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We study the local approximation properties in hierarchical spline spaces through multiscale quasi-
interpolation operators. This construction suggests the analysis of a subspace of the classical hierarchical
spline space (Vuong et al. (2011) A hierarchical approach to adaptive local refinement in isogeometric
analysis. Comput. Methods Appl. Mech. Eng., 200, 3554–3567) which still satisfies the essential properties
of the full space. The B-spline basis of such a subspace can be constructed using parent–children relations
only, making it well adapted to local refinement algorithms.
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1. Introduction

Local adaptivity in numerical methods for partial differential equations makes it possible to solve real
problems leading to a suitable approximation of the desired solution without exceeding the limits of
available software. When considering isogeometric methods (Hughes et al., 2005; Cottrell et al., 2009),
from a theoretical point of view, the design of efficient and robust strategies for local refinement constitutes
a challenging problem because the tensor product structure of B-splines (de Boor, 2001; Schumaker, 2007)
is broken.

Hierarchical B-splines (HB-splines) based on the construction presented in Kraft (1997, 1998) and
Vuong et al. (2011) are a promising approach, because their construction and properties are closely
related to the ones of hierarchical finite elements. Moreover, truncated hierarchical B-splines (THB-
splines) have been introduced in Giannelli et al. (2012), where their use as a framework for isogeometric
analysis that provides local refinement possibilities has been analysed; see also Giannelli et al. (2014).
Local approximation estimates for hierarchical spline spaces have been studied in Speleers & Manni
(2016) using quasi-interpolants described in terms of the truncated hierarchical basis, while the use of
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2 A. BUFFA AND E. M. GARAU

THB-splines in conjunction with residual-based error indicators has been proposed in Buffa & Giannelli
(2016) under a few assumptions on the meshes. It is important to remark that truncation is indeed a
possible strategy to recover partition of unity and convex hull property. On the other hand, the procedure
of truncation requires a specific construction that entails complicated basis function supports (that may be
nonconvex and/or not connected) and their use may produce a non-negligible overhead with an adaptive
strategy.

In the present paper, we take the point of view of classical HB-splines and we study their structure
with a special attention to all those properties that may be needed or may facilitate their use with an
adaptive isogeometric method.

When considering an underlying sequence of nested tensor-product spline spaces and the correspond-
ing B-spline bases, a particular way of selecting B-spline basis functions from each different level in order
to build a hierarchical basis H has been established in Kraft (1998) (see also Vuong et al., 2011). This
hierarchical basis H enjoys some important properties:

• H is a set of linearly independent B-spline functions.

• It is possible to identify uniquely the basis H from the knowledge of a hierarchical mesh.

• All functions in the coarsest underlying tensor-product spline space belong to the hierarchical space
span H .

• Under certain assumptions about the hierarchy of subdomains associated with H , it is pos-
sible to define a multiscale quasi-interpolant operator in span H obtaining optimal orders of local
approximation.

• Any enlargement of the hierarchy of the subdomains associated with H gives rise to a refined basis
H ∗ in the sense that span H ⊂ span H ∗.

On the other hand, unlike tensor-product B-spline bases, the functions in the hierarchical basis H do
not constitute a partition of unity. If we consider the corresponding coefficients {aβ}β∈H ⊂ R in order to
form such a partition, i.e.,

∑
β∈H

aββ ≡ 1, (1.1)

it is known that the coefficients aβ are non-negative, but in fact, some of them can be equal to zero.
In this article we analyse the local approximation properties of hierarchical splines spaces through

the construction of a multiscale quasi-interpolant operator. Kraft (1998) has introduced such an operator
for the case of bivariate spline spaces on infinite uniform knot vectors and has studied its pointwise
approximation properties. We extend his results to the case of open knot vectors with possible multiple
internal knots in d-dimensional domains, for d ≥ 1, and we also provide local approximation estimates
in Lq-norms, for 1 ≤ q ≤ ∞.

Furthermore, we propose a new hierarchical spline space, through a construction of a set of basis
functions named H̃ that satisfies all important properties just listed above. In particular, H̃ ⊂ H , and
therefore, in general, the new hierarchical space span H̃ may be smaller than span H . However, the new
basis is easier to manage and to update when performing local adaptive refinement, and in this case, the
coefficients for (1.1) are strictly positive. It is worth mentioning that, although our approach follows some
ideas from Grinspun et al. (2002) and Krysl et al. (2003), the function space obtained in these articles for
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REFINABLE SPACES AND LOCAL APPROXIMATION ESTIMATES FOR HIERARCHICAL SPLINES 3

the case of high order splines may not be uniquely determined from the knowledge of the hierarchical
mesh and moreover the generating set may be linearly dependent.

This paper is organized as follows. In Section 2 we introduce the notation and the assumptions for
the underlying tensor-product spline spaces to be considered, and in Section 3 we briefly introduce the
standard HB-spline basis and prove some results which will be useful later. In Section 4 we construct a
multiscale quasi-interpolant operator and study the local approximation properties in hierarchical spline
spaces. In Section 5 we define a simplified HB-spline basis and prove some of its basic properties. Finally,
we conclude the article with some final remarks in Section 6.

2. Spline spaces and B-spline bases

2.1 Univariate B-spline bases

Let Ξp,n := {ξj}n+p+1
j=1 be a p-open knot vector, i.e., a sequence such that

0 = ξ1 = · · · = ξp+1 < ξp+2 ≤ · · · ≤ ξn < ξn+1 = · · · = ξn+p+1 = 1,

where the two positive integers p and n denote a given polynomial degree, and the corresponding number
of B-splines defined over the subdivision Ξp,n, respectively. Here, n ≥ p + 1. We also introduce the set
Zp,n := {ζj}ñ

j=1 of breakpoints (i.e., knots without repetitions) and denote by mj the multiplicity of the
breakpoint ζj, such that

Ξp,n = {ζ1, . . . , ζ1,︸ ︷︷ ︸
m1 times

ζ2, . . . , ζ2,︸ ︷︷ ︸
m2 times

. . . ζñ, . . . , ζñ︸ ︷︷ ︸
mñ times

},

with
∑ñ

i=1
mi = n+p+1. Note that the two extreme knots are repeated p+1 times, i.e., m1 = mñ = p+1.

We assume that an internal knot can be repeated at most p+1 times, i.e., mj ≤ p+1, for j = 2, . . . , ñ−1.
Let B(Ξp,n) := {b1, b2, . . . , bn} be the B-spline basis (cf. de Boor, 2001; Schumaker, 2007) associated

with the knot vector Ξp,n. The local knot vector of bj is given by

Ξbj := {ξj, . . . , ξj+p+1},

which is a subsequence of p + 2 consecutive knots of Ξp,n. We remark that

supp bj = [ξj, ξj+p+1].

Let I (Ξp,n) be the mesh defined by

I (Ξp,n) := {[ζj, ζj+1] | j = 1, . . . , ñ − 1}.

For each I = [ζj, ζj+1] ∈ I (Ξp,n) there exists a unique k = ∑j
i=1 mj such that I = [ξk , ξk+1] and ξk 	= ξk+1.

The union of the supports of the B-splines acting on I identifies the support extension Ĩ , namely

Ĩ := [ξk−p, ξk+p+1].
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4 A. BUFFA AND E. M. GARAU

Let Ξ0 := Ξp,n be a given p-open knot vector. We consider a sequence {Ξ�}�∈N of successive
refinements of Ξ0, i.e.,

Ξ0 ⊂ Ξ1 ⊂ . . . , (2.1)

where Ξ� is a p-open knot vector, and Ξ� ⊂ Ξ�+1 means that Ξ� is a subsequence of Ξ�+1, for � ∈ N0.
In other words, condition (2.1) says that if ξ is a knot in Ξ� with multiplicity m, then ξ is also a knot in
Ξ�+1 with multiplicity at least m, for � ∈ N0.

Let B� := B(Ξ�) be the B-spline basis, for � ∈ N0.

Definition 2.1 Let β� ∈ B� be given and let Ξβ�
be the corresponding local knot vector. Let Ξ

(�+1)

β�
⊂

Ξ�+1 be the knot vector obtained from Ξβ�
after inserting the knots of Ξ�+1 which are in the interior of

supp β�. We say that β�+1 ∈ B�+1 is a child of β� ∈ B� if the local knot vector of β�+1, which is denoted
by Ξβ�+1 , is a subsequence of Ξ

(�+1)

β�
. In other words, the children of β� are the B-splines in B�+1 whose

local knot vector consists of p + 2 consecutive knots of Ξ
(�+1)

β�
. We let

C (β�) := {β�+1 ∈ B�+1 | β�+1 is a child of β�}.

Conversely, if β�+1 ∈ B�+1 is given, we define the set of parents of β�+1 by

P(β�+1) := {β� ∈ B� | β�+1 is a child of β�}.

It is easy to check that the last definition means that β�+1 ∈ B�+1 is a child of β� ∈ B� if and only
if

(i) min Ξβ�
≤ min Ξβ�+1 ≤ max Ξβ�+1 ≤ max Ξβ�

.

(ii) If ξ ∈ Ξβ�+1 matches any of the end points of Ξβ�
then the multiplicity of ξ in Ξβ�+1 is less or

equal to the multiplicity of ξ in Ξβ�
.

In particular, notice that if β�+1 is a child of β� then supp β�+1 ⊂ supp β�.
Since Ξ� ⊂ Ξ�+1, using the so-called knot insertion formula, all B-splines of level � can be written

as a linear combination of B-splines of level � + 1. More precisely, if β� ∈ B� then

β� =
∑

β�+1∈C(β�)

cβ�+1(β�)β�+1, (2.2)

where the coefficients cβ�+1(β�) are positive, and C (β�) ⊂ B�+1 is the set of children of β� (cf. Fig. 1).

2.2 Tensor-product B-spline bases

Let d ≥ 1. In order to define a tensor-product d-variate spline function space on Ω := [0, 1]d ⊂ Rd , we
consider p := (p1, p2, . . . , pd) the vector of polynomial degrees with respect to each coordinate direction
and n := (n1, n2, . . . , nd), where ni ≥ pi + 1. For i = 1, 2, . . . , d, let Ξpi ,ni := {ξ (i)

j }ni+pi+1
j=1 be a pi-open

knot vector, i.e.,

0 = ξ
(i)
1 = · · · = ξ

(i)
pi+1 < ξ

(i)
pi+2 ≤ · · · ≤ ξ (i)

ni
< ξ

(i)
ni+1 = · · · = ξ

(i)
ni+pi+1 = 1,
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Fig. 1. As an example, we consider cubic splines (i.e., p = 3) of maximum smoothness. The B-spline basis functions
in B� are shown at the top on the left. Assuming that the level � + 1 is obtained from the level � just by dyadic
refinement, the B-spline basis functions in B�+1 are shown at the top on the right. If β� ∈ B� is the dashed B-spline,
the refinement relation (2.2) provides its decomposition in terms of its children (at the bottom on the left) which are
the B-splines represented at the bottom on the right.

where the two extreme knots are repeated pi +1 times and any internal knot can be repeated at most pi +1
times. We denote by Sp,n the tensor-product spline space spanned by the B-spline basis Bp,n defined as
the tensor-product of the univariate B-spline bases B(Ξp1,n1), . . . , B(Ξpd ,nd ). Let Qp,n be tensor-product
mesh consisting of the elements Q = I1 × · · · × Id , where Ii is an element (closed interval) of the ith
univariate mesh I (Ξpi ,ni), for i = 1, . . . , d.

Now, we consider a given sequence {S�}n∈N0 of tensor-product d-variate spline spaces such that

S0 ⊂ S1 ⊂ S2 ⊂ S3 ⊂ . . . , (2.3)
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6 A. BUFFA AND E. M. GARAU

with the corresponding tensor-product B-spline bases denoted by

B0, B1, B2, B3, . . . ,

respectively. More precisely, if p = (p1, p2, . . . , pd) is given, for � ∈ N0, S� := Sp,n�
is the tensor-product

spline space and B� := Bp,n�
is the corresponding B-spline basis, for some n� = (n�

1, n�
2, . . . , n�

d). In order
to guarantee (2.3), we assume that if ξ is a knot in Ξpi ,n

�
i

with multiplicity m then ξ is also a knot in Ξpi ,n
�+1
i

with multiplicity at least m, for i = 1, . . . , d and � ∈ N0. Furthermore, we denote by Q� := Qp,n�
the

tensor-product mesh and we say that Q ∈ Q� is a cell of level �. We state some well-known properties of
the B-spline basis functions that will be useful in this presentation (de Boor, 2001; Schumaker, 2007):

• Local linear independence. For any nonempty open set O ⊂ Ω , the functions in B� that do not vanish
identically on O are linearly independent on O.

• Positive partition of unity. The B-spline basis functions of level � form a partition of the unity on Ω ,
i.e.,

∑
β∈B�

β ≡ 1, on Ω . (2.4)

• Two-scale relation between consecutive levels. The B-splines of level � can be written as a linear
combination of B-splines of level � + 1. More precisely,

β� =
∑

β�+1∈C(β�)

cβ�+1(β�)β�+1, ∀ β� ∈ B�, (2.5)

where the coefficients cβ�+1(β�) are positive and can be computed using the corresponding coefficients
in the univariate two-scale relation (2.2) and Kronecker products. Here, C (β�) is the set of children
of β�, and we say that β�+1 ∈ B�+1 is a child of β� if the ith univariate B-spline which defines β�+1 is
a child of the ith univariate B-spline defining β�, for each coordinate direction i = 1, . . . , d.

Remark 2.2 Notice that if we define cβ�+1(β�) := 0 when β�+1 is not a child of β� then equation (2.5)
can be written as

β� =
∑

β�+1∈B�+1

cβ�+1(β�)β�+1, ∀ β� ∈ B�. (2.6)

In particular, we remark that

C (β�) = {β�+1 ∈ B�+1 | cβ�+1(β�) > 0} ⊂ {β�+1 ∈ B�+1 | supp β�+1 ⊂ supp β�}. (2.7)

Finally, we also consider the set of parents of β�+1 ∈ B�+1 given by

P(β�+1) := {β� ∈ B� | β�+1 is a child of β�}.
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REFINABLE SPACES AND LOCAL APPROXIMATION ESTIMATES FOR HIERARCHICAL SPLINES 7

3. HB-spline basis

Definition 3.1 If n ∈ N, we say that Ωn := {Ω0, Ω1, . . . , Ωn} is a hierarchy of subdomains of Ω of
depth n if

(i) Ω� is the union of cells of level � − 1, for � = 1, 2, . . . , n.

(ii) Ω = Ω0 ⊃ Ω1 ⊃ · · · ⊃ Ωn−1 ⊃ Ωn = ∅.

We now define the HB-spline basis H = H (Ωn) in the following recursive way:⎧⎪⎨
⎪⎩

H0 := B0,

H�+1 := {β ∈ H� | supp β 	⊂ Ω�+1} ∪ {β ∈ B�+1 | supp β ⊂ Ω�+1}, � = 0, . . . , n − 2.

H := Hn−1.

(3.1)

If D� := H� \ H�+1 is the set of deactivated B-splines of level � then

D� = {β ∈ H� | supp β ⊂ Ω�+1} = {β ∈ B� | supp β ⊂ Ω�+1}.

Notice that in order to get H�+1 from H� we replace the set D� by

{β ∈ B�+1 | supp β ⊂ Ω�+1}.

Moreover, it is easy to check that

H =
n−1⋃
�=0

{β ∈ B� | supp β ⊂ Ω� ∧ supp β 	⊂ Ω�+1}. (3.2)

We say that β is active if β ∈ H . The corresponding underlying mesh Q = Q(Ωn) is given by

Q :=
n−1⋃
�=0

{Q ∈ Q� | Q ⊂ Ω� ∧ Q 	⊂ Ω�+1}, (3.3)

and we say that Q is an active cell if Q ∈ Q, or that Q is an active cell of level � if Q ∈ Q ∩ Q�.
Our definition of the HB-spline basis H is slightly different from the one given in Kraft (1998) and

Vuong et al. (2011), because they consider the domains Ω�, the cells Q and the function supports as open
sets. That definition does not allow to rebuild the hierarchical space uniquely from the only knowledge of
the hierarchical mesh (i.e., the active cells of each level); see, for example, Kraft (1998, Fig. 2.5) or Kraft
(1997, Fig. 2).

We know (cf. Vuong et al., 2011) that functions in H constitutes a linearly independent set and that

S0 = span B0 ⊂ span H .

Unlike the B-spline bases B� for tensor-product spline spaces, the HB-spline basis H does not
constitute a partition of unity. However, from Vuong et al. (2011, Lemma 5), we know that a partition of
unity can be obtained by using a proper weighting. More precisely, we can prove the following result.
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8 A. BUFFA AND E. M. GARAU

Lemma 3.2 (Partition of unity in H ). Let H be the HB-spline basis associated with the hierarchy of
subdomains of depth n, Ωn := {Ω0, Ω1, . . . , Ωn}. Let aβ0 := 1 for all β0 ∈ B0 and

aβ�+1 :=
∑

β�∈B�
supp β�⊂Ω�+1

aβ�
cβ�+1(β�), ∀ β�+1 ∈ B�+1, supp β�+1 ⊂ Ω�+1, (3.4)

for � = 0, 1, . . . , n − 2. Then, ∑
β∈H

aββ ≡ 1, on Ω .

Remark 3.3 In view of the linear independence of functions in H , we have that the set {aβ}β∈H is
uniquely determined. On the other hand, we remark that the definition (3.4) depends on the hierarchy of
subdomains Ωn, and that the coefficients aβ are defined not only for β ∈ H , but also for β ∈ ⋃n−1

�=0{β� ∈
B� | supp β� ⊂ Ω�}.

Proof. By (2.4) we have that
∑

β∈H0
aββ ≡ 1, on Ω . Assume now that for a fixed � (0 ≤ � ≤ n − 2),∑

β∈H�
aββ ≡ 1, on Ω . Thus, using (3.4) and (2.6) we have that

∑
β∈H�+1

aββ =
∑

β∈H�
supp β 	⊂Ω�+1

aββ +
∑

β�+1∈B�+1
supp β�+1⊂Ω�+1

aβ�+1β�+1

=
∑

β∈H�
supp β 	⊂Ω�+1

aββ +
∑

β�∈B�
supp β�⊂Ω�+1

aβ�
β�

=
∑

β∈H�

aββ.

Thus,
∑

β∈H�+1
aββ ≡ 1, on Ω .

Finally, the proof is complete regarding that H = Hn−1. �

Notice that in the last lemma aβ ≥ 0, for all β ∈ H . The next result characterizes the functions β

whose weight aβ is equal to zero.

Theorem 3.4 Let β�+1 ∈ B�+1 be such that supp β�+1 ⊂ Ω�+1, for some � = 0, 1, . . . , n − 2. Then, the
following statements are equivalent:

(i) aβ�+1 = 0.

(ii) ∀ β� ∈ P(β�+1), (aβ�
> 0 ∧ supp β� ⊂ Ω� =⇒ supp β� 	⊂ Ω�+1).

Proof. From (3.4), we have that aβ�+1 = 0 if and only if for all β� ∈ B�, with supp β� ⊂ Ω�+1,

aβ�
= 0 or cβ�+1(β�) = 0,

or, equivalently, if and only if, all parents β� of β�+1 with aβ�
> 0 satisfy supp β� 	⊂ Ω�+1. �
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REFINABLE SPACES AND LOCAL APPROXIMATION ESTIMATES FOR HIERARCHICAL SPLINES 9

Fig. 2. As an illustration of Theorem 3.4 we consider a two-level mesh for biquadratic splines (i.e., p = (2, 2))
of maximum smoothness. If β denotes the highlighted B-spline of Level 1, since the four parents of β are active
B-splines of level 0 (i.e., their supports are not included in Ω1), we have that aβ = 0.

Notice that there is no function β0 ∈ B0 satisfying aβ0 = 0. Now, the last theorem implies that
aβ1 = 0 for β1 ∈ B1 with supp β1 ⊂ Ω1 if and only if all its parents are active (cf. Fig. 2). Roughly
speaking, Ω1 is too narrow around supp β1. Notice that, as soon as one of the β1s parents is deactivated,
aβ1 will become positive in the new configuration.

We conclude this section with the following result, which states that each deactivated B-spline of
level � can be written as a linear combination of functions in the hierarchical basis of the subsequent
levels, i.e., � + 1,…, n − 1.

Lemma 3.5 Let H be the HB-spline basis associated with the hierarchy of subdomains of depth n,
Ωn := {Ω0, Ω1, . . . , Ωn}. Then,

D� ⊂ span

(
H ∩

n−1⋃
k=�+1

Bk

)
, (3.5)

for � = 0, 1, . . . , n − 2.

Proof. Notice that (3.5) holds for � = n − 2 due to (2.6). Let us assume that (3.5) holds for some � and
prove that it holds for � − 1. Let β�−1 ∈ D�−1. Since β�−1 ∈ B�−1 and supp β�−1 ⊂ Ω�, we have that

β�−1 =
∑

β�∈B�
supp β�⊂Ω�

cβ�
(β�−1)β� =

∑
β�∈B�

supp β�⊂Ω�+1

cβ�
(β�−1)β� +

∑
β�∈H ∩B�

cβ�
(β�−1)β�.

Thus, β�−1 ∈ span
(
H ∩⋃n−1

k=� Bk

)
, which concludes the proof. �

4. Approximation properties and quasi-interpolation

Let Ωn := {Ω0, Ω1, . . . , Ωn} be a hierarchy of subdomains of Ω of depth n and let Q be the hierarchical
mesh given by (3.3). Let H be the hierarchical basis defined in (3.2).

A multiscale quasi-interpolant operator has been introduced by Kraft (1998), where pointwise approx-
imation estimates were established, for the case Ω = R2, where there is no boundary. There, the (infinite)
knot vector in each direction considered for building the initial tensor-product space S0 was the set of
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10 A. BUFFA AND E. M. GARAU

the integer numbers Z, and then dyadic refinement is performed to obtain the subsequent levels. This
multiscale operator has been extended in Speleers & Manni (2016, Corollary 3) to a general multivariate
hierarchical spline setting allowing nonuniform knot vectors. In this section, we extend the Kraft con-
struction to the case of open knot vectors with possible multiple internal knots. Moreover, we present a
multiscale quasi-interpolant operator, which provides suitable local approximation orders in Lq-norm, for
any 1 ≤ q ≤ ∞. We remark that the results presented in this section can be considered as an alternative
way to those in Speleers & Manni (2016) to analyse the local approximation properties in span H , but
our approach will allow in Section 5.1 to obtain such properties also for the simplified hierarchical space
defined in the next section.

For each coordinate direction i = 1, . . . , d, we assume that the sequence of knot vectors {Ξpi ,n
�
i
}�∈N0

satisfies as follows:

• The sequence of meshes {I (Ξpi ,n
�
i
)}�∈N0 is locally quasi-uniform with parameter θi > 0.1 We let

θ := maxi=1,...,d θi.

• The meshsize in each direction is at least halved when moving from a level to the next one, i.e.,

h�+1,i ≤ 1

2
h�,i, (4.1)

for all � ∈ N0, where h�,i is the maximum length of the intervals in I (Ξpi ,n
�
i
).

Remark 4.1 Notice that if the initial knot vectors for each direction, i.e., Ξp1,n0
1
, Ξp2,n0

2
, . . . , Ξpd ,n0

d
, are

chosen arbitrarily and we perform dyadic refinement for obtaining the subsequent levels, we will obtain
a sequence of meshes which satisfies the two conditions just stated.

In order to define the multiscale quasi-interpolant operator in the hierarchical space, we need to
introduce first some local quasi-interpolant operators P�, for � = 0, 1, . . . , n − 1, satisfying certain
suitable properties. These last operators can be defined using the ideas from Lee et al. (2001), where each
operator is defined using a underlying local approximation method.

4.1 A local approximation method

We recall that p := (p1, p2, . . . , pd) and denote by Pp the set of tensor-product polynomials with degree
at most pi in the coordinate direction xi, for i = 1, 2, . . . , d. Let N := dim Pp = Π d

i=1(pi + 1).
Let � ∈ N0 be arbitrary and fixed. For Q ∈ Q� given, we consider the basis BQ := {βQ

1 , . . . , βQ
N } of

Pp, consisting of the B-spline basis functions in B� which are nonzero on Q.
Let ΠQ : L1(Q) → Pp be the L2-projection operator defined by

∫
Q
(f − ΠQf )g = 0, ∀ g ∈ Pp. (4.2)

1 More precisely, for each coordinate direction i = 1, 2, . . . , d, there exists a constant θi > 0 such that for all � ∈ N0, if I1 and
I2 are elements in I (Ξpi ,n

�
i
) sharing a breakpoint in Zpi ,n

�
i

then θ−1
i ≤ |I1|

|I2 | ≤ θi.
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REFINABLE SPACES AND LOCAL APPROXIMATION ESTIMATES FOR HIERARCHICAL SPLINES 11

Notice that

ΠQf =
N∑

i=1

λ
Q
i (f )βQ

i , ∀ f ∈ L1(Q), (4.3)

where λQ(f ) := (λ
Q
1 (f ), . . . , λQ

N(f ))T is the solution of the linear system

MQx = FQ,

where

MQ =
(∫

Q
β

Q
j β

Q
i

)
i,j=1,...,N

∈ RN×N , and FQ =
(∫

Q
f βQ

i

)
i=1,...,N

∈ RN×1.

Since ΠQ preserves polynomials in Pp, we have that {λQ
i : L1(Q) → R | i = 1, . . . , N} is a dual basis

for BQ in the sense that

λ
Q
i (β

Q
j ) =

{
1, if i = j

0, if i 	= j
, i, j = 1, . . . , N . (4.4)

As a consequence of the L∞-local stability of the B-spline basis we have the following result
(cf. Buffa et al., 2015).

Lemma 4.2 Let q be such that 1 ≤ q ≤ ∞. Let Q ∈ Q� and let ΠQ : L1(Q) → Pp be the L2-projection
operator defined by (4.2). Then, there exists a constant Cp,θ > 0 which depends only on p and θ such that

‖λQ(f )‖∞ ≤ Cp,θ |Q|− 1
q ‖f ‖Lq(Q), ∀ f ∈ Lq(Q),

where λQ(f ) = (λ
Q
1 (f ), . . . , λQ

N(f ))T are the coefficients of ΠQ(f ) with respect to the local basis BQ as
given (4.3).

4.2 A locally supported dual basis

For � = 0, 1, . . . , n − 1, we define ω� as the union of the elements of level � whose support extension is
contained in Ω�, i.e.,

ω� :=
⋃

Q∈Q�

Q̃⊂Ω�

Q,

where Q̃ denotes the support extension of Q, given by Q̃ =
⋃

β∈B�
supp β⊃Q

supp β. In other words, ω� consists of

the elements of level �, where the full tensor-product space of level � can be exactly represented in the
hierarchical space.
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12 A. BUFFA AND E. M. GARAU

Let

B�,ω�
:= {β ∈ B� | ∃ Q ∈ Q� : Q ⊂ supp β ∩ ω�}, (4.5)

and

Sω�
:= span B�,ω�

.

We remark that B�,ω�
⊂ {β ∈ B� | supp β ⊂ Ω�}, but in general, B�,ω�

� {β ∈ B� | supp β ⊂ Ω�}
(see Fig. 4). The goal of this paragraph is to define a dual basis for the multivariate B-spline basis B�,ω�

,
i.e., a set of linear functionals

{λβ : L1(Ω) → R | β ∈ B�,ω�
},

such that λβi(βj) =
{

1, if i = j

0, if i 	= j
, for all βi, βj ∈ B�,ω�

. We will use the technique presented in Lee

et al. (2001) together with the local L2-projection defined in (4.2). Roughly speaking, we define the
functional λβ as a local projection onto some Qβ ∈ Q� such that Qβ ⊂ supp β ∩ ω�. More precisely, for
each β ∈ B�,ω�

, we choose Qβ ∈ Q� such that Qβ ⊂ supp β ∩ ω� and let

λβ := λ
Qβ

i0
,

where i0 = i0(β, Qβ) with 1 ≤ i0 ≤ N is such that β
Qβ

i0
≡ β on Qβ .

As an immediate consequence of (4.4) and Lemma 4.2 we have the following result.

Proposition 4.3 Let {λβ : L1(Ω) → R | β ∈ B�,ω�
} be the set of linear functionals just defined above.

Then, the following properties hold:

(i) Local support: If Qβ denotes the element in Q� chosen for the definition of λβ then λβ is supported
in Qβ , i.e.,

∀ f ∈ Lq(Ω), f|Qβ
≡ 0 =⇒ λβ(f ) = 0.

(ii) Dual basis: For βi, βj ∈ B�,ω�
, λβi(βj) =

{
1, if i = j,

0, if i 	= j.

(iii) Lq-Stability: If β ∈ B�,ω�
and f ∈ Lq(Qβ),

|λβ(f )| ≤ Cp,θ |Qβ |− 1
q ‖f ‖Lq(Qβ ). (4.6)
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REFINABLE SPACES AND LOCAL APPROXIMATION ESTIMATES FOR HIERARCHICAL SPLINES 13

4.3 Localized quasi-interpolant operators in the tensor-product spaces

Now, we are in position of defining a quasi-interpolant operator for each level �, using the dual bases
introduced in the previous paragraph. For � = 0, 1, . . . , n − 1, let P� : Lq(Ω) → span B�,ω�

⊂ S� be
given by

P�f :=
∑

β∈B�,ω�

λβ(f )β, ∀ f ∈ Lq(Ω). (4.7)

The next result summarizes the main properties of P�.

Theorem 4.4 For � = 0, 1, . . . , n−1, let P� be the operator given by (4.7). Then, the following properties
hold:

(i) P� preserves splines in Sω�
, i.e., P�s = s, for all s ∈ Sω�

.

(ii) P� is supported in ω�, i.e.,

∀ f ∈ Lq(Ω), f|ω�
≡ 0 =⇒ P�f ≡ 0. (4.8)

(1) For all s ∈ S�,

P�s ≡ s, on ω�.

(2) Stability: The quasi-interpolant operator P� satisfies

‖P�f ‖Lq(Ω�) ≤ CS‖f ‖Lq(ω�), ∀ f ∈ Lq(ω�), (4.9)

where the constant CS > 0 only depends on p and θ .

(3) Approximation: Let s := (s1, s2, . . . , sd) be such that si ≤ pi + 1, for i = 1, 2, . . . , d. For
f ∈ Ls

q(Ω) := {g ∈ L1
loc(Ω) | Dri

xi g ∈ Lq(Ω), 0 ≤ ri ≤ si, i = 1, . . . , d},

‖f − P�f ‖Lq(ω�) ≤ CA

d∑
i=1

hsi
�,i‖Dsi

xi
f ‖Lq(Ω�), (4.10)

where the constant CA > 0 depends on d, s, p and θ .

Proof. (i) This is an immediate consequence of Proposition 4.3 (ii).

(ii) This follows from (4.6) and (4.7).

(iii) This is a consequence of (i) and (ii).

(iv) Let Q ∈ Q� such that Q ⊂ Ω�. Taking into account (4.6) and (2.4) we have that

|P�f | ≤ max
β∈B�

supp β⊃Q

|λβ(f )| ≤ C|Q|− 1
q ‖f ‖Lq(Q̃∩ω�), on Q,
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14 A. BUFFA AND E. M. GARAU

for all f ∈ Lq(ω�), where Q̃ =
⋃

β∈B�
supp β⊃Q

supp β. Here, the constant C > 0 depends on p and θ . Then,

‖P�f ‖Lq(Q) ≤ C‖f ‖Lq(Q̃∩ω�). (4.11)

Now, (4.9) follows from the last equation.

(v) Let Q ∈ Q� such that Q ⊂ ω�. By results on multidimensional Taylor expansions, there exists
pQ̃ ∈ Pp such that

‖f − pQ̃‖Lq(Q̃) ≤ CT

d∑
i=1

hsi
�,i‖Dsi

xi
f ‖Lq(Q̃), (4.12)

where the constant CT > 0 only depends on d, s, p and θ . Taking into account (4.11), (iii) and (4.12), we
have that

‖f − P�f ‖Lq(Q) ≤ ‖f − pQ̃‖Lq(Q) + ‖pQ̃ − P�f ‖Lq(Q)

= ‖f − pQ̃‖Lq(Q) + ‖P�(pQ̃ − f )‖Lq(Q)

≤ (1 + C)‖f − pQ̃‖Lq(Q̃)

≤ (1 + C)CT

d∑
i=1

hsi
�,i‖Dsi

xi
f ‖Lq(Q̃).

Now, (4.10) follows. �

4.4 A multiscale quasi-interpolant operator

Let P� be the operator given by (4.7), for each � = 0, 1, . . . , n − 1. We define Π : Lq(Ω) → span H by⎧⎪⎨
⎪⎩

Π0 := P0,

Π�+1 := Π� + P�+1(id −Π�), � = 0, . . . , n − 2.

Π := Πn−1.

(4.13)

Remark 4.5 Notice that Theorem 4.4 (i) implies that P0s = s, for all s ∈ S0. Thus, as an immediate
consequence of the definition of Π given in (4.13), we have that

Πs = s, ∀ s ∈ S0,

i.e., Π preserves splines in the initial level and in particular tensor-product polynomials in Pp.

Remark 4.6 Taking into account the definitions of Π and P� given by (4.13) and (4.7), respectively, we
have that

Π : Lq(Ω) →
n−1∑
�=0

Sω�
:=
{

n−1∑
�=0

s� | s� ∈ Sω�
, � = 0, 1, . . . , n − 1

}
.
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REFINABLE SPACES AND LOCAL APPROXIMATION ESTIMATES FOR HIERARCHICAL SPLINES 15

When restricting to a fixed ω�, the following result allows to write the multiscale quasi-interpolant
Π in terms of the operators P�, P�+1,. . . ,Pn−1.

Theorem 4.7 If

ωn−1 ⊂ ωn−2 ⊂ · · · ⊂ ω2 ⊂ ω1 ⊂ ω0,

then

Π f = P�f +
n−1∑

k=�+1

Pk(f − Pk−1f ), on ω� (� = 0, 1, . . . , n − 1),

for f ∈ Lq(Ω).

Before proving Theorem 4.7 we state the following elementary result.

Lemma 4.8 For f ∈ Lq(Ω),

Π�f = P�f , on ω� (� = 0, 1, . . . , n − 1).

Proof. Let 1 ≤ � ≤ n − 1 and f ∈ Lq(Ω). Since Π�−1f ∈ S�−1 ⊂ S�, by Theorem 4.4 (iii), we have
that P�Π�−1f = Π�−1f , on ω�. Now, the definition of Π� yields Π�f = Π�−1f + P�(f − Π�−1f ) = P�f ,
on ω�. �

Proof of Theorem 4.7. From the definition of Π given by (4.13) we have that

Π = Π� +
n−1∑

k=�+1

Pk(id −Πk−1).

Now, since ωk ⊂ ωk−1, using that Pk is supported in ωk (cf. (4.8)) and Lemma 4.8 we have that

n−1∑
k=�+1

Pk(id −Πk−1) =
n−1∑

k=�+1

Pk(id −Pk−1),

which concludes the proof. �

Now, we state and prove the main result of this section.

Theorem 4.9 (Quasi-interpolation in hierarchical spline spaces) Assume that

ωn−1 ⊂ ωn−2 ⊂ · · · ⊂ ω2 ⊂ ω1 ⊂ ω0.
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16 A. BUFFA AND E. M. GARAU

Let s := (s1, s2, . . . , sd) be such that 1 ≤ si ≤ pi + 1, for i = 1, 2, . . . , d. If Π : Lq(Ω) → span H is the
multiscale quasi-interpolant given by (4.13) then

‖f − Π f ‖Lq(ω�) ≤ CA(1 + 2CS)

d∑
i=1

hsi
�,i‖Dsi

xi
f ‖Lq(Ω�), � = 0, 1, . . . , n − 1,

for f ∈ Ls
q(Ω).

Proof. Let f ∈ Ls
q(Ω) and let � be such that 0 ≤ � ≤ n − 1. Then, using Theorem 4.7, (4.9), that

ωk ⊂ ωk−1, (4.10) and (4.1), we have that

‖f − Π f ‖Lq(ω�) ≤ ‖f − P�f ‖Lq(ω�) +
n−1∑

k=�+1

‖Pk(f − Pk−1f )‖Lq(ω�)

= ‖f − P�f ‖Lq(ω�) +
n−1∑

k=�+1

‖Pk(f − Pk−1f )‖Lq(Ωk )

≤ ‖f − P�f ‖Lq(ω�) + CS

n−1∑
k=�+1

‖f − Pk−1f ‖Lq(ωk )

≤ ‖f − P�f ‖Lq(ω�) + CS

n−1∑
k=�+1

‖f − Pk−1f ‖Lq(ωk−1)

≤ CA

(
d∑

i=1

hsi
�,i‖Dsi

xi
f ‖Lq(Ω�) + CS

n−1∑
k=�+1

d∑
i=1

hsi
k−1,i‖Dsi

xi
f ‖Lq(Ωk−1)

)

≤ CA

d∑
i=1

(
1 + CS

n−1∑
k=�+1

1

2(k−1−�)si

)
hsi

�,i‖Dsi
xi

f ‖Lq(Ω�)

≤ CA

d∑
i=1

(
1 + CS

∞∑
k=0

1

2ksi

)
hsi

�,i‖Dsi
xi

f ‖Lq(Ω�)

= CA

d∑
i=1

(
1 + CS

1 − 2−si

)
hsi

�,i‖Dsi
xi

f ‖Lq(Ω�).

�

Remark 4.10 If the hierarchy of subdomains Ωn := {Ω0, Ω1, . . . , Ωn} satisfies

Ω� ⊂ ω�−1, � = 1, . . . , n, (4.14)

we say that the mesh Q is strictly admissible (of Class 2, cf. Buffa & Giannelli, 2016). In particular, if the
mesh is strictly admissible, in view of Giannelli et al. (2014, Proposition 20), we have that the functions
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REFINABLE SPACES AND LOCAL APPROXIMATION ESTIMATES FOR HIERARCHICAL SPLINES 17

Fig. 3. Some examples of four-level meshes for splines of maximum smoothness; we consider biquadratics (p =
(2, 2)) on the left and in the middle, and bicubics (p = (3, 3)) on the right. In all cases, the meshes are not strictly
admissible, but they satisfy (4.15). The domains ω1, ω2 and ω3 are highlighted in grey from the lightest to the darkest.

in the truncated basis (Giannelli et al., 2012), which take nonzero values on any active cell belong to at
most two different levels.

Notice that if a mesh is strictly admissible then satisfies

ωn−1 ⊂ ωn−2 ⊂ · · · ⊂ ω2 ⊂ ω1 ⊂ ω0. (4.15)

On the other hand, in Fig. 3 we show some nonstrictly admissible meshes which satisfy (4.15).

We conclude this section by applying Theorem 4.9 to the case of strictly admissible meshes. More
precisely, we obtain optimal rates of convergence in each level of the hierarchical mesh when considering
the asymptotic behaviour (cf. Speleers & Manni, 2016, Example 2).

Corollary 4.11 Assume that each level is obtained by dyadic refinement of the elements of the previous
one (see Remark 4.1). If the mesh is strictly admissible (cf. (4.14)) then

‖f − Π f ‖Lq(Ω�) ≤ C
d∑

i=1

hsi
�,i‖Dsi

xi
f ‖Lq(Ω�−1) (� = 1, . . . , n − 1),

for all f ∈ Ls
q(Ω), where the constant C > 0 depends only on d, s and p.

5. A new and easier hierarchical spline space

Assume that we have already computed the set H� for given � (cf. (3.1)). Now, in order to compute H�+1

we need to select the new B-splines to be added, i.e., {β ∈ B�+1 | supp β ⊂ Ω�+1}. Once we know the
B-spline basis functions to be deactivated D� = {β ∈ B� | supp β ⊂ Ω�+1}, notice that it is not enough
replacing the functions in D� by their children, because in general,⋃

β∈D�

C (β) � {β ∈ B�+1 | supp β ⊂ Ω�+1}.
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18 A. BUFFA AND E. M. GARAU

kg N ha–1

Fig. 4. Some examples of two-level meshes for bicubic splines (i.e., p = (3, 3)) of maximum smoothness. In both
cases, the highlighted B-splines of Level 1 have support included in Ω1, but they are not children of any deactivated
B-spline of level 0.

In Fig. 4 we show some examples of this situation. This observation suggests a simplified way of
selecting B-splines at different levels which consists in adding solely the children of the deactivated
functions. This idea has been already used in the context of finite elements in Krysl et al. (2003) (see
also Grinspun et al. (2002) and Jiang & Dolbow (2015), where adaptive refinement methods are imple-
mented for hierarchical splines). Doing so, we obtain a new hierarchical space whose basis that we call
H̃ = H̃ (Ωn) is defined as follows:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

H̃0 := B0,

H̃�+1 := {β ∈ H̃� | supp β 	⊂ Ω�+1} ∪
⋃

β∈H̃�
supp β⊂Ω�+1

C (β), � = 0, . . . , n − 2.

H̃ := H̃n−1.

(5.1)

In this case, if D̃� := H̃� \ H̃�+1, we have that

D̃� = {β ∈ H̃� | supp β ⊂ Ω�+1} ⊂ {β ∈ B� | supp β ⊂ Ω�+1}, (5.2)

but now, we can get H̃�+1 from H̃� by replacing the B-splines in D̃� by their children.
Thus, it seems that building the basis H̃ is easier than the basis H . In particular, there is no need of

traversing the mesh in order to identify the B-splines to add in each recursive step of (5.1). However, as
an immediate consequence of the following lemma we have that

H̃ ⊂ H ,

and therefore, in general, span H̃ can be smaller than span H .

Lemma 5.1

H̃� ⊂ H�, � = 0, 1, . . . , n − 1. (5.3)

 by guest on July 28, 2016
http://im

ajna.oxfordjournals.org/
D

ow
nloaded from

 

http://imajna.oxfordjournals.org/


REFINABLE SPACES AND LOCAL APPROXIMATION ESTIMATES FOR HIERARCHICAL SPLINES 19

Proof. Notice that (5.3) holds for � = 0 due to H̃0 = H0 = B0. Now, using mathematical induction
and taking into account (5.2) and (2.7) the proof can be completed. �

Thus, since H̃ ⊂ H , when considering the basis H̃ instead H for discretizations in isogeometric
methods, it will be important to understand which functions we are discarding from the basis and the
properties of the space span H̃ . Regarding the set of coefficients {aβ}β∈H for the partition of unity in H
(cf. Lemma 3.2) and using Theorem 3.4, we can establish the following characterization for functions in
H̃ .

Theorem 5.2 For � = 0, 1, . . . , n − 1,

H̃� = {β ∈ H� | aβ > 0}. (5.4)

In particular,

H̃ = {β ∈ H | aβ > 0}.

Proof. Since that aβ = 1, for all β ∈ B0, we have that (5.4) holds for � = 0. Assume now that (5.4)
holds for some � and prove that it holds for � + 1.

Let β ∈ H̃�+1. If β ∈ H̃�+1 ∩ H̃�, using the induction hypothesis we have that aβ > 0. On the other
hand, if β ∈ H̃�+1 \ H̃�, there exists β� ∈ H̃� ∩ P(β) such that supp β� ⊂ Ω�+1 and Theorem 3.4 yields
aβ > 0. Thus, by Lemma 5.1 we have that H̃�+1 ⊂ {β ∈ H�+1 | aβ > 0}.

Now, let β ∈ H�+1 satisfying aβ > 0. If β ∈ H�+1 ∩H�, using the induction hypothesis we have that
β ∈ H̃�+1. On the other hand, if β ∈ H�+1 \H�, we have that β ∈ B�+1 and supp β ⊂ Ω�+1. Thus, using
Theorem 3.4 we have that there exists β� ∈ P(β) such that aβ�

> 0 and supp β� ⊂ Ω�+1. The induction

hypothesis now implies that β� ∈ H̃� and therefore β ∈ H̃�+1. In consequence, {β ∈ H�+1 | aβ > 0} ⊂
H̃�+1, which concludes the proof. �

Notice that the functions in H̃ are linearly independent because H̃ ⊂ H . On the other hand,
from (5.1) it follows that

span H̃� ⊂ span H̃�+1, � = 0, 1, . . . , n − 2, (5.5)

and therefore, taking into account that H̃0 = B0 and H̃n−1 = H̃ ,

S0 = span B0 ⊂ span H̃ .

Remark 5.3 Since span B0 ⊂ span H̃ , we have that tensor-product polynomials in Pp belong to
span H̃ .

In Section 5.1 we study the local approximation properties of the space span H̃ , through multiscale
quasi-interpolant operators.

Finally, taking into account Theorems 5.2 and 3.4, we can prove the analogous result of Lemma 3.5
when considering the basis H̃ .
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20 A. BUFFA AND E. M. GARAU

Lemma 5.4 Let H̃ be the HB-spline basis defined by (5.1) associated with the hierarchy of subdomains
of depth n, Ωn := {Ω0, Ω1, . . . , Ωn}. Then,

D̃� ⊂ span

(
H̃ ∩

n−1⋃
k=�+1

Bk

)
, (5.6)

for � = 0, 1, . . . , n − 2.

Proof. Notice that (5.6) holds for � = n − 2 due to (2.5). Let us assume that (5.6) holds for some � and
prove that it holds for � − 1. Let β�−1 ∈ D̃�−1. Since β�−1 ∈ B�−1 and supp β�−1 ⊂ Ω�, we have that

β�−1 =
∑

β�∈C(β�−1)

cβ�
(β�−1)β� =

∑
β�∈D̃�

cβ�
(β�−1)β� +

∑
β�∈C(β�−1)\D̃�

cβ�
(β�−1)β�.

Thus, β�−1 ∈ span
(
H̃ ∩⋃n−1

k=� Bk

)
, which concludes the proof. �

5.1 Quasi-interpolation and local approximation properties in span H̃

In this section we assume that each level is obtained by dyadic refinement of the elements of the previous
one (see Remark 4.1). The following related auxiliary technical result will be useful. The proof is presented
in Appendix A.

Lemma 5.5 Let B�,ω�
be the set of B-splines defined in (4.5), for � = 0, 1, . . . , n − 1. Then,

B�+1,ω�+1 ⊂
⋃

β∈B�
supp β⊂Ω�+1

C (β), � = 0, 1, . . . , n − 2.

This lemma allows us to prove the following proposition, which, together with the results presented
in the previous section, shows that the space span H̃ is rich enough and in particular contains all the
local spaces span B�,ω�

.

Proposition 5.6 Assume that

ωn−1 ⊂ ωn−2 ⊂ · · · ⊂ ω2 ⊂ ω1 ⊂ ω0. (5.7)

Then,

B�,ω�
⊂ H̃�, � = 0, 1, . . . , n − 1.

Proof. Taking into account the definition of H� given in (3.1) and the characterization of H̃� in (5.4),
we have that {β ∈ B� | supp β ⊂ Ω� ∧ aβ > 0} ⊂ H̃�, for � = 0, 1, . . . , n − 1. On the other hand, for
β ∈ B�,ω�

, we have that supp β ⊂ Ω� and thus aβ is well-defined (cf. (3.4)). Thus, it will be enough to
prove that

B�,ω�
⊂ {β ∈ B� | aβ > 0}, � = 0, 1, . . . , n − 1. (5.8)
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Notice that (5.8) holds for � = 0 due to aβ0 = 1 > 0, for all β0 ∈ B0 = B0,ω0 . Now, assume that (5.8)
holds for some �. Let β�+1 ∈ B�+1,ω�+1 . In view of Lemma 5.5, there exists β� ∈ P(β�+1) such that
supp β� ⊂ Ω�+1. Moreover, taking into account (5.7), the definition of B�+1,ω�+1 implies that there exists
Q�+1 ∈ Q�+1 such that

Q�+1 ⊂ supp β�+1 ∩ ω�+1 ⊂ supp β� ∩ ω�,

which in turn yields β� ∈ B�,ω�
. Finally, taking into account the induction hypothesis, we have that

aβ�
> 0 and now using Theorem 3.4 we conclude that aβ�+1 > 0. �

In view of Remark 4.6, the immediate consequence of Proposition 5.6 is that the multiscale quasi-
interpolant operator defined in Section 4 does construct interpolating functions belonging to H̃ and not
only to H . Thus, the approximation estimates from Theorem 4.9 apply verbatim to H̃ . We express this
fact in the following simple corollary.

Corollary 5.7 Assume that

ωn−1 ⊂ ωn−2 ⊂ · · · ⊂ ω2 ⊂ ω1 ⊂ ω0.

Let 1 ≤ q ≤ ∞ and Π : Lq(Ω) → span H be the multiscale quasi-interpolant operator defined in (4.13).
Then,

Π : Lq(Ω) → span H̃ .

5.2 Refinement of hierarchical spline spaces

When thinking of hierarchical splines within a refinement and an adaptation process, it is very important
to have a precise link between the enlargement of the hierarchy of subdomains Ωn = {Ω0, Ω1, . . . , Ωn}
and the refinement of the corresponding hierarchical space. This issue has been addressed for classical
hierarchical splines in Giannelli et al. (2014) and here we address it for H̃ .

Definition 5.8 Let Ωn := {Ω0, Ω1, . . . , Ωn} and Ω∗
n+1 := {Ω∗

0 , Ω∗
1 , . . . , Ω∗

n , Ω∗
n+1} be hierarchies of

subdomains of Ω of depth (at most) n and n + 1, respectively. We say that Ω∗
n+1 is an enlargement of Ωn

if

Ω� ⊂ Ω∗
� , � = 1, 2, . . . , n.

Let Ω∗
n+1 be an enlargement of Ωn. Now, the corresponding HB-spline basis H ∗ and refined mesh

Q∗ are given by

H ∗ :=
n⋃

�=0

{β ∈ B� | supp β ⊂ Ω∗
� ∧ supp β 	⊂ Ω∗

�+1},
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22 A. BUFFA AND E. M. GARAU

and

Q∗ :=
n⋃

�=0

{Q ∈ Q� | Q ⊂ Ω∗
� ∧ Q 	⊂ Ω∗

�+1}.

In Giannelli et al. (2014) it has been proved that

span H ⊂ span H ∗. (5.9)

Let {a∗
β}β∈H ∗ denote the sequence of coefficients (with respect to the hierarchy Ω∗

n+1) given by
Lemma 3.2. Thus, we have that ∑

β∈H ∗
a∗

ββ ≡ 1, on Ω ,

and thus, we can consider

H̃ ∗ := {β ∈ H ∗ | a∗
β > 0}.

The following theorem establishes the analogous of (5.9) when considering the basis H̃ .

Theorem 5.9

span H̃ ⊂ span H̃ ∗.

In order to prove this result we need the following auxiliary lemma.

Lemma 5.10 If β ∈ B� and supp β ⊂ Ω�, for � = 0, 1, . . . , n − 1, then

a∗
β ≥ aβ .

Proof. The assertion holds for � = 0 due to a∗
β = aβ = 1 for all β ∈ B0. Now, assume that for some �

we have that

a∗
β�

≥ aβ�
, for β� ∈ B�, such that supp β� ⊂ Ω�. (5.10)

Let β�+1 ∈ B�+1 such that supp β�+1 ⊂ Ω�+1. Since Ω�+1 ⊂ Ω∗
�+1, using (5.10) and the definitions of

aβ�+1 and a∗
β�+1

, we have that

a∗
β�+1

=
∑

β�∈B�
supp β�⊂Ω∗

�+1

a∗
β�

cβ�+1(β�) ≥
∑

β�∈B�
supp β�⊂Ω�+1

a∗
β�

cβ�+1(β�) ≥
∑

β�∈B�
supp β�⊂Ω�+1

aβ�
cβ�+1(β�) = aβ�+1 .

�
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Proof of Theorem 5.9. Let β ∈ H̃ and let � be such that β ∈ B�. Since supp β ⊂ Ω� ⊂ Ω∗
� , we have

that β ∈ H ∗
� . On the other hand, Lemma 5.10 implies that a∗

β ≥ aβ > 0, and (5.4) yields β ∈ H̃ ∗
� .

Finally, taking into account (5.5) we have that β ∈ span H̃ ∗. �

6. Concluding remarks

In this paper, after studying the approximation properties of hierarchical splines as defined in Kraft
(1998), we propose an alternative hierarchical spline space, following the approach in Grinspun et al.
(2002), through a construction of a set of basis functions named H̃ , that enjoys several properties and
may be considered as a valuable alternative to truncated hierarchical splines (Giannelli et al., 2012). We
can summarize and comment upon our results as follows:

• The basis that we construct simplifies the implementation and data structures needed to carry hierar-
chical splines because the refinement can be performed through the parent–children relations between
B-splines. Unlike the classical hierarchical space, where algorithms traversing the mesh are needed
to identify the new active B-splines, we just add children of already active B-splines. Moreover, we
believe that our construction can be suitably used in conjunction with function-based error indica-
tors, i.e., error indicators that mark functions (and not elements) to be refined: in our framework, a
marked function would be simply replaced by some of its children. These aspects will be studied in
a forthcoming paper.

• The weighted basis {aββ | β ∈ H̃ } constitutes a convex partition of unity and has the advantage of
preserving simple basis function supports (only hypercubes) and also, in principle, asks for the use
of simple spline evaluation formulae.

• We have extended the multiscale quasi-interpolant proposed in Kraft (1998) to the cases of general and
open knot vectors, and we have provided local approximation estimates in Lq-norms, for 1 ≤ q ≤ ∞.
This interpolant is built in a multiscale fashion, it is not a projector in general and is not based on
dual functionals, unlike the one presented in Speleers & Manni (2016) based on THB-splines. On the
other hand, it verifies optimal local approximation estimates.
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Krysl, P., Grinspun, E. & Schröder, P. (2003) Natural hierarchical refinement for finite element methods. Internat.
J. Numer. Methods Eng., 56, 1109–1124.

Lee, B. G., Lyche, T. & Mørken, K. (2001) Some examples of quasi-interpolants constructed from local spline
projectors. Mathematical Methods for Curves and Surfaces (Oslo, 2000). T. Lyche and L. L. Schumaker (eds).
Innov. Appl. Math., Nashville, TN: Vanderbilt University Press, pp. 243–252.

Schumaker, L. L. (2007) Spline Functions: Basic Theory, 3rd edn. Cambridge Mathematical Library. Cambridge:
Cambridge University Press.

Speleers, H. & Manni, C. (2016) Effortless quasi-interpolation in hierarchical spaces. Numer. Math., 132, 155–184.
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Appendix A

Now we present the proof of Lemma 5.5. Here, if A and B are two knot vectors (i.e., sequences), we say
that A ⊂ B if A is a subsequence of B. On the other hand, given two arbitrary sequences A and B, we
denote by A ∩ B the largest subsequence of A and B.

Proof of Lemma 5.5. For clarity of presentation, we consider first the univariate case d = 1. Let p = p1

be the polynomial degree and let � be fixed satisfying 0 ≤ � ≤ n − 2. Let Ξ� and Ξ�+1 be the open knot
vectors associated with the spline spaces S� and S�+1, respectively. Let

Ξ�+1 := {ξ1, ξ2, . . . , ξ#B�+1+p+1}.

Let β�+1 ∈ B�+1,ω�+1 . Then, there exists Q ∈ Q�+1 such that Q ⊂ supp β�+1 and Q ⊂ ω�+1. Thus, there
exists k such that Q = [ξk , ξk+1]. By the definition of ω�+1, we have that

Q̃ = [ξk−p, ξk+p+1] ⊂ Ω�+1.
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Notice that

ΞQ̃ := {ξk−p, . . . , ξk+p+1}

consists of 2p + 2 consecutive knots in Ξ�+1. Since Ξ�+1 is obtained from Ξ� by dyadic refinement, we
have that #(ΞQ̃ ∩ Ξ�) ≥ p + 1. If #(ΞQ̃ ∩ Ξ�) = p + 1, it is easy to check that we can add one knot

ξ̂ ∈ Ξ� such that #((ΞQ̃ ∪ {ξ̂})∩Ξ�) = p + 2 and {ξ ∈ (ΞQ̃ ∪ {ξ̂})∩Ξ�} ⊂ Ω�+1. Therefore, there exists
Ξ�

Q̃
⊂ Ξ� such that

#Ξ�

Q̃
≥ p + 2, (Ξβ�+1 ∩ Ξ�) ⊂ (ΞQ̃ ∩ Ξ�) ⊂ Ξ�

Q̃
, {ξ ∈ Ξ�

Q̃
} ⊂ Ω�+1. (A.1)

Let r := #(Ξβ�+1 ∩ Ξ�) and notice that r ≤ p + 1. We consider two cases:

(i) min Ξβ�+1 or max Ξβ�+1 matches a knot in Ξ�: By (A.1), there exists β� ∈ B� such that Ξβ�+1 ∩Ξ� ⊂
Ξβ�

⊂ Ξ�

Q̃
. Thus, β�+1 ∈ C (β�) and supp β� ⊂ Ω�+1.

(ii) Neither min Ξβ�+1 nor max Ξβ�+1 matches knots in Ξ�: Since Ξβ�+1 = p+2, in this case r ≤ p. Thus,
there exists β� ∈ B� such that Ξβ�+1 ∩Ξ� ⊂ Ξβ�

⊂ Ξ�

Q̃
. Again, β�+1 ∈ C (β�) and supp β� ⊂ Ω�+1.

Finally, for the multivariate case d > 1, we can apply this argument in each coordinate direction. �
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