ2 |

∫
B4Λ2

|XiXj(u(D(k/4Λ2)(x))|dx

= c

(
k

4Λ2

)2 q∑
i,j=1

1

|B4Λ2 |

∫
B4Λ2

| (XiXju) (D(k/4Λ2)(x))|dx

= c

(
k

4Λ2

)2 q∑
i,j=1

1

|Bk|

∫
Bk

|XiXju(y)|dy.

Hence, for x ∈ B1,∣∣(XsXiXjh) (D(k/4Λ2)(x))
∣∣ ≤ c

k

q∑
i,j=1

1

|Bk|

∫
Bk

|XiXju(x)|dx.
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But, since x ranges in B1, the point y = D(k/4Λ2)(x) ranges in Bk/4Λ2 ⊃ BΛ

(because k/4Λ2 ≥ Λ) and the Lemma is proved.
The next Lemma can be of independent interest:

Lemma 14 Let p ∈ (1,∞). There exists a constant c depending on p,G, µ such
that for any r > 0, k ≥ 2, v ∈W 1,2

X,0 (Bkr) the following holds:∥∥D2v
∥∥
Lp(Br)

≤ ck2
∥∥Lv∥∥

Lp(Bkr)
.

Before proving this result, let us explain why it is not trivial. From the local
estimates proved by Folland [12] it is known that for any v ∈W 1,2

X (Bkr)∥∥D2v
∥∥
Lp(Br)

≤ c
(∥∥Lv∥∥

Lp(Bkr)
+ ‖Dv‖Lp(Bkr) + ‖v‖Lp(Bkr)

)
.

Also, for v ∈ C∞0 (Br) one can prove∥∥D2v
∥∥
Lp(Br)

≤ c
∥∥Lv∥∥

Lp(Br)
.

The nontrivial fact, in the subelliptic context (where Lp estimates up to the
boundary are unknown), is removing the Lp norm of v from the right hand side
under the weak vanishing condition v ∈W 1,2

0 (Bkr) .

Proof. For any σ ∈ ( 1
2 , 1), we can construct (see [3] for details) a cutoff function

ϕσ ∈ C∞0 (Rn) satisfying: ϕσ = 1 on Bσr, sprtϕs ⊂ Bσ′r, where σ′ = (1+σ)
2 ,

|Xjϕσ| ≤
c

(1− σ)r

|XiXjϕσ| ≤
c

(1− σ)2r2
.

Let us define two cutoff functions ϕ1, ϕ2 corresponding to σ1 ∈ ( 1
2 , 1), σ2 = σ′1,

and let σ3 = σ′2. We can apply Folland’s local estimates for the model operator
(see [12, Theorem 4.9]) to vϕ1, so that

‖XiXj(vϕ1)‖Lp(Bσ2r) ≤ c‖L(vϕ1)‖Lp(Bσ2r).

Then, expanding the operator L(vϕ1), using the estimate for the derivatives of
ϕ1 and multiplying by (1− σ1)2r2 in both sides, we have

(1− σ1)2r2‖XiXjv‖Lp(Bσ1r
) ≤ cr2‖Lv‖Lp(Br)

+ c(1− σ1)r‖Xiv‖Lp(Bσ2r
)

+ c‖v‖Lp(Br). (20)

In order to estimate (1 − σ1)r‖Xiv‖Lp(Bσ2r
), let us apply Proposition 5 to

vϕ2. We have

‖Xiv‖Lp(Bσ2r) ≤ ε
{
‖X2

i v‖Lp(Bσ3r) +
1

(1− σ2)r
‖Xiv‖Lp(Bσ3r)

+
1

(1− σ2)2r2
‖v‖Lp(Bσ3r

)

}
+

2

ε
‖v‖Lp(Bσ3r

).
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Now, taking ε = (1 − σ2)rδ for some δ and using the fact that 1−σ
1−σ′ = 1

2 we
obtain

(1− σ2)r‖Xiv‖Lp(Bσ2r) ≤ cδ(1− σ3)2r2‖X2
i v‖Lp(Bσ3r)

+ cδ(1− σ3)r‖Xiv‖Lp(Bσ3r
)

+ cδ‖v‖Lp(Bσ3r) +
2

δ
‖v‖Lp(Bσ3r),

which, letting
φk = sup

σ∈( 1
2 ,1)

(1− σ)krk‖Dkv‖Lp(Bσr)

implies that

φ1 ≤ cδ(φ2 + φ1 + ‖v‖Lp(Br)) +
c

δ
‖v‖Lp(Br),

and taking δ small enough we have

φ1 ≤ cδφ2 + C‖v‖Lp(Br).

Finally, inserting this in (20) and taking the supremum on σ1 we have

φ2 ≤ cr2‖Lv‖Lp(Br) + c‖v‖Lp(Br),

which can be read as

r2‖XiXjv‖Lp(Br) ≤ cr2‖Lv‖Lp(Bkr) + c‖v‖Lp(Bkr) (21)

for r > 0, k > 2 and for some c depending on p,G, µ.
On the other hand, the function

w (x) = −
∫
Bkr

Γa
(
x−1 ◦ y

)
|f (y)| dy

solves {
Lw = − |f | in Bkr
w ≥ 0 on ∂Bkr

and taking f = Lv ·χBkr , by the same reasoning of the proof of Lemma 12, the
maximum principle implies |v| ≤ w in Bkr. Then, by Proposition 7

|v(x)| ≤ w (x) ≤ c
∫
Bkr

1

‖x−1 ◦ y‖Q−2
|f(y)|dy

≤ c
∞∑
s=0

∫
2kr

2s+1≤‖x−1◦y‖≤ 2kr
2s

1

‖x−1 ◦ y‖Q−2
|f(y)|dy

≤ c
∞∑
s=0

(
2s+1

2kr

)Q−2 ∫
‖x−1◦y‖≤ 2kr

2s

|f(y)|dy

≤ c(kr)2
∞∑
s=0

1

22s
Mf(x),
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and by (7)
‖v‖Lp(Bkr) ≤ (kr)2‖Lv‖Lp(Bkr)

which inserted in (21) gives us the result.

Lemma 15 Let p ∈ (1,∞). Then there exists a constant c depending on p,G, µ
such that for k ≥ 4Λ3, r > 0 and u ∈ C∞(Rn)

1

|Br|

∫
Br

|XiXju (x)− (XiXju)Br |dx

≤ c

k

q∑
i,j=1

1

|Bkr|

∫
Bkr

|XiXju (x) |dx+ ck2+Q/p

(
1

|Bkr|

∫
Bkr

|Lu (x) |pdx
)1/p

.

Proof. For u and k as in the statement, let h be the solution to{
Lh = 0 in Bkr
h = u on ∂Bkr,

then

1

|Br|

∫
Br

|XiXju(x)− (XiXju)Br |dx ≤
1

|Br|

∫
Br

|XiXju(x)−XiXjh(x)|dx

+
1

|Br|

∫
Br

|XiXjh(x)− (XiXjh)Br |dx

+
1

|Br|

∫
Br

|(XiXjh)Br − (XiXju)Br |dx

≡ A+B + C.

By Lemma 13 we have

B ≤ c

k

q∑
i,j=1

1

|Bkr|

∫
Bkr

|XiXju (x) |dx.

As to C, since (XiXjh)Br − (XiXju)Br = (XiXjh−XiXju)Br it is enough
to estimate the term A.

Applying Lemma 14 to the weak solution v of the problem{
Lv = Lu in Bkr
v = 0 on ∂Bkr

we have
‖XiXjv‖Lp(Br) ≤ ck2‖Lv‖Lp(Bkr).
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Then, by Hölder inequality we obtain

1

|Br|

∫
Br

|XiXjv(x)|dx ≤
(

1

|Br|

∫
Br

|XiXjv(x)|pdx
)1/p

≤ ck2|Br|−1/p

(∫
Bkr

|Lv(x)|pdx
)1/p

= ck2|Br|−1/p

(∫
Bkr

|Lu(x)|pdx
)1/p

= ck2+Q/p

(
1

|Bkr|

∫
Bkr

|Lu (x) |pdx
)1/p

and we are done.

4 Local estimates for operators with variable
coefficients

Let us now come to study the operator L with variable VMOloc (Ω) coefficients.
The next theorem contains the key local estimate involving L.

For a fixed domain Ωm b Ωm+1, let us cover Ωm with a finite number of
balls BR with R small enough (R to be chosen later). In the following theorem
BR is one of these balls. The maximal operator and the local sharp maximal
operator which appear in the statement are defined in (6) and (8) respectively.
By the assumption (1) and the inclusion (9), if we define the VMO modulus of
the coefficients aij as

a]m,r =

q∑
i,j=1

ηm,aij (r) , (22)

we have
sup
r≤εm

a]m,r <∞ and lim
r→0+

a]m,r = 0.

Theorem 16 Let p, α, β ∈ (1,∞) with α−1 + β−1 = 1 and R ∈ (0,∞). Then
there exists a constant c depending on p, α,G, µ such that for any u ∈ C∞0 (BR)
and k ≥ 4Λ3 we have

(XiXju)#
Ωm+2,Ωm+3

(x) ≤ c

k

q∑
i,j=1

M(XiXju) (x) + ck2+Q/p (M(|Lu|p) (x))
1/p

+ ck2+Q/p
(
a]m+2,R

)1/βp

(M(|XiXju|pα) (x))
1/αp

for every x ∈ BR, R < εm+2.

The choice of bounding the local sharp maximal function relative to the
domains Ωm+2,Ωm+3 is just for consistence with Theorem 3. As will be apparent
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from the proof, we could bound (XiXju)#
Ωk,Ωk+1

for any desired value of the
integer k.

Proof. Fix k ≥ 4Λ3, r ∈ (0, εm+2) and x ∈ BR. Let Br be a ball containing
x. Let L be a constant coefficients operator corresponding to a constant matrix
{aij} which will be chosen later, depending on the values of r and k, in the class
of matrices satisfying (11). By Lemma 15 we have that

1

|Br|

∫
Br

|XiXju (x)− (XiXju)Br |dx

≤ c

k

q∑
i,j=1

1

|Bkr|

∫
Bkr

|XiXju (x) |dx+ ck2+Q/p

(
1

|Bkr|

∫
Bkr

|Lu(x)|pdx
)1/p

≡ A+B. (23)

To handle the term B, let us write(∫
Bkr

|Lu(x)|pdx
)1/p

≤
(∫

Bkr

|Lu(x)− Lu(x)|pdx
)1/p

+

(∫
Bkr

|Lu(x)|pdx
)1/p

(24)
with∫

Bkr

|Lu(x)− Lu(x)|pdx ≤ c
q∑

i,j=1

∫
Bkr∩BR

|aij − aij(x)|p|XiXju(x)|pdx

≤ c
q∑

i,j=1

(∫
Bkr∩BR

|aij − aij(x)|pβdx
)1/β (∫

Bkr∩BR
|XiXju(x)|pαdx

)1/α

≡ c
q∑

i,j=1

J
1/β
2 J

1/α
1 . (25)

We have

J1 ≤
∫
Bkr

|XiXju(x)|pαdx = c(kr)Q
1

|Bkr|

∫
Bkr

|XiXju (x) |pαdx (26)

and since the coeficients aij , aij are bounded by 1/µ we also have

J2 ≤ µ−βp+1

∫
Bkr∩BR

|aij (x)− aij | dx.

We now choose a particular constant matrix {aij}, depending on the values of
r, k, as follows

aij =

{
(aij)BR if kr ≥ R
(aij)Bkr if kr ≤ R.

Then, if kr ≥ R

J2 ≤ c
∫
BR

|aij(x)− (aij)BR |dx ≤ c|BR|a
]
R ≤ cR

Qa]R ≤ c(kr)
Qa]R (27)
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while if kr ≤ R

J2 ≤ c
∫
Bkr

|aij(x)− (aij)Bkr |dx ≤ c|Bkr|a
]
kr ≤ c(kr)

Qa]R (28)

where, here and in the rest of the proof, we write a]R for a]m+2,R.
In any case, by (25), (26), (27) and (28) we obtain∫
Bkr

|Lu(x)− Lu(x)|pdx ≤ c
q∑

i,j=1

(
(kr)Qa]R

)1/β (
(kr)Q(|XiXju|pα)Bkr

)1/α
= c(kr)Q(a]R)1/β

q∑
i,j=1

((|XiXju|pα)Bkr )
1/α

which inserted in (24) gives(
1

|Bkr|

∫
Bkr

|Lu(x)|pdx
)1/p

≤
(

1

|Bkr|

∫
Bkr

|Lu(x)|pdx
)1/p

+ c(a]R)1/βp

q∑
i,j=1

(
1

|Bkr|

∫
Bkr

|XiXju(x)|pαdx
)1/αp

.

In turn, inserting this estimate in (23) we get

1

|Br|

∫
Br

|XiXju (x)− (XiXju)Br |dx

≤ c

k

q∑
i,j=1

1

|Bkr|

∫
Bkr

|XiXju(x)|dx+ ck2+Q/p

(
1

|Bkr|

∫
Bkr

|Lu(x)|pdx
)1/p

+ ck2+Q/p
(
a]R

)1/βp
q∑

i,j=1

(
1

|Bkr|

∫
Bkr

|XiXju(x)|pαdx
)1/αp

≤ c

k

q∑
i,j=1

M(XiXju) (x) + ck2+Q/p(M(|Lu|p)(x))1/p

+ ck2+Q/p(a#
R)1/βp

q∑
i,j=1

(M(|XiXju|pα)(x))
1/αp

.

Note that in this estimate the constant matrix does not appear any longer.
The constants c are independent of k, r and the estimate holds for any k ≥ 4Λ3

and r > 0. We can then take the supremum with respect to r ∈ (0, εm+2),
getting

(XiXju)#
Ωm+2,Ωm+3

(x) ≤ N

k

q∑
i,j=1

M(XiXju) (x)

+Nk2+Q/p

{
(M(|Lu|p) (x))

1/p
+
(
a]m+2,R

)1/βp

(M(|XiXju|pα) (x))
1/αp

}
.
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We are now in position to give the

Proof of Theorem 2. Assume that BR and BγR are as in the statement of
Theorem 3. Fix p ∈ (1,∞) and choose α, β, p1 ∈ (1,∞) such that αp1 < p and
α−1 + β−1 = 1. Apply Theorem 16 to these α, β, p1 and the ball BγR (but with
u ∈ C∞0 (BR)) writing, for x ∈ BγR:

(XiXju)#
Ωm+2,Ωm+3

(x) ≤ c

k

q∑
i,j=1

M(XiXju) (x) + ck2+Q/p1 (M(|Lu|p1) (x))
1/p1

+ ck2+Q/p1

(
a]m+2,γR

)1/βp1
q∑

i,j=1

(M(|XiXju|p1α) (x))
1/αp1 .

Then, taking Lp (BγR) norms of both sides we get∥∥∥(XiXju)#
Ωm+2,Ωm+3

∥∥∥
Lp(BγR)

≤ c

k

q∑
i,j=1

‖M(XiXju)‖Lp(BγR)

+ ck2+Q/p1

(∫
BγR

(M(|Lu|p1) (x))
p/p1 dx

)1/p

+ ck2+Q/p1

(
a]m+2,γR

)1/βp1
q∑

i,j=1

(∫
BγR

(M(|XiXju|p1α) (x))
p/αp1 dx

)1/p

.

(29)

Note that, since u ∈ C∞0 (BR),∫
BR

XiXju (x) dx = 0.

This follows from the structure of the vector fields Xi in Carnot groups, since

Xif =

n∑
j=1

bij (x) ∂xjf =

n∑
j=1

∂xj (bij (x) f) .

Hence we can apply Theorem 3 writing
q∑

i,j=1

‖XiXju‖Lp(BR) ≤ c
q∑

i,j=1

∥∥∥(XiXju)#
Ωm+1,Ωm+2

∥∥∥
Lp(BγR)

applying the p, p/p1 and p/αp1-maximal inequality (7) on the right hand side
of (29) (recall that u is compactly supported in BR):

≤ c

k

q∑
i,j=1

‖XiXju‖Lp(BR)

+ ck2+Q/p1

‖Lu‖Lp(BR) +
(
a]m+2,γR

)1/βp1
q∑

i,j=1

‖XiXju‖Lp(BR)

 .
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Since this inequality holds for any k ≥ 4Λ3, we can now choose k so that
c/k < 1/2, getting

q∑
i,j=1

‖XiXju‖Lp(BR) ≤ c ‖Lu‖Lp(BR) + c
(
a]m+2,γR

)1/βp1
q∑

i,j=1

‖XiXju‖Lp(BR) .

Finally, exploiting the VMOloc assumption on the coefficients aij we can choose

R small enough to have c
(
a]m+2,γR

)1/βp1

< 1/2, so that

q∑
i,j=1

‖XiXju‖Lp(BR) ≤ c ‖Lu‖Lp(BR)

and we are done.
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