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Abstract. Principal components analysis has become widely used in a variety of fields. In finance and, more
specifically, in the theory of interest rate derivative modeling, its use has been pioneered by Litterman
and Scheinkman [J. Fixed Income, 1 (1991), pp. 54–61]. Their key finding was that a few components
explain most of the variance of treasury zero-coupon rates and that the first three eigenvectors
represent level, slope, and curvature (LSC) changes on the curve. This result has been, since
then, observed in various markets. Over the years, there have been several attempts at modeling
correlation matrices displaying the observed effects as well as trying to understand what properties
of those matrices are responsible for them. Using recent results of the theory of total positiveness
[O. Kushel, Matrices with Totally Positive Powers and Their Generalizations, 2014], we characterize
these matrices and, as an application, we shed light on the critique to the methodology raised by
Lekkos [J. Derivatives, 8 (2000), pp. 72–83].
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1. Introduction. Ever since Litterman and Scheinkman observed that the eigenstructure
of the correlation matrix of treasury rates had some particular characteristics [15], the same
analysis has been replicated by various people in different markets.

Specifically, the first three eigenvalues of the correlation matrices of time changes of interest
rates or, in the same spirit, returns of commodity futures are simple, and their corresponding
eigenvectors represent level, slope, and curvature (LSC) moves on the curves. Moreover, these
three eigenvalues explain most of the variance that the whole curve carries. This result is one
of the most widely used facts in the modeling of interest rates either for derivative pricing and
hedging or for risk management. For example, thanks to the Heath–Jarrow–Morton approach
[9, 10], which dates from around the same time as Litterman and Scheinkman’s work, one
could use these three vectors to build the dynamics of yield curves or commodity futures
curves.

The fact that LSC changes can be replicated for different markets motivated a fair amount
of work during the past decade. For example, in [7], the authors proved that in the case in
which correlation between maturities s and t decays exponentially in |s− t| (ρ|s−t|, 0 < ρ < 1)
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LEVEL-SLOPE-CURVATURE EFFECT 901

the eigenvectors approach cosine functions as ρ approaches 1. The result ignited some interest
in finding what properties are shared by all correlations coming from yield curves [16, 19].

Lord and Pelsser [16] made a step forward in this direction, and they gave for the first time
a precise definition of LSC that involves only the changes of signs of the eigenvectors of the
correlation matrices instead of looking at their shapes. In the same work they gave sufficient
conditions for matrices to satisfy and using the theory of total positivity (see for example [18])
they found sufficient conditions that guarantee the LSC property for a given matrix. In their
definition, a matrix satisfies the LSC property if the first three eigenvectors have zero, one,
and two sign changes, respectively. A sufficient condition that guarantees LSC turns out to
be a generalization of total positivity, and they show through various examples (see also [19])
that the reverse is not true. In other words, one can find matrices satisfying the LSC property
that violate total positiveness. The crucial ingredient in order to prove these kinds of results
is the theorem of Perron and Frobenius (see, for example, [18]). Interestingly, as is proved
in [17] and [13] (see also Lemma 2.1 in [8]), a certain converse of the theorem of Perron and
Frobenius is true. Nevertheless, the converse uncovers a condition that is stronger that the
definition of LSC given by Lord and Pelsser, but, as we will argue later in this paper, is a
condition that agrees more with the intuition behind LSC analysis. Because of that, we give
a new definition of level-slope-curvature (Definition 3.19) that involves the whole behavior of
the eigenvectors as opposed to relying solely on their zero-crossings.

Aside from showing that the eigenstructure of yield curve correlations can be expressed in
terms of the total positiveness of the matrices, it is our interest to bring attention to Lekkos’s
critique of the methodology. Armed with the mentioned result, we can prove that pretty much
any matrix that comes from a curve market (yield cures, commodity futures) will satisfy the
LSC property. In [14], Lekkos showed this with an example and by looking at empirical data.
In this work we present a more general result that includes Lekkos’s examples. His critique, as
far as we can see, has been almost completely ignored by practitioners and in the literature.

It is important to point out that it is not only in the derivatives world that the LSC
effect has been widely analyzed and used to build models and measure risks. In finance and
economics the related literature is quite extensive. To cite just a few recent examples, in
[11], the authors quantify to what extent the variation in economic activity and inflation in
the United States influences the market prices of level, slope, and curvature risks in Treasury
markets, and in [1] the notion of LSC is generalized to account for various yield curves (those
of Canada, the United Kingdom, Japan, Germany, Australia, New Zealand, and Switzerland).

The paper is organized as follows. In section 2 we briefly show how the LSC effect is used
in the context of term structure modeling. In section 3 we present the needed results from
the theory of total positiveness and define what we mean by LSC (which is not just based
on the number of zero-crossings). In addition we present the characterization of the matrices
satisfying the property. Section 4 applies the theory to the parametric model studied in [7],
whereas section 5 reframes Lekkos’ critique in terms of the concepts introduced in section 3.
Finally, section 6 concludes with a few remarks.

2. LSC and term structure modeling. The phenomenon called LSC has attracted a lot
of attention for the past couple of decades. Very loosely defined, LSC refers to the fact that,
when we take a yield curve (or commodity forward curve) and we diagonalize the incrementsD
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902 LILIANA FORZANI AND CARLOS F. TOLMASKY

(or returns), the first three eigenvectors account for almost all the variance, and their shapes
resemble shifts in level, slope, and curvature, respectively. There is a clear intuition behind
these type of shifts: a shock in the short rate will most likely produce a shift on the curve
(level); however, it is clear that the move will not be perfectly parallel, and a decreasing or
increasing adjustment with respect to the first shock effect will be needed. This second effect
is called slope, and it corresponds to the second eigenvector. The same reasoning (with respect
to the second eigenvector) carries through with the next eigenvector, called curvature.

This description has made its way into the derivative modeling field, risk management, as
well as macro-finance models. In the world of derivative modeling the combination of such
a strong result and the interest rate term structure framework pioneered by Heath, Jarrow,
and A. Morton [9, 10] has proved to be quite successful. Up until the point when the Heath–
Jarrow–Morton (HJM) framework was proposed, term structure models contained either one
or two factors, but in the case in which lower correlations were needed, it was not clear how
to accommodate further sources of risk. As we have said before, Litterman and Scheinkman’s
results can be replicated in commodity markets. The first example of one such study was in
the case of copper futures, and it was done by Cortazar and Schwartz [5].

We show now how HJM “+” LSC work in this case (more details can be found in [7]).
Suppose that we want to model the curve of a certain commodity, and we denote by F (t, Tk)
the futures price at time t of the underlying commodity expiring at time Tk, k = 1, . . . ,m.
Here, t represents the running time, with the first futures contract expiring at a later time
(t < T1 < · · · < Tm). The dynamics of the whole curve, in the risk-neutral world, can be
written as

(2.1)
dF (t, Tk)

F (t, Tk)
=

m∑
i=1

σi(t, Tk)dW
i(t), 1 ≤ k ≤ m,

where W 1, . . . ,Wm are m independent Brownian motions under the equivalent martingale
measure and σi(t, Tk) are volatility functions satisfying the technical conditions specified in
[10]. In particular, the volatility functions need to satisfy:

∫ Tk

0
σ2
i (t, Tk)dt < 0

to guarantee the integrability with respect to the Brownian motion.
For the applications that we have in mind the volatility functions will be determined

empirically. In order to fix them, we analyze the eigenstructure of the correlation matrix
corresponding to the historical returns of the futures contracts. This methodology will ulti-
mately allow us to capture the variance of the curve with the minimum number of factors
(which leads to a less computationally intensive model). With this objective in mind, we
impose the following factor-analytic structure on the covariance in (2.1):

σi(t, Tk) = σk
√

λiVi(Tk − t).

Here σk is the same across the m factors (and it represents the implied volatility for Fk),
and λ1, . . . , λm, V1, . . . , Vm are the eigenvalues and eigenvectors of the correlation matrix of theD
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returns of the F (t, Tk)’s. The advantage of this approach is that, in most cases, one finds that
a lot of the λ’s are small, so that by discarding those, we achieve dimensionality reduction.

We can then rewrite (2.1) as

(2.2)
dF (t, Tk)

F (t, Tk)
= σk

m∑
i=1

√
λiVi(Tk − t)dW i(t),

which leaves F ’s log-normally distributed over any time step Δt, with volatility

(2.3)

√∫ t+Δt

t
σ2
k ds = σk

√
Δt.

All the usual caveats apply when calibrating (2.3) to the market. In the case of a flat term
structure of volatilities of the kth contract, we need only one implied volatility per contract
to calibrate the model. For nonflat, including seasonal, term structures of volatilities we need
to either observe the term structure for each individual contract or come up with reasonable
assumptions about the volatility surface.

As we can see, in order to specify the model in (2.2) we need to fix m and, also, the scalars
λi and the vectors Vi for 1 ≤ i ≤ m. It is here where the spectral structure (LSC) is used. In
other words, given that, say, three factors explain most of the variance, we could fix m = 3
and take the first three eigenvalues and eigenvectors of the corresponding correlation matrix
as the λi and Vi, 1 ≤ i ≤ m.

3. LSC and totally positive matrices. To the best of our knowledge, only Lord and
Pelsser gave a proper definition of what LSC means. Up to that point, definitions were loose.
Their definition states that a correlation matrix has level if the first eigenvector can be chosen
to have only positive components, has slope if the second eigenvector crosses zero once, and
has curvature when the third eigenvector crosses zero twice.

More specifically, given a vector x ∈ R
N , they define the number of sign changes as follows:

1. S−(x) = number of sign changes in x1, . . . , xN with zero terms discarded.
2. S+(x) = maximum number of sign changes in x1, . . . , xN with zero terms arbitrarily

assigned the values +1 and −1.
The definition of the LSC effect that Lord and Pelsser provided is the following.
Definition 3.1. A ∈ R

N×N is said to have the LSC (A ∈ LP3) property if its first three
eigenvectors x1, x2, x3 satisfy:

1. S−(x1) = 0.
2. S−(x2) = 1.
3. S−(x3) = 2.

In this definition the fact that the first three eigenvalues are simple is understood.
Analogously, we will say that such a matrix has the slope property (A ∈ LP2) if the first

two conditions hold in Definition 3.1.
Our first goal is to motivate an alternative definition of slope and curvature that makes a

lot more sense in the context of our application, the modeling of yield curves (or commodity
forward curves). Before that, we review the level definition and a characterization in terms of
a property of the matrix.D
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3.1. Eventual positiveness, level. This section is meant to be a remainder of the Perron–
Frobenius theorem. We will make heavy use of this theorem to understand the first eigenvector
of yield-curve correlation matrices, and, moreover, it will serve us well to study the behavior
of the subsequent eigenvectors (which we will do in the next section).

Definition 3.2. A matrix A ∈ R
N×N is positive (A > 0) if all elements of the matrix are

greater than 0.

Definition 3.3. A matrix A ∈ R
N×N is said to be eventually positive if there exists a

positive integer k0 such that Ak > 0 for all k ≥ k0.

Definition 3.4. A matrix A ∈ R
N×N satisfies the strong Perron–Frobenius property if it has

a unique, positive, dominant in absolute value eigenvalue λ1 and the corresponding eigenvector
can be chosen to have positive entries.

A crucial result relating positiveness and the nature of the spectral structure of matrices
is the celebrated Perron–Forbenius theorem (see, for example, [17]), given next.

Theorem 3.5. For a symmetric matrix A ∈ R
N×N the following properties are equivalent:

1. A satisfies the strong Perron–Frobenius property.
2. A is eventually positive.

So, Perron–Frobenius (and its converse) takes care of the level case. Eventual positiveness
is equivalent to having a positive first eigenvector (plus the fact that the corresponding eigen-
value is positive and simple). In order for us to be able to say something about the subsequent
eigenvectors we need to introduce the notion of compound matrices.

3.2. Slope, curvature, and higher orders. As we have just said, to get a deeper under-
standing of the eigenstructure we need to study further some properties of the corresponding
matrices. We will now introduce new matrices (compound matrices) that are related to the
minors of the original ones. For example, the 2nd compound matrix of A will be denoted by
A(2), and it will consist of the minors of A. The reason for this construct is that the eigen-
vectors and eigenvalues of the resulting compound matrices are intimately related to those
of A (Kronecker’s theorem). This fact together with the Perron–Frobenius property will be
enough to understand the rest of the spectral structure of A.

Definition 3.6. Let x1, . . . , xj (2 ≤ j ≤ N) be any vectors in R
N defined by their coordi-

nates: xi = (x1i , . . . , x
N
i ), i = 1, . . . , j. Then the vector x1 ∧ · · · ∧ xj ∈ R

(Nj ) with coordinates
of the form

(x1 ∧ · · · ∧ xj)
l := det

⎛
⎜⎝ xi11 · · · xi1j

· · · · · · · · ·
x
ij
1 · · · x

ij
j

⎞
⎟⎠ ,

where l = (i1, . . . , ij) ⊆ [N ] in the lexicographic ordering is called an exterior product of
x1, . . . , xj.

Definition 3.7. Given N ∈ N, we define Ip,N as the set of all p order tuples from (1, . . . , N).
In other words: Ip,N = {i = (i1, . . . , ip)|1 ≤ i1 < · · · < ip ≤ N}.

Definition 3.8. The pth compound matrix of A (A(p)) is the square matrix of dimension(
N
p

)
containing all the p-minors (the determinants of all the matrices obtained by choosing

i ∈ Ip,N in lexicographic order).D
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Example 3.9. Consider the following matrix in R
3×3:

Mρ =

⎛
⎝ 1 ρ ρ2

ρ 1 ρ
ρ2 ρ 1

⎞
⎠ .

If we denote by det(M([i, j][k, l]) the determinant of the 2× 2 matrix formed with rows i

and j and columns k and l, then the 2nd compound M
(2)
ρ is defined as

M (2)
ρ =

⎛
⎝ det(M([1, 2][1, 2]) det(M([1, 2][1, 3]) det(M([1, 2][2, 3])

det(M([1, 3][1, 2]) det(M([1, 3][1, 3]) det(M([1, 3][2, 3])
det(M([2, 3][1, 2]) det(M([2, 3][1, 3]) det(M([2, 3][2, 3])

⎞
⎠

=

⎛
⎝ 1− ρ2 ρ− ρ3 0

ρ− ρ3 1− ρ4 ρ− ρ3

0 ρ− ρ3 1− ρ2

⎞
⎠ .

We can now ask ourselves the question that opened this section: would the eigenvectors

and eigenvalues of the compound matrices M
(2)
ρ bear any relationship with the eigenvectors

and eigenvalues of the original matrix Mρ? The answer to this question is at the heart of the
following theorem due to Kronecker (see, for example [13]).

Theorem 3.10 (Kronecker). Let {λi}Ni=1 be the set of all eigenvalues of an N × N matrix
A, repeated according to multiplicity. Then all the possible products of the form λi1 , . . . , λij ,
where 1 ≤ i1 < · · · < ij ≤ N , forms the set of all the possible eigenvalues of the jth compound
matrix A(j), repeated according to multiplicity. If xi1 , . . . , xij are linearly independent eigen-
vectors of A, corresponding to eigenvalues λi1 , . . . , λij , respectively, then their exterior product

xi1 ∧ · · · ∧ xij is an eigenvector of A(j), corresponding to eigenvalue λi1 , . . . , λij .
As we have anticipated, Kronecker’s theorem relates the eigenvalues and eigenvectors of

a matrix to those of its compounds. To make use of it we will introduce the notion of total
positiveness [18, 6], which means positiveness for the compound matrices.

Definition 3.11. A matrix A ∈ R
N×N is totally positive of order k (STPk) if A

(p) is positive
for all p ≤ k.

Definition 3.12. A matrix A ∈ R
N×N is eventually totally positive of order k (ESTPk) if

A(p) is eventually positive for all p ≤ k.
Definition 3.13. A ∈ R

N×N is said to have the Gantmacher–Krein property of order k
(GKk) if it has at least k positive simple eigenvalues satisfying λ1 > λ2 > · · · > λk > |λk+1| ≥
· · · ≥ |λN | and if the eigenvectors corresponding to the top eigenvalues λ1, . . . , λk (x1, . . . , xk)
satisfy that for any 1 ≤ j ≤ k,

(3.1) S+

(
j∑
i

cixi

)
≤ j − 1

for any c1, . . . , cj , where at least one of them is not zero, where S+(
∑j

i cixi) is the maximum

number of sign changes in the vector
∑j

i cixi where zero coordinates are arbitrarily assigned
values ±1.D
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Remark 3.14. For k = 1, (3.1) states that the first eigenvector is strictly positive or strictly
negative. For k > 1, (3.1) implies that the eigenvectors cross zero the right number of times.
However, the condition is stronger than number of crossings, as we will see in the following
example.

Example 3.15. Let us consider the matrix

M2 =

⎛
⎜⎜⎝

1 .9 0.8 0.7
0.9 1 0.8 0.6
0.8 0.8 1 0.9
0.7 0.6 0.9 1

⎞
⎟⎟⎠ ,

which appears as Example 6 in [19]. Its eigenvalues are

λ1 = 3.35, λ2 = 0.485, λ3 = 0.122, λ4 = 0.0387,

and the corresponding eigenvectors are

v1 = [0.5076, 0.4929, 0.5221, 0.4762]′ , v2 = [−0.3845,−0.5599, 0.2857, 0.6761]′ ,
v3 = [0.7032,−0.4351,−0.5026, 0.2519]′ , v4 = [−0.3163, 0.5042,−0.6270, 0.5026]′ .

As we can see, M2 satisfies the LSC property in the sense of Lord and Pelsser (level, slope,
and curvature: first eigenvector does not cross 0, second eigenvector crosses 0 once, and third
eigenvector crosses 0 twice). However, M2 violate the GK2 property if we take, for example,
c1 = c2 = 1, since in this case c1v1 + c2v2 = [0.1231,−0.067, 0.8078, 1.1523] that changes signs
twice. Note that S−(c1v1 + c2v2) = 2.

Since the case GK1 is totally characterized by eventually positive matrices, the open
question is whether there is a similar characterization for GKk for any k. The answer is given
in the next theorem, which is a generalization of the Theorem 7 in [13]. There are two reasons
why we want to generalize the result in Theorem 7 in [13]. On one hand, as it was stated in
the introduction, this result will provide an answer to the question posed by Lord and Pelsser;
i.e., it will characterize the family of matrices satisfying LSC (with a new definition, which
we will call strong LSC), and, on the other hand, it will strengthen the case made by Lekkos
[14].

For the following lemma, which we use in the proof of Theorem 3.17, we refer the reader
to [3, Lemma 5.1].

Lemma 3.16 (Ando’s lemma). Let x1, . . . , xj be real vectors in R
N , j < N . In order that

S+

(
j∑
i

cixi

)
≤ j − 1

whenever ci ∈ R, where at least one of them is not zero, it is necessary and sufficient that
x1 ∧ · · · ∧ xj be strictly positive or strictly negative.

We now state and prove our main result as follows.
Theorem 3.17. If Σ ∈ R

N×N is symmetric, then the following statements are equivalent:
1. Σ ∈ ESTPk.
2. Σ ∈ GKk.
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Proof. If Σ ∈ ESTPk, then all of the Σ(j) are eventually positive for j = 1, . . . , k. Now,
since Σ is eventually positive, it has the strong Perron–Frobenius property; i.e., there is
a simple, positive eigenvalue λ1 which is bigger than the rest of them. The same is true
for Σ(2); it has a simple, positive eigenvalue strictly bigger than the remaining ones. Now,
according to Kronecker’s theorem, the eigenvalues of Σ(2) are exactly given by the products
λi1λi2 , 1 ≤ i1 < i2 ≤ N , where λi1 , λi2 are eigenvalues of Σ. Therefore the highest eigenvalue
of the compound matrix must be λ1λ2. From here we get that λ2 > 0. Iteratively, we can use
the same argument to find λ1, . . . , λk positive simple eigenvalues higher than the remaining
N − k of them. This proves that the first k eigenvalues are simple and positive. Let us now
take j satisfying 1 ≤ j ≤ k. The first eigenvector of Σ(j) (with eigenvalue λ1, . . . , λj) is given
by x1 ∧ · · · ∧ xj. Since Σ ∈ ESTPk, then x1 ∧ · · · ∧ xj can be taken to be positive. By Ando’s

lemma we conclude that for any c1, . . . , cj so that
∑j

i=1 c
2
i �= 0, (3.1) is satisfied.

Now, let us see the reverse. Assume that Σ ∈ GKk. Then λ1 > λ2 > · · · > λk > |λk+1| ≥
|λk+2| ≥ · · · ≥ 0, and the corresponding x1, . . . , xk satisfy (3.1) for any 1 ≤ j ≤ k and any
c1, . . . , cj so that

∑j
i=1 c

2
i �= 0.

If we now fix j ∈ 1, . . . , k and we take a look at Σ(j), we see that, due to Kronecker’s
theorem, the first eigenvalue of Σ(j) is λ1, . . . , λj . This eigenvalue is simple, positive, and
strictly dominant with eigenvector x1 ∧ · · · ∧ xj. The result then follows, applying Ando’s
lemma again.

3.3. An example from Lord and Pelsser. As Lord and Pelsser point out, total positivity
does not provide a characterization of LSC. We have already mentioned this fact in the pre-
vious section and showed what information is missing in Example 6 from [19]. For the sake
of completeness we will now do likewise for a matrix that appears in [16]. The matrix M1 is
not ESTP2; its second eigenvector does, however, cross zero only once (moreover, every one
of its eigenvectors crosses zero j − 1 times, where j is the order of the eigenvector):

M1 =

⎛
⎜⎜⎝

1 0.8396 0.8297 0.8204
0.8396 1 0.9695 0.901
0.8297 0.9695 1 0.9785
0.8204 0.901 0.9785 1

⎞
⎟⎟⎠ .

Let us look at the first two eigenvectors: v1 = [0.4736, 0.5057, 0.5152, 0.5045]′ and v2 =
[−0.8735, 0.1649, 0.3315, 0.3162]′ . As we said above, v1 and v2 cross zero the “right” number
of times. However, it is not hard to see that there exist c1 and c2 that make

∑2
i=1 civi violate

the needed condition for M1 to be in GK2.

3.4. Why zero-crossings are not enough. Let us consider the following matrix:

N =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1.0000 0.8024 0.9206 0.8359 0.2981 0.7288 0.2955 0.6339
0.8024 1.0000 0.8220 0.9099 0.7247 0.9411 0.7574 0.9360
0.9206 0.8220 1.0000 0.8368 0.3026 0.7197 0.2958 0.6216
0.8359 0.9099 0.8368 1.0000 0.6005 0.8739 0.6025 0.8322
0.2981 0.7247 0.3026 0.6005 1.0000 0.8118 0.9765 0.9059
0.7288 0.9411 0.7197 0.8739 0.8118 1.0000 0.8208 0.9570
0.2955 0.7574 0.2958 0.6025 0.9765 0.8208 1.0000 0.9185
0.6339 0.9360 0.6216 0.8322 0.9059 0.9570 0.9185 1.0000

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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First eigenvector.
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Second eigenvector.

Figure 1. First two eigenvectors of the matrix N .

Its first two eigenvectors are shown in Figure 1. We see that the first one is almost constant,
and the level effect is clear. According to the definition of Lord and Pelsser, given that the
second eigenvector crosses zero only once, the matrix N has the slope effect (N ∈ LP2).
Nevertheless, even if the second eigenvector crosses zero only once, it is not clear what the
meaning of slope effect is here. As we said before, the slope should be an adjustment of the
shock that is reflected in the first eigenvector since that shock is in general decreasing or
increasing in the curve. This is not the case for the example since the effect is more wavering
than increasing or decreasing. The theory of total positivity tells us what the right definition
should be in order to fully characterize the corresponding correlation matrices. The following
theorem provides more intuition about the relationship that first and second eigenvectors have
to fulfill in order for the matrix to be in GK2 (for the proof, see the appendix).

Theorem 3.18. Suppose that that the matrix has first positive eigenvector x1. Then the
second eigenvector x2 satisfies that S+(c1x1+ c2x2) ≤ 1 whenever c1 �= 0 or c2 �= 0 if and only
if the vector v1 = (vi1)

N
i=1 with vi1 = xi2/x

i
1 has decreasing or increasing coordinates.

Theorem 3.17 and the example from the previous section motivate us to give the following
alternative definition of the LSC effect.

Definition 3.19.A ∈ R
N×N is said to have the strong LSC property if it has theGantmacher–

Krein property of order 3 (A ∈ GK3). Analogously we say that the matrix A has the strong
slope effect if A has the Gantmacher–Krein property of order 2 (A ∈ GK2).

Let us now compare both definitions. A matrix is said to have the LSC property (LP3) if
its first three eigenvectors cross zero the right number of times. Intuitively, the definition of
strong LSC requires not only that the vectors satisfy the conditions for the matrix to be in
LP3, but also that no vector on the generated subspaces violate the condition either.

In order to say whether the matrix N has the strong slope effect we would have to check
whether N ∈ GK2. To do this we compute N (2) and check whether it is eventually totally
positive or, which is the same, whether it satisfies the strong Perron–Frobenius property. As
we suspect, the answer for the matrix N is negative (the top eigenvector of N (2) is shown in
Figure 2).D
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Figure 2. First eigenvector of N (2).

4. Exponentially decaying correlations. In [7], Forzani and Tolmasky suggested that a
typical correlation matrix coming from yield curves can be approximated by matrices having
exponentially decaying (as a function |i − j|) correlations. We will now check that these
matrices satisfy the strong LSC condition. For example, if we consider 0 < ρ < 1, in R

7×7

this would give us

Mρ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 ρ ρ2 ρ3 ρ4 ρ5 ρ6

ρ 1 ρ ρ2 ρ3 ρ4 ρ5

ρ2 ρ 1 ρ ρ2 ρ3 ρ4

ρ3 ρ2 ρ 1 ρ ρ2 ρ3

ρ4 ρ3 ρ2 ρ 1 ρ ρ2

ρ5 ρ4 ρ3 ρ2 ρ 1 ρ
ρ6 ρ5 ρ4 ρ3 ρ2 ρ 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

In order to prove that Mρ satisfies the strong LSC condition we should prove that the
first two corresponding compound matrices are eventually positive (“level” is obvious since
the matrix is positive). We will make use of the following lemma (a proof can be found in [4,
Theorem 3.2.1]).

Lemma 4.1. A nonnegative, symmetric matrix A is irreducible if and only if its associated
graph is connected.

Also, we recall the statement of the Perron–Frobenius theorem for irreducible matrices.

Theorem 4.2 (Perron–Frobenius for irreducible matrices). An irreducible, nonnegative ma-
trix A has the strong Perron–Frobenius property.

Let us now look at the 2nd-compound matrix M
(2)
ρ , which is formed by choosing pairs

i = (i1, i2), j = (j1, j2) ∈ I2,5. Its entries are defined as

m
(2)
i,j = det

(
ρ|i1−j1| ρ|i1−j2|

ρ|i2−j1| ρ|i2−j2|

)
.

D
ow

nl
oa

de
d 

04
/0

7/
16

 to
 2

00
.9

.2
37

.2
54

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 
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We have to distinguish between the following cases:

1. i1 < i2 ≤ j1 < j2.
2. j1 < j2 ≤ i1 < i2.
3. i1 ≤ j1 ≤ 21 ≤ j2.
4. i1 ≤ j1 ≤ j2 ≤ i2.
5. j1 ≤ i1 ≤ i2 ≤ j2.
6. j1 ≤ i1 ≤ j2 ≤ i2.

It is not difficult to check that in the first two cases the determinant is zero, whereas in

the rest of the cases is strictly positive. In particular, M
(2)
ρ turns out to be nonegative. Now,

in order for us to be able to prove that M
(2)
ρ satisfies the strong Perron–Frobenius property

we are going to make use of Lemma 4.1. To see that the the graph associated with M
(2)
ρ is

connected it is enough to see that the elements on its superdiagonal are strictly positive (since
this implies that, on the graph, each node i is linked to node i + 1, i ≤ n − 1, where n is
the number of nodes). Let us assume that Mρ is in R

N×N , and let us take i = (i1, i2) and
j = (j1, j2). The elements just above the diagonal correspond to the elements that come from
determinants of 2 × 2 minors in which j is the element in I2,N which immediately follows i.
Therefore, there are two possible cases:

1. i2 ≤ N − 1: In this case i = (i1, i2) and j = (i1, i2 + 1), and we are then looking at

det

(
1 ρi2+1−i1

ρi2−i1 ρ

)
= ρ− ρ2(i2−i1)+1 > 0

since i1 > i1.
2. i1 ≤ N − 2: Then i2 = N , i = (i1, i2), and j = (i1 + 1, i1 + 2), and the minor results

in:

det =

(
ρ ρ2

ρN−(i1+1) ρN−(i1+2)

)
= ρN−i1−1 − ρN−i1+1 > 0

in virtue of N = i2 > i1 + 1.

This proves that the superdiagonal is formed of positive elements, and therefore the associ-

ated graph is connected, and by Lemma 4.1 the matrix M
(2)
ρ is irreducible. Since we have seen

already that it is nonnegative, we can conclude that it satisfies the strong Perron–Frobenius
property. As a consequence, by Theorem 3.5, Mrho

(2) is eventually positive.

The case of M
(3)
ρ is tedious, but it can be proved in a similar fashion. This proves that

Mρ ∈ GK3.

Remark 4.3. In [7] the authors proved a more specific characterization of the eigenstructure
of the matrices Mρ in the limit when ρ approaches 1. The present proof takes care of all the
cases in which 0 < ρ < 1, but it does not tell us what the eigenvectors look like exactly; all
the information we get is that they satisfy (3.1).

Remark 4.4. As was pointed out by one of the anonymous referees, the eigenvectors of
the matrix Mρ coincide (in reverse order of importance) with the eigenvectors of its inverseD
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Second eigenvector.
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Third eigenvector.

Figure 3. First three eigenvectors of the matrix Mρ.

(see Figure 3):

(4.1) M−1
ρ =

1

1− ρ2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −ρ 0 0 0 0 0
−ρ 1 + ρ2 −ρ 0 0 0 0
0 −ρ 1 + ρ2 −ρ 0 0 0
0 0 −ρ 1 + ρ2 −ρ 0 0
0 0 0 −ρ 1 + ρ2 −ρ 0
0 0 0 0 −ρ 1 + ρ2 −ρ
0 0 0 0 0 −ρ 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The advantage of looking at M−1
ρ instead of Mρ is that the form of the eigenvectors can be

obtained by solving a system of difference equations. It is shown in [2] (see also [20]) that
these eigenvectors are sine functions. In this way it is not difficult to see that the eigenvectors
cross zero the right number of times. Nevertheless, since the frequencies are only known to
be solutions to an equation (and not known explicitly) it is not immediate to see that the
Gantmacher–Krein condition is satisfied.D
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Remark 4.5. It is interesting to note that if we assume that the covariance matrix of the
spot rates is of the form Mρ, then the corresponding forwards do not necessarily satisfy the
strong LSC property. Indeed, let us fix N = 4, ρ = .9 and suppose that the variances of spot
rates are all equal to 1. The corresponding correlation matrix for the forward rates is then

N =

⎛
⎜⎜⎝

1 0.68 0.42 0.26
0.68 1 0.44 0.27
0.42 0.44 1 0.26
0.26 0.27 0.26 1

⎞
⎟⎟⎠ .

By looking at the signs of the first eigenvector, it is easy to check that the 3rd compound
(N (3)) is not in ESTP3. And, at the same time, it is not difficult to see that the top three
eigenvectors do not satisfy the condition (3.1).

5. Lekkos’ critique. As Lekkos points out, “Factor analysis concludes that three under-
lying economic factors affecting the level, steepness and curvature of the term structure are
sufficient to describe the dynamic evolution of interest rates.” Over the past 25 years re-
searchers and practitioners have found the same result in different markets. A very natural
question to ask is, then, what are the common properties of the correlation (or covariance)
matrices obtained for this result to be true across markets? The answer to this question pro-
vided by Lekkos is that the effect is just an artifact created by the fact that longer spot rates
contain the information of shorter ones in themselves. To show this, he proposes to analyze a,
somewhat extreme, example: start by assuming that forward rates are independent, compute
the corresponding spot rates, and check what principal components analysis shows in this case.
Surprisingly, LSC emerges once again. In this section we show, using the theory developed
so far, why this is so. It turns out that even in the case in which forwards are independent,
the correlation matrices corresponding to spot rates belong to GK3. Therefore, the moves in
spot rates can be well explained with three factors, whereas the forwards, which encode the
same information, are independent random variables (and, therefore, admit no dimensionality
reduction).

We now look a bit closer at Lekkos’ argument. Spot (or zero-coupon) rates and forward
rates encode exactly the same information. More specifically, spot rates are just weighted
averages of forward rates. For the sake of completeness we will now recall the definition of a
forward rate. If we denote by R(T ) the spot rate for time T , we define f(T1, T2), the forward
rate for the period starting at time T1 and ending at time T2, as the rate satisfying

eR(T1)T1ef(T1,T2)(T2−T1) = eR(T2)T2 .

For example, if we take T1 = 1 and T2 = 2,

R(2) =
1

2
R(1) +

1

2
f(1, 2).

If we assume that R(1) is the shortest observed spot rate, then R(1) = f(0, 1) and then R(2)
yields the average of the first two forward rates. Analogously,

R(3) =
1

3
f(0, 1) +

1

3
f(1, 2) +

1

3
f(2, 3).
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If we consider a curve consisting of only five tenors (say, 1-year, 2-year, 3-year, 4-year, and
5-year rates) the relationship between spot and forward rates can be written as

⎛
⎜⎜⎜⎜⎝

R(1)
R(2)
R(3)
R(4)
R(5)

⎞
⎟⎟⎟⎟⎠ = W

⎛
⎜⎜⎜⎜⎝

f(0, 1)
f(1, 2)
f(2, 3)
f(3, 4)
f(4, 5)

⎞
⎟⎟⎟⎟⎠ ,

where the matrix W that transforms forward rates into spot rates has the form

(5.1) W =

⎛
⎜⎜⎜⎜⎝

1 0 0 0 0
1/2 1/2 0 0 0
1/3 1/3 1/3 0 0
1/4 1/4 1/4 1/4 0
1/5 1/5 1/5 1/5 1/5

⎞
⎟⎟⎟⎟⎠ .

If we now call Σf the covariance of the forward rates (assumed to be the identity in this
example), we get that the covariance of the zero-coupon rates, ΣR, equals WΣfW

T :

ΣR = WW T =

⎛
⎜⎜⎜⎜⎝

1 1/2 1/3 1/4 1/5
1/2 1/2 1/3 1/4 1/5
1/3 1/3 1/3 1/4 1/5
1/4 1/4 1/4 1/4 1/5
1/5 1/5 1/5 1/5 1/5

⎞
⎟⎟⎟⎟⎠ .

Our goal is to prove that the compound matrices Σ
(2)
R and Σ

(3)
R are eventually (strictly)

positive. Or, equivalently, that they satisfy the strong Perron–Frobenius condition. For this,
we will make use of the following two results (Propositions 1.3 and 4.1 in [18]).

Lemma 5.1. Assume that A is an n × m (strictly) totally positive matrix. Let B denote
the matrix obtained from A by reversing the order of both its rows and columns; i.e., if A =
(aij), i = 1, . . . , n, j = 1, . . . ,m, then B = (bij), i = 1, . . . , n, j = 1, . . . ,m, where bij =
an+1−i,m+1−j, i = 1, . . . , n, j = 1, . . . ,m. Then the matrix B is (strictly) totally positive.

Lemma 5.2. Let b1, . . . , bn be n distinct numbers. Set aij = bmin(i,j), i, j = 1, . . . , n. Then

A = (aij), i, j = 1, . . . , n, is a totally positive matrix if and only if 0 ≤ b1 < · · · < bn.

By Lemma 5.1 the matrix ΣR will turn out to be totally positive if we can prove that the
matrix

⎛
⎜⎜⎜⎜⎝

1/5 1/5 1/5 1/5 1/5
1/5 1/4 1/4 1/4 1/4
1/5 1/4 1/3 1/3 1/3
1/5 1/4 1/3 1/2 1/2
1/5 1/4 1/3 1/2 1

⎞
⎟⎟⎟⎟⎠

is itself totally positive, which follows from Lemma 5.2.D
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The corresponding correlation matrix for ΣR is of the form⎛
⎜⎜⎜⎜⎜⎝

1
√

1/2
√

1/3
√

1/4
√

1/5√
1/2 1

√
2/3

√
1/2

√
2/5√

1/3
√

2/3 1
√

3/4
√

3/5√
1/4

√
1/2

√
3/4 1

√
4/5√

1/5
√

2/5
√

3/5
√

4/5 1

⎞
⎟⎟⎟⎟⎟⎠ ,

which total positivity follows from Green’s theorem (see Theorem 4.2 in [18]).
Theorem 5.3. If ci, dj , i, j = 1, . . . , N , are all either strictly positive or strictly negative,

then the matrix A ∈ R
N×N consisting of the elements ai,j = cmin(i,j)dmax(i,j) is totally positive

if and only if 0 ≤ c1
d1

≤ · · · ≤ cN
dN

.

5.1. Perturbations of rank 1. The covariance matrices of forward rates do not show the
same structure as the ones of the zero-coupon rates. However, all the examples considered
in [14] do display a level effect. Motivated by this fact, we are interested in studying what
happens if we set the covariance matrix of the forward rates to be a rank-1 perturbation of the
identity matrix. Moreover, we will take this perturbation to be of the form of a level effect.
Will the corresponding covariance (or correlation) matrices for the zero-coupon rates satisfy
the LSC property in this case?

To see this let us take ΣR = W (I + heeT )W T = WW T + heeT , where W is of the same
form as in (5.1) and e is the exact level vector (a constant vector). Then the covariance ΣR

becomes ⎛
⎜⎜⎜⎜⎝

h+ 1 h+ 1/2 h+ 1/3 h+ 1/4 h+ 1/5
h+ 1/2 h+ 1/2 h+ 1/3 h+ 1/4 h+ 1/5
h+ 1/3 h+ 1/3 h+ 1/3 h+ 1/4 h+ 1/5
h+ 1/4 h+ 1/4 h+ 1/4 h+ 1/4 h+ 1/5
h+ 1/5 h+ 1/5 h+ 1/5 h+ 1/5 h+ 1/5

⎞
⎟⎟⎟⎟⎠ ,

the correlation is ⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
√

h+1/2
h+1

√
h+1/3
h+1

√
h+1/4
h+1

√
h+1/5
h+1√

h+1/2
h+1 1

√
h+1/3
h+1/2

√
h+1/4
h+1/2

√
h+1/5
h+1/2√

h+1/3
h+1

√
h+1/3
h+1/2 1

√
h+/4
h+1/3

√
h+1/5
h+1/3√

h+1/4
h+1

√
h+1/4
h+1/2

√
h+1/4
h+1/3 1

√
h+1/5
h+1/4√

h+1/5
h+1

√
h+1/5
h+1/2

√
h+1/5
h+1/3

√
h+1/5
h+1/4 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and both matrices can be shown to be totally positive by following the same arguments as in
the previous section.

5.2. Lekkos’ matrices and the class Ξ(0, 1, 2, 3). Salinelli and Sgarra [19] defined the
class of correlation matrices Ξ(0, 1, 2, 3). Their purpose was to capture the properties that
make a matrix satisfy the LSC property. A matrix R = (ρi,j) is in Ξ(0, 1, 2, 3) if it satisfies
the following properties (see also [16]):D
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(P0) positivity, i.e., ρi,j > 0 for all i, j = 1, . . . , N.

(P1) strict decreasingness of superdiagonal row elements:

∀ fixed i ≥ 1, ρi,j decreases with respect to j ≥ i.

(P2) strict increasingness of superdiagonal column elements:

∀ fixed j ≥ 1, ρi,j increases with respect to i ≤ j.

(P3) strict increasingness of secondary superdiagonal elements:

∀ fixed p > 0, ρi,i+p increases with respect to i.

In their work, Salinelli and Sgarra prove some results relating LSC and the conditions
(P0)–(P3). We will now check whether or not some of the matrices we have been looking at
so far belong to Ξ(0, 1, 2, 3).

Consider, for example, the covariance of seven forward rates Σf = I and the corresponding
ΣR’s. The correlation matrix of the spot rates turns out to be

C1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1.0000 0.7071 0.5774 0.5000 0.4472 0.4082 0.3780
0.7071 1.0000 0.8165 0.7071 0.6325 0.5774 0.5345
0.5774 0.8165 1.0000 0.8660 0.7746 0.7071 0.6547
0.5000 0.7071 0.8660 1.0000 0.8944 0.8165 0.7559
0.4472 0.6325 0.7746 0.8944 1.0000 0.9129 0.8452
0.4082 0.5774 0.7071 0.8165 0.9129 1.0000 0.9258
0.3780 0.5345 0.6547 0.7559 0.8452 0.9258 1.0000

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

We have already proved that these types of matrices are eventually strictly totally positive
of order 7, and therefore they satisfy the condition GK7. As we can see, these types of matrices
satisfy conditions (P0)–(P3), and then they are in Ξ(0, 1, 2, 3). With C as the correlation
matrix, the first eigenvector “explains” 74% of the variance.

If the forwards are not exactly independent but display a level effect, we can, as in section
5.1, pose ΣR = W (I + huu′)W , where u is the “level” vector, u = (1, 1, 1, 1, 1, 1, 1)′ , and h
can be taken to be so that the matrix (I + huu′) is the covariance of the forward rates. For
example, if we take h = 1, the first eigenvector now explains 81% of the variance. By doing
this, the correlation corresponding to the spot rates becomes

C2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1.0000 0.7500 0.6455 0.5863 0.5477 0.5204 0.5000
0.7500 1.0000 0.8607 0.7817 0.7303 0.6939 0.6667
0.6455 0.8607 1.0000 0.9083 0.8485 0.8062 0.7746
0.5863 0.7817 0.9083 1.0000 0.9342 0.8876 0.8528
0.5477 0.7303 0.8485 0.9342 1.0000 0.9501 0.9129
0.5204 0.6939 0.8062 0.8876 0.9501 1.0000 0.9608
0.5000 0.6667 0.7746 0.8528 0.9129 0.9608 1.0000

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Once more, C2 is in ESTP7, and C2 also belongs to the set Ξ(0, 1, 2, 3).D
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In comparison, the matrices studied in [7] and presented in section 4 satisfy (P0), (P1),
and (P2), but they do not satisfy the condition (P3). Therefore, these types of matrices do not
belong to Ξ(0, 1, 2, 3), but, as we saw, they do satisfy the strong LSC property. For example,
if we fix ρ = .75, the matrix we find is

M.75 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1.0000 0.7500 0.5625 0.4219 0.3164 0.2373 0.1780
0.7500 1.0000 0.7500 0.5625 0.4219 0.3164 0.2373
0.5625 0.7500 1.0000 0.7500 0.5625 0.4219 0.3164
0.4219 0.5625 0.7500 1.0000 0.7500 0.5625 0.4219
0.3164 0.4219 0.5625 0.7500 1.0000 0.7500 0.5625
0.2373 0.3164 0.4219 0.5625 0.7500 1.0000 0.7500
0.1780 0.2373 0.3164 0.4219 0.5625 0.7500 1.0000

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

6. Fact or artifact? Conclusion. With the right definition in relation to the behavior
of the eigenvectors, we have provided a characterization of the matrices that have the LSC
property. It turns out that looking at the number of zero-crossings of the eigenvectors is not
enough; rather the condition on the number of zero-crossings has to be satisfied by all the
vectors in certain subspaces. To show this we have relied heavily on some recent results in
linear algebra, particularly the work of Kushel [13]. Understanding the structure of these
matrices allows us to see why the spectral structure of covariance (or correlation) matrices is
so similar in different interest rate markets. So, even if it is definitely true that yield curves
display the LSC effect, to a large extent the effect is just bound to be true by construction. In
other words, independently from any empirical study, we know that these type of structures
will be present for any “curve” (yield curve and also commodity forward curve). This fact
was pointed out already in [14]. Therefore, in order for us to identify particularities of a
given (curve) market, we should consider first filtering out the effect created by the matrices
WN . Once we do that, we should test how many eigenvalues are relevant in the correlation
matrix of the corresponding forwards. Also, we should check whether the eigenvectors keep
the properties in these cases. Our suspicion, based on the results reported in [14] (also in
[12]), is that the structures will turn out to be way less homogeneous across markets.

Appendix. Proof of Theorem 3.18. Suppose that that the matrix has first positive
eigenvector x1. Now, the second one x2 satisfies that S+(x1 + c2x2) ≤ 1 when c2 �= 0 if and
only if the vector v = (vi)Ni=1 with vi = xi2/x

i
1 has decreasing or increasing coordinates.

Proof. We proceed in two parts.

Step 1. Proof that if the vector v = (vi)Ni=1 with vi = xi2/x
i
1 has decreasing or increasing

coordinates, then S+(x1+ c2x2) ≤ 1 when c2 �= 0. Suppose that vi has decreasing coordinates;
then for c > 0

1 + cvi+1 < 1 + cvi,

and it follows that 1 + cv changes signs not more than once. That implies S+(x1 + c2x2) ≤ 1
when c2 �= 0.

Step 2. Proof that if S+(x1 + c2x2) ≤ 1 when c2 �= 0, then the vector v = (vi)Ni=1 with
vi = xi2/x

i
1 has decreasing or increasing coordinates. Suppose that 1 + cv changes signs notD
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more than once, and suppose that v does not have decreasing coordinates; then there exists i
such that

vi > vi+1,

vi+2 > vi+1.

We consider two cases:
1. vi+1 > vi+2 > vi. Now, since v changes signs only once, we have the following cases

(we have more, but they are equivalent):
• vi > 0 and vi+2 > 0 implies vi+1 > 0. In this case we take any c ∈ (− 1

vi+1 ,− 1
vi+2 ),

and we get a contradiction.
• vi > 0 and vi+2 < 0 and vi+1 < 0. In this case we take any c ∈ (− 1

vi+1 ,− 1
vi+2 ),

and we get a contradiction.
• vi > 0 and vi+2 < 0 and vi+1 > 0. In this case we take any c ∈ (− 1

vi+1 ,− 1
vi
), and

we get a contradiction.
2. vi+1 < vi < vi+2. Analogous, changing i by i+ 2 and i+ 2 by i.

Acknowledgments. We would like to thank Leslie Hogben for pointing out the reference
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