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the various derivatives moved to the main text since later the authors attempt to identify features 
that enhance the effectiveness of the compounds. 
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Cucurbitacins are natural products known for their several pharmacological 
properties ► A data set with 43 cucurbitacins derivatives was used for a SAR/QSAR 

study ► The cytotoxicity of each derivative in A549 cell line was assayed ► Both the 
models presented good internal and external statistical quality ► The models indicate 
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Abstract 

 

This article describes structure-activity relationship (SAR/QSAR) studies on the 

cytotoxic activity in a human lung adenocarcinoma cell line (A549) of 43 cucurbitacin 

derivatives. Modeling was performed using regression by partial least squares with 

discriminant analysis (PLS-DA) and by the PLS calibration method. For both studies, 

the variables were selected using the ordered predictor selection (OPS) algorithm. The 

SAR study demonstrated that the presence or absence of cytotoxic activity of the 

cucurbitacins could be described using information derived from their chemical 

structures. The model obtained in the QSAR study displayed suitable internal and 

external predictivity. Furthermore, the selected descriptors indicated that the observed 

activity might be related to electrophilic attack on cellular structures or genetic material. 

This study provides improves the understanding of the cytotoxic activity of 

cucurbitacins and could be used to propose new cytotoxic agents. 

 

Keywords. Cucurbitacins, Lung Cancer, QSAR, PLS, PLS-DA, OPS. 
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1. Introduction 

In recent years, more than 70 antineoplastic drugs have been introduced in 

therapeutics. Nevertheless, cancer treatment remains a challenge, mainly due to the 

wide variety of cancers and the similarity between normal and tumor cells. Currently, 

research on new drugs has been based on the evaluation of chemical structures of 

natural and synthetic compounds and the development of similar derivatives. These new 

chemical entities have been investigated for the treatment of several disorders, 

primarily, cancer and infectious diseases. Reviews have described the importance of 

Natural Products (NPs) as a source of potential chemotherapeutic agents, and it is 

interesting to note that more than 25% of the anticancer drugs approved in the last 30 

years are semisynthetic molecules directly derived from NPs [1-2]. 

In this context, the cucurbitacins is a class of highly oxygenated triterpenic 

compounds derived from a cucurbitane skeleton (Fig. 1). They are predominantly found 

in different species of the Cucurbitaceae family and have been distinguished according 

to features in ring A, side chain modifications, and stereochemical characteristics. These 

NP scaffolds are known for their bitter taste and pharmacological properties, including 

their purgative, anti-inflammatory, and anti-fertility activities, as well as their 

cytotoxicity and anti-cancer activity [3-7].  

Cucurbitacins induce both morphological and physiological changes in tumor cells, 

causing drastic changes in cell shape, such as rounding, swelling, pinocytic blebbing, 

submembranous inclusions, and blisters [7]. Some of these changes can be explained by 

dysregulation of cytoskeletal homeostasis [8-10]. Many studies have shown that 

cucurbitacins induce cell cycle arrest, particularly in the G2/M phase [11-14], and in the 

S phase [14]. The cell cycle arrest in the G2/M phase occurs immediately after exposure 

to cucurbitacins and results in apoptosis of tumor cells [11]. Recent works reported that 

cucurbitacins B, D, E, and I and related compounds are active against different tumor cell 

lines and that some of them are STAT3 (Signal Transducers and Activators of 

Transcription-3) inhibitors, and affect other signalling pathways that are important for 

cancer cell proliferation and survival, such as the mitogen-activated protein kinase 

(MAPK) pathway [7,13,15-19].  

Structure-activity relationship (SAR) studies are helpful tools of Computer Aided 

Drug Design (CADD) [20,21], including the development of anticancer agents [22-24]  

and in environmental sciences [25] that have been used to describe how a given 
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biological activity or property may vary as a function of molecular descriptors derived 

from the chemical structure of a set of molecules. However, despite the great potential 

of cucurbitacins, there are only two QSAR (quantitative structure-activity relationship) 

reports in the literature concerning this class of compounds [26,27]. Thus, considering 

the potential of cucurbitacins as new lead compounds, the main goal of this 

investigation was to provide a SAR and QSAR studies of a selected data set of 43 

cucurbitacin derivatives assayed to their in vitro cytotoxic activity in human lung 

adenocarcinoma epithelial cell line (A549).  

 

2. Material and methods 

 

2.1 Data set 

The set of 40 cucurbitacins of interest were previously published by Lang et. Al 

[3,28], Machado [29] and Farias et al. [30]. The basic structure of the dataset is 

available in Fig. 1 and all structures are available in the Fig. 2. The cytotoxic activity 

against non-small-cell lung cancer (A549 cells) was evaluated using the 3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) colorimetric assay [31]. 

The IC50 value (concentration that inhibited cell proliferation by 50% when compared to 

untreated controls) of each compound are available in Table 1. Additionally, data about 

three new derivatives (14, 17 and 27) recently synthesized and assayed are also 

available in the Supplementary Material. 

 Exact values of their respective IC50 (range: 0.04x10
-6

 to 174.37x10
-6

 M; -log 

IC50: 7.398 to 3.759) were available obtained for twenty-three compounds and these 

were used in the QSAR step. Therefore, the complete data set was used in a qualitative 

study using partial least squares with discriminant analysis (PLS-DA) [32], and each 

was designated as active (class 1, IC50 exactly determined) or inactive (class 2, 

inactive). The active compounds were used in a QSAR study employing the PLS 

calibration method [33].  

 

2.2 Molecular descriptors 

Three-dimensional structures were built using ChemOffice [34] and optimized in 

the MM2 force field. The output files were converted into input files for Gaussian 09 

[35] with Open Babel [36]. Thus, calculations at the AM1 theory level, followed by 

Hartree Fock level (HF/6-31G(d, p)) and the Density Functional Theory level 
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(B3LYP/6-311G(d,p)) were performed. The B3LYP functional was chosen to obtain the 

electronic descriptors and the final geometries because provides quite satisfactory 

results for the analysis of these molecular characteristics [21]. 

The partial charges (Mulliken and Natural Bond Orders) of the basic structure 

(Fig. 1), the orbital molecular energies (EHOMO-1, EHOMO, ELUMO and ELUMO+1), the dipole 

moment (D) and respective components (Dx, Dy and Dz), and the total energy (ET) were 

obtained using Gauss View 5 [37]. Furthermore, the following reactivity descriptors 

were derived from the orbital molecular energies using the equations available in 

Todeschini and Consonni [38]: HOMO–LUMO energy gap (GAP), hardness (), 

softness (S), ionization potential (IP), activation energy index (AEI), electronic affinity 

(EA), HOMO/LUMO energy fraction (f(H/L)), molecular electronegativity (), 

electrophilicity index in the ground state (gs), and electrophilicity index (). 

The optimized geometries were converted in MOL2 files with Open Babel and 

utilized in Dragon 6 [39] to obtain 29 classes of descriptors (see 

http://www.talete.mi.it/help/dragon_help/index.html for more information), divided into 

0D, 1D, 2D and 3D descriptors. A first step of variable reduction was performed using 

some options available in Dragon 6. Thus, the following descriptors were excluded: (i) 

the descriptors with constant values; (ii) the descriptors with constant and near-constant 

variables; (iii) the descriptors with a standard deviation of less than 0.0001; (iv) the 

descriptors with at least one missing value; and (v) the descriptors with a pair 

correlation larger than or equal to 0.95. Thus, a total of 1004 molecular descriptors 

derived with Dragon 6 were used for the qualitative study while 952 were used for the 

quantitative study. 

The matrices with electronic descriptors and descriptors derived from Dragon 

were grouped into a single matrix and subjected to a second stage of reduction of 

variables using the free software QSAR Modeling [40]. Only the descriptors with 

absolute Pearson’s correlation coefficient (|R|) values with a vector y value of greater 

than 0.2 were maintained. Thus, the SAR study used a final matrix of 239 descriptors, 

and the QSAR study used a final matrix with 526 descriptors. 

 

2.3 Variable selection 

The step of variable selection in a QSAR study is a way to identify reduced 

subsets of descriptors that reproduce the observed values of a biological activity, i.e., 

http://www.talete.mi.it/help/dragon_help/index.html
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those that are the most useful for obtaining a more accurate prediction model [41]. In 

this study, the Ordered Predictor Selection (OPS) algorithm [42], an approach available 

in QSAR Modeling [40], was used to sort the most important descriptors. Three 

informative vectors available in the QSAR Modeling were used simultaneously: the 

correlation vector, the regression vector and an element-wise product of both. The best 

models were classified in descending order of statistical quality according to their root 

mean square error of cross-validation (RMSECV) in the first step of selection, and 

according to their coefficient of determination of the leave-one-out cross-validation 

(Q
2

LOO) in the other steps. Because OPS use PLS to select the most important variables, 

the descriptors were pre-processed in the two studies using the autoscaling scheme. This 

procedure consists in subtracting the value of each descriptor by your average, or mean-

centering the descriptor, and then dividing the result by the standard deviation of that 

descriptor. 

 

2.4 SAR/QSAR analysis 

Both models were obtained using PLS approaches. In this method, latent variables 

(LV) are obtained including the dependent variable (in this case, -log IC50) in the 

analysis, in such a way that the covariance between the projection of the samples in the 

new axis system (also orthogonal) and the dependent variable is maximized [43]. In 

classical PLS (used for regression studies), the vector y is quantitative and continuous. 

PLS-DA is an extension of PLS. This approach is capable of effectively separating 

samples into different classes based on their independent variables by finding a 

discriminant plane between the classes. With PLS-DA, the vector y is qualitative and 

encodes the class membership (i.e., inactive and active compounds in this study) as a set 

of dummy variables (1 for inactive and 2 for active compounds). One of the advantages 

of using PLS-DA compared to other classification methods is that validation tools, such 

as calibration models, can be used [44,45]. Another advantage for this particular study 

was the possibility of using the OPS method to find the most important descriptors to 

discriminate the two classes. 

With PLS-DA, it is also necessary to determine the limit from which each sample 

is considered to be in a specific class and thus the threshold between zero and one 

should be determined. When a value above the threshold is predicted, a sample is 

considered to belong to a class, whereas a value below the threshold indicates that the 

sample does not belong to that class. In this study, the adopted threshold was 0.5, a 
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value generally employed with PLS-DA [45]. For both approaches, the descriptors were 

also pre-processed using the autoscaling scheme.  

 

2.5 Model validation  

In the PLS-DA study, validation followed the procedures adopted by the majority 

of SAR studies that use this procedure [46,47]. Thereby, the quality of the data 

adjustment was assessed based on its coefficient of determination (R
2
) and the root 

mean square error of calibration (RMSEC), the results obtained from cross-validation 

(using the values of Q
2

LOO and RMSECV), and by the visual inspection of the separation 

of the compounds in the two analyzed classes. 

Several statistical tools are suggested in literature for validation of QSAR models. 

The parameters adopted to validate the internal quality were the R
2
, RMSEC, F-ratio test 

with a 95% confidence interval (α=0.05), Q
2

LOO and RMSECV. The adopted limits are R
2
 

> 0.6 and Q
2

LOO > 0.5. RMSEC and RMSECV should be as low as possible [48]. The F-

test value should be higher than the F value in the table (Fp, n-p-1, where n is the number of 

compounds and p is the number of LV); the higher the difference between them, the 

more statistically significant is the model [49]. To ensure that the models generated in 

this study had reliable predicted variances, the following r
2

m metrics were also adopted: 

r
2

m(LOO); r’
2

m(LOO); average r
2

m(LOO) and r
2

m(LOO). For the first three metrics, the 

desirable results are greater than 0.5, and for the last metric, the desirable result is less 

than 0.2 [44].   

The robustness of the model was examined via leave-N-out (LNO) cross 

validation, using approximately 25% of the training set (i.e., N=1 to 5). This test was 

repeated six times for each “N” value and all of the rows from the data matrix and 

respective –log IC50 values were randomized in each step of the LNO process. The 

average value of each Q
2

LNO was expected to be close to each Q
2

LOO value, with 

standard deviations close to zero [50]. The possibility of chance correlation was tested 

using the y-randomization test, where only the y vector was scrambled 10 times. The |R| 

between the original and the randomized vector y was used to quantify chance 

correlation. In this approach, two regression lines are built using |R| these correlation 

coefficients in the x-axis and the R
2
 and Q

2
LOO values in the y-axis. The intercepts of the 

equations obtained in the linear regression should be lower than 0.3 for R
2
 and 0.05 for 

Q
2

LOO [51].  

Once internally validated, the complete data set was split into a training set (n=19) 



7 
 

 
 

and a test set (n=5) to generate the real model [50]. The test set was selected manually, 

in such a way that the entire range of –log IC50 (3.759 to 7.398 logarithmic units) and 

the structural variations of the data set were well represented. The coefficient of 

determination in the external validation (R
2

pred) and root mean square error of external 

prediction (RMSEP) were used as measures of the predictive power of the QSAR 

model. The recommended limit is R
2
pred > 0.5 [45], and the RMSEP values also should 

be as low as possible. However, this is not enough to guarantee that the model is 

actually predictive.  

Therefore, the following values were also obtained: (i) the Golbraikh–Tropsha 

slopes of the best fit line obtained by correlating the observed and predicted values with 

the intercept set to zero (k) and the predicted and observed values with the intercept set 

to zero (k’). These slopes should be 0.85 ≤ x ≤ 1.15 (x = k or k’); (ii) the Golbraikh–

Tropsha absolute difference of the determination coefficient of the linear relation 

between the observed and predicted values without an intercept (R
2

0) and the predicted 

and observed values without an intercept (R’
2

0) (|R
2

0-R’
2

0|). The difference should be 

smaller than 0.3 [52]; and (iii) the r
2

m(pred) metrics, which are parameters calculated in 

the same way and with the same threshold of the r
2

m(LOO) metrics, but applied to 

external validation [53]. 

Finally, considering the small size of the data set used in the QSAR study, the 

final validation step was the calculation of the r
2

m(overall). These metrics are calculated 

as are the r
2

m(LOO) and r
2

m(pred), but they are based on the predictions of both the 

training set and the test set. Therefore, the result is based on the prediction of a 

relatively large number of compounds [48]. 

The statistical significance of the internal and external validations were calculated 

in the QSAR Modeling software (R
2
, RMSEC, Q

2
LOO, RMSECV, LNO-cross validation, 

and y-randomization test), in an in-house Microsoft Excel spreadsheet (F-test, R
2

pred, 

RMSEP, k, k’, and |R
2

0-R’
2

0|), and with the RmSquare Calculator 

(http://aptsoftware.co.in/rmsquare). The equations for calculating all of these parameters 

are available in Todeschini and Consonni [38], Kiralj and Ferreira [50], Golbraikh et al. 

[52] and Ojha et al. [53]. 

 

3. Results and discussion 

 

3.1 SAR Analysis 
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The variables were selected by applying the OPS algorithm [42] to a data matrix 

containing 252 descriptors and a model with 8 descriptors was obtained. The PLS-DA 

model was built and refined using the Pirouette 4 [54]. The descriptors were reduced by 

preferably maintaining those with the highest regression vector [44]. The best 

classification was obtained using 7 descriptors (see loading plot in Fig. 3A). The 

number of significant LV was determined using the RMSECV method with the cross-

validation approach. The final PLS-DA classification model (Equation I) has two LV 

that cumulate 35.641% of the variance (LV1: 12.528%; LV2: 23.113%). The model 

explains 73.5% (R
2
=0.735) of the variance and predicts 62.4% (Q

2
LOO=0.624) of the 

variance. The separation tendency is shown in the score plot available in Fig. 3B. Five 

samples (6, 15, 19, 33, 42) did not meet the threshold (0.5) [45] adopted for the two 

classes, active and inactive compounds. However, inspection of the score plot (Fig. 3B) 

shows that this is a small error for compounds because they are located near the line that 

separates the classes, except for 33, the unique active compound that was ranked among 

the inactive compounds. 

 

Class=-117.97+146.922*(X5A)-61.787*(SpMin1_Bh(v))-

0.040*(Mor13s)+19.761*()-0.335*(H8u)+33.307*(Gm)+0.005*(RDF035s). 

(I) 

n=42; R
2
=0.735; RMSEC=0.257; Q

2
LOO=0.624; RMSECV=0.306   

 

At first, the large quantity of the selected descriptors (seven) appears problematic. 

However, the large number of descriptors is not a real concern because the PLS method 

is based on the LV, which are orthogonal among themselves [32] and it prevents the 

classic collinearity problem among the descriptors [49]. In addition, as shown in 

Equation I, removing descriptors with the aim of improving the mechanistic 

interpretation of the model affects the classification of the samples.   

Model (I) was obtained after removing an outlier compound. Detection of outliers 

was performed using studentized residuals () versus the leverage samples plot [55]. No 

compound had a residuals value higher than 2.5x. However, two compounds (23 and 

24) had leverage values higher than the leverage cutoff line. Among them, compound 

24 had the highest leverage value (h=0.353) and a high studentized residual value 

(=1.652). Although this sample’s  value is less than 2.5, it had a major influence on 

the quality of the model because it has the third largest  value and the largest h value 
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of the samples in the model. Therefore, this sample was omitted, significantly 

improving the sample separation. The outlier detection graph is presented in the 

Supplementary Material (Fig. S1).  

The selected descriptors and their respective autoscaled descriptors were the 

following: RDF035s - Radial Distribution Function - 035 weighted by the I-state 

(0.487); H8u - H autocorrelation of lag 8, unweighted (-0.328); Mor13s – 3D-MoRSE 

descriptor signal 13 weighted by the I-state (-0.300); Gm – total symmetry index 

weighted by mass (0.476); X5A - average connectivity index of order 5 (0.454); 

SpMin1_Bh(v) - smallest eigenvalue n. 1 of the Burden matrix weighted by the van der 

Waals volume (-0.319); and  – Molecular Electronegativity (0.431). All of the values 

are available in the Supplementary Material (Table S1). Regression coefficients larger 

than approximately half (0.244) of the maximum regression coefficient value obtained 

indicated that all of the descriptors were significant for the model [56].  

 

3.2 QSAR Analysis 

Selecting the variables from a data matrix of 528 descriptors using the OPS 

algorithm provided the best model based on 8 descriptors. This model was refined using 

Pirouette 4 software [54] in the way that the PLS-DA model was obtained [44]. The 

final model (Equation II) has six descriptors and is based on two LV that cumulate 

87.916% of the variance (LV1: 57.350%; LV2: 30.566%) and that explain 76.7% 

(R
2
=0.767) and predict 65.7% (Q

2
LOO=0.657) of the variance. The F value (26.313) was 

higher than the corresponding tabled value (3.634, for p=2 and n-p-1=16) with a 95% 

confidence interval (α=0.05). The predicted values from the cross-validation step and 

the residuals are available in the Supplementary Material (Table S2). The difference 

between the values of the R
2
 and the Q

2
LOO was 0.110 units; this difference indicates 

that the model does not suffer from overfitting [50]. Finally, the results from the 

modified squared correlation coefficient in the LOO cross-validation (r
2

m(LOO)) 

metrics are consistent with the proposed limits [53].  

 

-log IC50= -1.924 -11.262*(ELUMO) +13.016*() +0.069*(Mor09s) 

+9.475*(Ds) 
(II) 

n=19; R
2
= 0.767; RMSEC= 0.462; F(2,16)= 26.313; Q

2
LOO= 0.657; RMSECV= 0.514; 

r
2

m(LOO)= 0.644; r’
2

m(LOO) = 0.581; Average r
2

m(LOO)= 0.613; r
2

m(LOO)= 0.063. 
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The selected descriptors and their respective autoscaled descriptors were ELUMO - 

the energy of the lowest unoccupied molecular orbital (-0.229),  - the electrophilicity 

index (0.284), Mor09s - 3D-MoRSE descriptor signal 13/weighted by the I-state 

(0.358), and Ds - D total accessibility index/weighted by the atomic electrotopological 

states (0.327). In this model, the reference value is 0.179 [56], and all descriptors can be 

considered important for it. The studentized residuals () versus the leverage samples 

plot was verified, and no compound presented residuals higher than 2.5x. The values 

of all of the descriptors are available in the Supplementary Material (Table S3). 

The results of y-randomization analysis and LNO cross-validation are available in 

Fig. 4. The y-randomization analysis (Fig. 4A) helps clarify whether the explained and 

predicted variances are due to chance correlation [51]. It is obvious that the results 

obtained for all of the randomized models are of relatively poor quality compared to 

those of the original model because the intercepts are within the acceptable values 

recommended in literature, i.e., between 0.3 and 0.05. These results indicate that the 

variance explained by the model was not due to chance correlation.  

The LNO cross-validation (Fig. 4B) employs smaller training sets than the LOO 

cross-validation, and it can be repeated several times due to the large number of 

combinations that arise when more than one compound is left out of the training set, one 

at a time. A QSAR model is considered robust when the average value of Q
2

LNO is 

relatively high and close to that of Q
2

LOO [56]. The model obtained in this study has an 

average Q
2

LNO of 0.646, only 0.008 units lower than that of Q
2

LOO. The standard 

deviation for each “N” (performed in hexaplicate) value is small, with a maximum of 

0.049 for Q
2

L4O. 

Only externally validated models can be considered realistic and applicable for 

drug design [57]. The results obtained for this step (Table 2) demonstrate that the model 

has a high external predictive power considering the proposed limits. The R
2

pred, which is 

usually used to measure the external predictive power, was higher than the adopted 

threshold value (R
2

pred > 0.5), and the associated RMSEP was low. The Golbraikh-

Tropsha [38,52,53] and the r
2

m [48] metrics help confirm the predictive power of the 

model. The Golbraikh–Tropsha slopes k and k’ and the absolute difference between R
2

0 

and R’
2

0 (|R
2

0-R’
2

0|) are within acceptable ranges. The modified squared correlation 

coefficient in the external validation (r
2

m(pred)) metrics were also suitable.  
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The overall modified squared correlation coefficient (r
2

m(overall)) was also 

evaluated, resulting in r
2
m(overall) = 0.743, r’

2
m(overall) = 0.604, average r

2
m(overall) = 

0.673, and r
2

m(overall) = 0.139. These results are consistent with the proposed limits. 

This metric is not based only on the limited number of the test set compounds (in this 

case, five compounds) because it also considers the observed –log IC50 and that predicted 

in the LOO cross-validation. Thus, the results for this metric are more reliable for the 

purpose of prediction [48]. 

 

3.3 Model discussion 

The models obtained in this study are of reasonable statistical quality. However, it 

is always desirable to obtain an interpretative model that is able to relate the 

physicochemical properties represented by molecular descriptor, with the mechanism of 

action of the system under study. However, interpreting a QSAR model in terms of the 

contribution of molecular descriptors to the modeled activity is always a difficult task 

[58]. Furthermore, the mechanism by which the set of active cucurbitacins exert their 

cytotoxic effect on the tested cell lines is not yet known. Therefore, the interpretation of 

the models for this specific set of compounds is based only on the potential encoded 

information in the selected descriptors per se, in studies from the literature, and in general 

information about cytotoxic mechanisms.  

About the cytotoxic activity, Leão [59] remarked that carcinogenic substances, or 

their metabolites, are electrophilic substances that would tend to participate in reaction as 

electron receptors. When these chemicals react with protein structures or DNA, they can 

induce apoptosis. A number of SAR/QSAR studies have described the cellular apoptosis 

mechanism as related to the ability of compounds to receive electrons. Afantitis et al. [60] 

and Takano et al. [61] selected the descriptor ELUMO (lowest unoccupied molecular orbital 

energy), which is clearly related to the capacity of compounds to receive electrons. The 

first study concerns predicting the mechanism of apoptotic induction by 4-aryl-4H-

chromenes, whereas the second study assessed the cytotoxic effects of a series of 

naphtho[2,3-b]furan-4,9-diones in oral squamous cell carcinoma cell lines types 2, 3 and 

4 (HSC-2, HSC-3 and HSC-4). In contrast, Qin et al. [22] investigated a series of 

chloroethylnitrosoureas that act as alkylating agents and selected GAP (the difference 

between the EHOMO, the energy of the highest occupied molecular orbital, and ELUMO) and 

the partial atomic charge as descriptors, both of which have been related to the alkylation 

of DNA in leukaemia cells. Hansch et al. [62,63] related the classic descriptors LogP 
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(logarithm of 1-octanol/water partition coefficient) and MR (molar refractivity) with the 

ability of compounds to interact with DNA and induce cell apoptosis in different tumor 

cell lines. De Souza et al. [64], in a classification obtained using PCA (Principal 

Component Analysis), were able to classify a set of mono- and di-substituted tetrazole 

and oxadiazole derivatives assayed using tumor cells as active or inactive using the 

descriptors of the electrophilic reactivity index for a carbon atom (f
elec

max) and the relative 

negative charged surface area (RNCSA). Finally, Arantes et al. [65] selected EHOMO and 

three partial charges when conducting a PCA study that indicated that a set of 

sesquiterpene lactones are prone to react with nucleophiles via a Michael addition 

reaction. 

In the literature, some studies reports that cucurbitacins may inhibit the Signal 

Transducer and Activator of Transcription type 3 (STAT3) to induce apoptosis in some 

cancer cell lines [16]. STAT proteins are latent transcription factors. Ligand-dependent 

activation of the STATs is often associated with differentiation and/or growth 

regulation, whereas constitutive activation is often associated with growth deregulation. 

A growing number of tumors (multiple myeloma, leukaemia, lymphoma, breast, head, 

neck, melanoma, ovarian, pancreatic, prostate and lung) are reported to have 

constitutively activated STAT3. It is possible that constitutively active STAT3 protects 

cell lines that have become growth factor-independent against apoptosis [66]. Members 

of our group recently described that a new natural cucurbitacin identified in Wilbrandia 

ebracteata roots induces apoptosis in the A549 cell line that has constitutively activated 

STAT3 [67]. Similar results were observed by Sun et al. [16] for the same tumor cell 

line, when cucurbitacin Q was evaluated. 

 

3.3.1 SAR model: mechanistic interpretation 

The radial distribution function (RDF) descriptor measures the probability that 

an atom is in a spherical volume of radius R [39]. The calculation considers the number 

of atoms, one atomic property and the distance between the atoms [68]. For some active 

compounds, this radius (3.5 Å from the centre of the molecule) is located mainly in the 

region of the D ring. As for inactive compounds, this radius is displaced from the D ring 

(Supplementary Material, Fig. S2). This descriptor is directly related to the intrinsic 

state (s), which is related to the number of valence electrons. Thus, the higher the value 

of this parameter, the greater is the RDF035s value. The negative sign of the coefficient 

of the descriptor shows that activity is favored by a smaller number of valence 
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electrons. This may occur due to the molecules capturing electrons (i.e., to perform 

electrophilic attack) to display cytotoxicity. The outline of the radius encompasses 

mainly the D ring and part of the side chain, which may contain atoms capable of 

performing an electrophilic attack. 

The descriptor  corresponds to the ability of an element to receive electrons and 

therefore, form negative ions. The greater the ionic character of an element, the greater 

is its electronegativity [38]. The negative sign of this descriptor suggests that the lower 

the ionic character of compound, the higher is the probability of it being active, which 

can be related to its ability to make an electrophilic attack.  

The descriptor Gm is a global WHIM (Weighted Holistic Invariant Molecular) 

geometric descriptor. Calculating Gm is based on the atomic projections as a function of 

the principal axes (x, y, z) and it is obtained to acquire significant three-dimensional 

molecular data related to size, shape, symmetry and the distribution of atoms with 

respect to invariable reference criteria [39]. Because the coefficient is negative, the less 

branched and symmetrical the molecule, the greater is its tendency to be active [69]. 

Moreover, because the atomic mass property (m) is used in the weighting, the presence 

of high molecular weight atoms is not conducive to biological activity.  

The connectivity index X5A is related to the number of edges and the number of 

atoms in a molecule. The higher the number of atoms (A), the greater is the value of 

X5A [38]. An increase in this value tends to reduce the potential for activity. According 

to Gupta et al. [70], increases in the average connectivity indices are related to 

branching. Thus, multi-branched molecules will have difficulty producing cytotoxicity. 

This tendency is related to the interpretations obtained using the Gm descriptor. 

Nakhjiri et al. [71] presented similar results regarding cytotoxic effects against the 

MCF-7 cell line: the greater the value of the average connectivity index of order 5 

(X4A), the less cytotoxic were the compounds that they analysed. The first order 

valence molecular connectivity index descriptor (X1v) was also used to describe the 

toxicity of chlorophenols in the L929 cell line (fibrosarcoma) [72]. 

H8u (H autocorrelation of lag 8/unweighted) is a GETAWAY (GEometry, 

Topology, and Atom-Weights AssemblY) descriptor. In a model proposed by Zhou et 

al. [73], the values for this descriptor displayed a negative coefficient for growth 

inhibition of P388 tumor cells (leukaemia). The H8w descriptor (where w are different 

properties used for weighting) was selected in several studies on QSAR modeling of 
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carcinogenic activity [74,75]. Thus, the characteristics encoded in this type of descriptor 

appear to be related to the carcinogenic properties.  

Mor13s is a 3D-molecule representation of structures based on electron 

diffraction (3D-MoRSE) descriptor that uses a generalized scattering function called 

“The molecular transform”. This function takes into account information about the 3D 

arrangement of atoms without the ambiguities that occur when using chemical graphs 

[76,77]. This descriptor is calculated by summing the atomic weights viewed by angular 

scattering functions (13 Å) and weighted by (s). In this case, the coefficient is positive 

and because (s) is directly proportional to the value of this descriptor, it contradicts the 

interpretation of the corresponding RDF035s value. Moreover, Ramírez-Galicia et al. 

[77] stated that 3D-MoRSE descriptors are difficult to interpret in medicinal chemistry. 

Thus, it is possible that this descriptor encodes different information than that 

represented by RDF035s. The low Pearson’s correlation between those descriptors 

(R=0.18) strengthens this hypothesis.  

The topological descriptor SpMin1_Bh(v) is a Burden eigenvalue; the smallest 

eigenvalues were proposed as molecular descriptors with a high discrimination power 

that can be applied to recognising and ordering molecular structures. The lowest 

eigenvalues contain contributions from all of the atoms and thus reflect the topology of 

the entire molecule [38]. As Fig. 3B shows, this descriptor has more influence in the 

first LV on classifying active compounds and therefore, it is very important for 

discriminating between the two classes (active or inactive compounds). Furthermore, it 

is weighted by van der Waals volume (v), suggesting that an increase in volume is 

related to potential for cytotoxic activity.  

 

3.3.2 QSAR model: mechanistic interpretation 

The QSAR model, constructed using only four descriptors that encode two LVs, is 

simpler to interpret. The OPS algorithm [42] selected descriptors easily relatable to the 

likely toxicity mechanism (electrophilic attacks). Previous studies indicated that this 

method of selecting variables is likely to select molecular descriptors associated with 

biological phenomena [78,79], thereby providing results that improve the understanding 

of certain mechanisms.  

The ELUMO descriptor refers to the lowest energy level in the molecule that does 

not contain electrons. Molecules with low ELUMO values are more likely to accept 

electrons than molecules whose values are high [38]. The data in the literature 
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corroborate this correlation [60,61]. Table S3 (Supplementary Material) shows that the 

most active compounds (32 and 34) possess the lowest ELUMO values (-0.087 and -0.096 

hartress), whereas the least active compounds (21 and 29) possess greater ELUMO values 

(-0.027 and -0.035 hartress), which explains the negative sign described in this model. 

The descriptor  has an equivalent meaning, and the higher its value, the easier it is for 

molecule to receive electrons [38]. The same interpretation for both descriptors suggests 

that they encode the same information in the model, which is enhanced by the high 

Pearson’s correlation between them (R=0.944). However, it is important to note that the 

PLS regression generates LVs that are mutually orthogonal [80]. Consulting the weight 

values of the descriptors in each latent variable (Table 3) confirmed that the 

contributions of the LV2 of ELUMO and  (which accumulates 30.161% of the variance) 

are different.  

Mor09s is also a 3D-MoRSE descriptor and Ds is also a global WHIM descriptor. 

Like Mor13s, they are weighted by (s), which is directly proportional to their values, 

and their coefficients in the model are positive. This can lead to misinterpretation of 

their roles in the model. Nevertheless, as for RDF035s and Mor13s, the Pearson’s 

correlation between Mor09s and Ds is low (R=0.48), and their individual contributions 

to the LV obtained are quite different (Table 3).  

As previously mentioned, the interpretation of the 3D-MoRSE descriptors can be 

complex, but the WHIM descriptors, such as Dw, are related to the global molecular 

density. Thus, the higher the value of Dw, the greater is the trend toward the compounds 

being active. Considering that the density of a molecule is inversely proportional its 

volume, it is possible to propose that the small size of denser molecules allows them to 

penetrate the plasma membrane of the cells studied more rapidly than do larger 

molecules, and thus exert their cytotoxic effect more easily. One of the factors 

determining the higher global molecular density is the number of atoms in the molecule 

(nAT) [39]. These variables are directly proportional to each other. Although this idea is 

inverse the proposal to volume reduction, it is interesting to note that the greater 

accessibility of an atom to the external environment (i.e., how much less branched a 

molecule is), the higher its value (s) [81], which may contribute to the increase of global 

molecular density. This interpretation may explain the relationship between this 

property and those encoded by the Gm and X5A descriptors in model (I). Finally, 
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because Ds is also a geometric descriptor, its contribution to the model indicates that the 

form a molecule adopts also influences its activity.  

 

3.4 Interpretation remarks  

It is interesting to note that STAT3 is activated by phosphorylation of a single 

tyrosine, typically in response to extracellular ligands [66]. In this type of reaction, the 

phosphate performs an electrophilic attack on the hydroxyl side chain of the amino acid. 

Thus, it is possible that the cytotoxic effect of the compounds described here occurs due 

to their reaction with this amino acid, which would block its phosphorylation. Silva et 

al. [67] and Sun et al. [16] reported that cucurbitacins inhibit the activation pathway of 

STAT3 in the A549 cells by this mechanism.  

This hypothesis is reinforced by the interpretation of the values for the RDF035s 

and  descriptors in model (I) and the interpretation of the ELUMO and  values in model 

(II). However, cytotoxic activity, as well as other biological activities, is most likely a 

multivariate phenomenon. Thus, the interpretation of the values of the Gm, X5A, 

SpMin1_Bh(v), Mor13s, Mor09s e Ds descriptors indicates that other processes, such as 

transport across cell membranes, are also relevant to the activity under study. Finally, 

the selection of the descriptor H8u is supported by reports in the literature.  

Considering that there are no experimental results to suggest that the specific data 

set evaluated in this study reflects known mechanisms of action, the indications 

obtained and the results acquired in both the SAR and QSAR studies should be 

considered acceptable.  

 

4. Conclusions 

The results indicate that it is possible to explain the cytotoxic activity of 

cucurbitacins using molecular descriptors that encode informations on the structural 

variations of these derivatives. In the SAR study, the results indicated that the 

classification of a cucurbitacin as active and inactive in terms of cytotoxic activity 

against A549 cells is associated mostly with the possibility of nucleophilic attack, 

though the structural symmetry and molecular volume also influence the classification. 

The model constructed in the QSAR study had good internal and external predictive 

power and performance well in the LNO cross-validation (robustness) and the y-

randomization test (chance correlation), demonstrating that the model is statistically 

significant and robust and that it can be used for predictive purposes. The selected 
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descriptors suggest that the cytotoxic potency varies mainly according to the capacity of 

the molecule to perform electrophilic attacks. However, the molecule’s size and shape 

are also relevant, which indicates that cytotoxic potency is a biological phenomenon 

with multivariate characteristics. Therefore, even though the mechanism of action by 

which these compounds exert their cytotoxic activity is not known, the interpretation of 

the models strengthens the possibility that it involves an electrophilic attack mechanism, 

including the interaction with STAT3. In conclusion, this study provides some insight 

into the characteristics that endow certain cucurbitacin derivatives with cytotoxic 

activity against A549 cells (human lung adenocarcinoma). Thus, this study may 

enhance the understanding of the activity of this class of compounds and may be useful 

for designing new potent cucurbitacin derivatives that would be prototypes for lung 

cancer therapeutics.  
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Table 1.  

Inhibitory effects of cucurbitacins derivatives on proliferation of A549 cells. 
Compound IC50 (µM) -log IC50 

1 12.09 4.918 

2 0.04 7.398 

3 1.88 5.726 

4 21.61 4.665 

5 4.93 5.307 

6 4.10 5.387 

7 NM
(a)

 Inactive 

8 NM Inactive 

9    26.49 4.577 

10 72.52 4.140 

11 NM Inactive 

12 NM Inactive 

13 NM Inactive 

14 112.4 3.949 

15 NM Inactive 

16 174.37 3.759 

17 NM Inactive 

18 2.64 5.578 

19 NM Inactive 

20 42.60 4.371 

21 110.34 3.957 

22 55.19 4.258 

23 NM Inactive 

24 NM Inactive 

25 6.90 5.161 

26 11.47 4.940 

27 NM Inactive 

28 NM Inactive 

29 66.74 4.176 

30 77.74 4.109 

31 NM Inactive 

32 0.12 6.921 

33 29.09 4.536 

34 0.12 6.921 

35 NM Inactive 

36 NM Inactive 

37 NM Inactive 

38 11.52 4.939 

39 NM Inactive 

40 NM Inactive 

41 48.55 4.314 

42 53.60 4.271 

43 NM Inactive 
(a)The cytotoxic evaluations of these compounds were not measurable (NM). 
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Table 2.  

Results from external validation step (Model II). 

Compound -log IC50 observed -log IC50 predicted Residuals 

2 7.398 6.822 0.576 

14 3.949 4.320 -0.371 

18 5.578 5.374 0.204 

20 4.371 4.216 0.155 

38 4.939 5.215 -0.276 

R
2
pred 0.924 

RMSEP 0.350 

r
2
m(pred) 0.777 

r’
2
m(pred) 0.685 

Average r
2
m(pred) 0.731 

r
2

m(pred) 0.091 

|R
2
0-R’

2
0| 0.045 

k 1.019 

k' 0.978 

 

 

 

Table 3.  

Contribution of selected descriptors in each LV (Model II) 

Descriptor LV1 LV2 

Mor09s 0.384 0.850 

Ds 0.541 0.095 

ELUMO -0.506 0.425 

 0.551 -0.297 
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Figure captions 

 

Fig. 1. The curcubitan (19-(10→9β)-abeo-10-lanost-5-ene) skeleton, the general 

structure of cucurbitacins used in this study. 

 

Fig. 2. Data set of forty-three curcubitacin derivatives.  

 

Fig. 3. Plot of the loading (A) and score (B) vectors (LV1xLV2) for the training set. 

 

Fig. 4. Results of y-randomization test (A) and LNO cross-validation (B). 
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Fig. S1. Outliers detection graph (Model I). 
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Fig. S2. Compounds 2, 15 and 28: actives; 3, 14 and 43: inactives. Axis x: 1; axis 2: y; 

axis 3: z. 
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Table S1. Values of the selected descriptors for the SAR model. 

Compound RDF035s Gm H8u ME Mor13s SpMin1_Bh(v) X5A 

1 199.196 0.148 1.305 0.138 3.288 2.167 0.054 

2 196.019 0.151 1.579 0.142 0.982 2.167 0.054 

3 186.972 0.156 1.381 0.138 -1.344 2.167 0.054 

4 199.891 0.146 1.441 0.138 -2.253 2.167 0.054 

5 151.140 0.160 1.459 0.132 -0.446 2.168 0.054 

6 198.577 0.155 1.166 0.138 -0.275 2.167 0.054 

7 221.483 0.151 1.936 0.115 -10.200 2.161 0.056 

8 276.037 0.146 1.927 0.135 -4.877 2.168 0.056 

9 214.082 0.149 1.229 0.138 1.927 2.167 0.054 

10 228.697 0.143 2.163 0.141 1.011 2.168 0.054 

11 267.925 0.144 1.575 0.144 0.046 2.168 0.057 

12 277.834 0.147 1.817 0.148 1.739 2.168 0.058 

13 262.240 0.148 1.685 0.146 5.443 2.168 0.057 

14 277.687 0.144 2.030 0.145 4.843 2.168 0.056 

15 234.561 0.149 1.695 0.147 1.173 2.166 0.054 

16 247.516 0.143 1.987 0.127 0.355 2.166 0.055 

17 292.167 0.143 1.061 0.141 0.268 2.168 0.056 

18 211.660 0.146 1.974 0.150 3.253 2.168 0.054 

19 344.658 0.149 2.165 0.150 4.857 2.168 0.054 

20 232.154 0.154 1.747 0.139 -0.794 2.168 0.054 

21 165.079 0.157 1.455 0.126 1.758 2.170 0.054 

22 242.067 0.150 1.459 0.128 0.545 2.164 0.053 

23 125.447 0.155 0.975 0.152 4.090 2.170 0.058 

24 100.278 0.177 0.471 0.138 2.382 2.170 0.053 

25 192.328 0.145 1.704 0.142 2.064 2.168 0.055 

26 169.957 0.152 1.213 0.131 -1.114 2.173 0.055 

27 360.024 0.146 1.854 0.146 -2.346 2.168 0.055 

28 300.156 0.145 1.855 0.150 -1.085 2.168 0.056 

29 194.659 0.148 1.258 0.135 1.148 2.169 0.054 

30 210.544 0.152 1.206 0.138 0.229 2.164 0.054 

31 312.117 0.156 0.904 0.125 -3.153 2.164 0.054 

32 183.932 0.145 0.928 0.134 4.622 2.164 0.054 

33 226.997 0.151 1.120 0.139 -1.020 2.166 0.054 

34 201.549 0.160 1.507 0.157 1.406 2.166 0.054 

35 272.420 0.147 1.811 0.156 6.053 2.158 0.054 

36 184.173 0.157 0.397 0.145 -0.174 2.161 0.053 

37 245.927 0.150 0.944 0.118 -4.741 2.161 0.054 

38 187.882 0.142 1.516 0.116 -3.209 2.161 0.054 

39 303.704 0.148 0.874 0.137 -2.611 2.162 0.054 

40 236.866 0.156 0.830 0.142 1.252 2.162 0.054 

41 202.063 0.149 1.225 0.138 2.969 2.167 0.054 

42 277.858 0.141 2.587 0.142 6.532 2.168 0.058 

43 320.865 0.147 1.758 0.136 -11.043 2.168 0.056 
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Table S2. Results of leave-one-out (LOO) cross-validation of the QSAR model.  

Compound -Log IC50 exper. -Log IC50 pred. Residuals 

1 4.577 5.212 -0.635 
4 4.140 4.554 -0.414 
5 3.759 4.504 -0.745 
6 4.918 4.683 0.235 
9 5.726 5.393 0.333 
10 4.665 5.316 -0.651 
16 5.307 4.560 0.747 
21 5.387 4.573 0.814 
22 3.957 4.222 -0.265 
25 4.258 4.212 0.046 
26 5.161 4.469 0.692 
29 4.940 4.500 0.440 
30 4.176 4.540 -0.364 
32 4.109 4.753 -0.644 
33 6.921 6.358 0.563 
33 4.536 4.755 -0.219 
34 6.921 7.366 -0.445 
41 4.314 4.371 -0.057 
42 4.271 3.800 0.471 
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Table S3. Values of the selected descriptors for the QSAR model. 

Compound Mor09s Ds ELUMO  

1 7.240 0.469 -0.040 0.095 

2
a
 12.231 0.532 -0.096 0.137 

4 8.806 0.494 -0.052 0.100 

5 7.645 0.466 -0.039 0.091 

6 7.348 0.462 -0.041 0.095 

9 13.621 0.459 -0.037 0.093 

10 0.567 0.494 -0.040 0.096 

14
a
 3.705 0.432 -0.047 0.105 

16 2.062 0.444 -0.056 0.104 

18
a
 6.162 0.445 -0.080 0.135 

20
a
 1.349 0.431 -0.053 0.105 

21 5.792 0.466 -0.027 0.076 

22 -2.465 0.461 -0.055 0.102 

25 -1.851 0.452 -0.074 0.121 

26 3.078 0.501 -0.036 0.086 

29 2.308 0.496 -0.035 0.089 

30 1.486 0.468 -0.060 0.108 

32 7.811 0.540 -0.087 0.141 

33 10.968 0.510 -0.046 0.098 

33 -0.646 0.487 -0.061 0.107 

34 9.438 0.550 -0.096 0.161 

38
a
 7.514 0.463 -0.076 0.106 

41 2.117 0.478 -0.037 0.092 

42 -1.263 0.425 -0.048 0.104 
a
test set. 

 

 

 

 

 

 

 

 

 

 

 

 

 



7 
 

Data about compounds 14, 17 and 27. 

 

 

Scheme S1. Synthesis of the compounds 14, 17, 27 and 28. Reagents and conditions: i 

and ii: 4-bromo butyryl chloride, pyridine, DCM, 20 
o
C, 4h; iii: CDI, THF, 70 

o
C, 4h. 

 

2β,16α-di-(4-bromo)-butiriloxy-20R-hydroxy-25-acetiloxy-10α,17α-cucurbit-5-en-

3,11,22-trione (14): To a solution of 1 (100 mg, 0.18 mmol) in dichloromethane (DCM) 

(1.0 mL) and pyridine (0.1 mL) was added 4-bromobutyryl chloride (188 mg, 1.80 

mmol) with stirring at 20 
o
C. After 4 h, the mixture was diluted with DCM (20.0 mL) 

and washed with HCl 1 M (2 x 20.0 mL). The organic phase was dried with anhydrous 

Na2SO4 and evaporated under reduced pressure. The resulting crude product was 

purified by column chromatography on silica gel (30% ethyl acetate/hexane), to give 

compound 14 (78 mg, 72% yield) as a white solid. 
1
H NMR (500 MHz, CDCl3):   5.79 

(1H, ddd, J = 6.0, 2.0, 2.0, H-6), 5.47 (1H, dd, J = 13.0, 5.5 Hz, H-2), 5.18 (1H, m, H-

16), 3.51 (1H, m, H-4’), 3.46 (1H, m, H-4”), 3.25 (1H, d, J = 14.5 Hz, H-12), 2.79 

(1H, m, H-10), 2.75 (1H, d, J = 14.5 Hz, H-12), 2.72 (1H, d, J = 7.5, H-17), 2.65 (2H, 

m, H-23), 2.60 (2H, m, H-2’), 2.43 (1H, m, H-7), 2.36 (2H, m, H-2”), 2.22 (2H, m, H-

3’), 2.15 (1H, ddd, J = 13.0, 5.5, 3.6 Hz, H-1), 2.13 (2H, m, H-3”), 2.06 (2H, m, H-

24), 2.03 (1H, dd, J= 13.0, 9.0 Hz, H-15), 2.02 (1H, d, J = 8.0 Hz, H-8), 1.99 (3H, s, 
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Me-32), 1.95 (1H, m, H-7), 1.54 (1H, ddd, J= 13.0, 13.0, 13.0 Hz, H-7), 1.49 (3H, s, 

Me-27), 1.47 (3H, s, Me-26), 1.46 (3H, s, Me-21), 1.37 (1H, m, H-15), 1.32 (3H, s, 

Me-29), 1.31 (3H, s, Me-30), 1.29 (3H, s, Me-28), 1.10 (3H, s, Me-19), 1.02 (3H, s, 

Me-18); 
13

C NMR  (125.8 MHz, CDCl3): δ 212.4 (C-22), 211.7 (C-11), 205.4 (C-3), 

171.7 (C-1’), 171.6 (C-1”), 170.4 (C-31), 139.6 (C-5), 120.5 (C-6), 81.0 (C-25), 78.5 

(C-20), 74.2 (C-16), 73.4 (C-2), 54.0 (C-17), 51.2 (C-4), 49.9 (C-13), 48.6 (C-12), 48.4 

(C-9), 47.9 (C-14), 43.3 (C-15), 42.0 (C-8), 35.2 (C-24), 34.3 (C-10), 32.8 (C-4’’), 32.5 

(C-4’), 32.2 (C-2’), 32.2 (C-2’’), 31.9 (C-1), 30.4 (C-23), 28.7 (C-28), 27.8 (C-3’), 27.4 

(C-3’’), 26.0 (C-26), 25.9 (C-27), 24.2 (C-21), 23.7 (C-7), 22.4 (C-32), 21.3 (C-29), 

20.0 (C-19), 19.6 (C-18), 18.8 (C-30). Mass analysis (ESI) calcd for C40H57Br2O10 (M – 

H)
-
: 855.2324, found: 855.2329. 

 

2β-(4-bromo)-butiriloxy-20R-hydroxy-25-acetiloxy-10α,17α-cucurbit-5-en-3,11,16,22-

tetraone (17): Following the procedure described for 14, compound 17 was obtained in 

82% yield from 9.  
1
H NMR  (500 MHz, CDCl3):   5.82 (1H, ddd, J = 6.0, 2.0, 2.0, H-

6), 5.50 (1H, dd, J = 11.5, 5.2 Hz, H-2), 3.60 (1H, s, H-17), 3.51 (1H, t, H-4’), 3.35 

(1H, d, J = 14.5 Hz, H-12), 2.86 (1H, m, H-10), 2.76 (1H, d, J = 14.5 Hz, H-12), 

2.72 (2H, m, H-23), 2.60 (2H, m, H-2’), 2.53 (1H, m, H-7), 2.25 (1H, d, J = 8.0 Hz, 

H-8), 2.22 (2H, m, H-3’), 2.18 (1H, ddd, J = 13.0, 6.1, 3.6 Hz, H-1α), 2.11 (2H, m, H-

15), 2.05 (2H, m, H-24), 1.98 (3H, s, Me-32), 1.96 (1H, m, H-7), 1.58 (1H, ddd, J= 

13.0, 13.0, 13.0 Hz, H-1), 1.47 (3H, s, Me-27), 1.46 (3H, s, Me-26), 1.34 (3H, s, Me-

30), 1.33 (3H, s, Me-28), 1.31 (3H, s, Me-29), 1.29 (3H, s, Me-21), 1.17 (3H, s, Me-19), 

1.14 (3H, s, Me-18). 
13

C NMR (125.8 MHz, CDCl3): δ 216.0 (C-16), 213.7 (C-22), 

210.5 (C-11), 205.2 (C-3), 171.6 (C-1’), 170.4 (C-31), 139.9 (C-5), 120.1 (C-6), 81.4 

(C-25), 79.9 (C-20), 73.3 (C-2), 61.6 (C-17), 51.3 (C-4), 49.4 (C-9), 48.8 (C-15), 47.7 

(C-14), 47.1 (C-12), 44.5 (C-9), 42.0 (C-8), 34.9 (C-24), 34.3 (C-10), 32.5 (C-4’), 32.2 

(C-2’), 31.9 (C-1), 30.2 (C-23), 28.6 (C-28), 27.8 (C-3’), 26.0 (C-26), 25.8 (C-27), 24.0 

(C-7), 23.4 (C-21), 22.4 (C-32), 21.2 (C-29), 20.0 (C-19), 19.7 (C-18), 19.2 (C-30); 

Mass analysis (ESI) calcd for C36H50BrO7 (M – H)
-
:
 
705.2644, found: 705.2646. 

 

2β-(1H-imidazol-1-carboniloxy)-16,20R-di-hydroxy-25-acetiloxy-10α,17α-cucurbit-5-

en-3,11,22-trione (27): To a solution of 1 (100 mg, 0.18 mmol) in THF (3.0 mL), 1,10-

carbonyldiimidazole (120 mg, 0.72 mmol) was added and the mixture was heated at 70 
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o
C. After 4 h, the reaction was diluted by adding 30 mL of diethyl ether and washed 

with brine (2 x 30.0 mL). The organic phase was dried with anhydrous Na2SO4 and 

evaporated under reduced pressure. The resulting crude product was purified by 

chromatography on silica gel (70% ethyl acetate/hexane) to give 27 (12 mg, 10% yield) 

and 28 (67 mg, 50% yield) as a white solid. 
1
H NMR (500 MHz, CDCl3): δ 8.16 (1H, 

m, H-2’), 7.45 (1H, s, H-5’), 7.09 (1H, m, H-4’), 5.86 (1H, ddd, J = 6.0, 2.0, 2.0, H-6), 

5.62 (1H, dd, J = 13.0, 5.0 Hz, H-2), 4.32 (1H, m, H-16), 3.27 (1H, d, J = 14.5 Hz, H-

12), 2.89 (1H, m, H-10), 2.82 (2H, m, H-23), 2.73 (1H, d, J = 14.5 Hz, H-), 2.55  

(1H, d, J = 7.0 Hz, H-17), 2.45 (1H, ddt, J = 19.0, 8.0, 2.5 Hz, H-), 2.35 (1H, ddd, J 

= 13.0, 5.5, 3.6 Hz, H-), 2.06 (2H, m, H-24), 2.05 (1H, d, J = 8.0 Hz, H-8), 2.03 (1H, 

overlapped, H-), 1.99 (3H, s, Me-32), 1.85 (1H, dd, J= 13.0, 9.0 Hz, H-), 1.70 

(1H, ddd, J = 13.0, 13.0, 13.0 Hz, H-), 1.47 (3H, s, Me-27), 1.45 (3H, s, Me-26), 1.43 

(3H, s, Me-21) 1.40 (1H, overlapped, H-), 1.39 (3H, s, Me-30), 1.37 (3H, s, Me-28), 

1.34 (3H, s, Me-29), 1.14 (3H, s, Me-19), 1.0 (3H, s, Me-18). 
13

C NMR (125.8 MHz, 

CDCl3): δ 213.8 (C-22), 212.3 (C-11), 204.3 (C-3), 170.3 (C-31), 147.9 (C-1’), 138.9 

(C-5), 137.3 (C-3’), 130.7 (C-5’), 121.3 (C-6), 117.2 (C-6’), 81.3 (C-25), 78.9 (C-20), 

76.7 (C-2), 70.8 (C-16), 57.8 (C-17), 51.3 (C-4), 50.5 (C-13), 48.8 (C-12), 48.3 (C-9), 

48.3 (C-14), 45.4 (C-15), 42.3 (C-8), 34.8 (C-24), 34.1 (C-10), 31.9 (C-1), 30.7 (C-23), 

28.6 (C-28), 26.2 (C-26), 25.8 (C-27), 24.5 (C-21), 23.8 (C-7), 22.4 (C-32), 21.2 (C-29), 

20.1 (C-19), 19.9 (C-18), 18.7 (C-30). Mass analysis (ESI) calcd for C36H50BrO7 (M + 

H)
+
:
 
655.3556, found: 655.3567. 

 

 

 

 


