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Abstract This work propose a feasible, rapid, and simple
method for detecting culinary spices adulterated either with
Sudan I dye or blends of Sudan I + IV dyes at three concen-
tration levels. The method is based on the use of UV-visible
spectroscopy with multivariate analysis. Four types of spices
were studied: three paprika varieties (mild, hot, and smoked)
and a spice commonly consumed in Argentina called aji
molido . Principal components analysis was firstly applied as
an exploratory analysis and then, two classification techniques
were used: K-nearest neighbors (KNN) and partial least
squares-discriminant analysis (PLS-DA). Three classes were
defined: unadulterated samples and adulterated samples with
Sudan I or blends of Sudan I + IV dyes at 1, 2.5, and 5 ppm
(mg L™"). Classification techniques gave satisfactory results:
between 89 and 100 % for PLS-DA and between 83 and 92 %
for KNN. The sensitivity and specificity of the models were
above 83 %. It has to be highlighted that none of the adulter-
ated samples were assigned as unadulterated, which is very
positive because of the implication that these results have on
consumer health. The capability of detecting mixtures of
Sudan dyes is a very important advantage because each Sudan
dye generates different hazardous metabolites in human body
so their toxicity may be enhanced by the simultaneous pres-
ence of such dyes.
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Introduction

Food coloring is important because it allows manufacturers to
obtain the desired aesthetic quality. Specifically, the disadvan-
tage of using natural colored spices is that they lose their color
over time, and this could lead to food adulteration by the
addition of synthetic substances such as Sudan dyes.

Sudan dyes (I, II, III, and IV, Fig. 1) are a family of
synthetic azo dyes that are widely used for coloring plastics,
waxes, and textile products and also for scientific applications.
Besides, Sudan dyes have been used in foodstuffs such as
culinary spices to maintain their intense red—orange color for
commercial benefits, because these dyes have attractive char-
acteristics such as low cost, bright color, and long mainte-
nance. Sudan dyes have been classified as category 3 carcin-
ogens (IARC 1975) because they can generate metabolites
that are converted to active mutagens and carcinogens in
humans (Fonovich 2013). Therefore, the use of Sudan dyes
as food additive is banned worldwide because their introduc-
tion on the food chain represents a potential health risk (Xu
et al. 2007). Sudan I is the dye notified in most of the cases
where adulterated foods have been found and it is a well-
recognized harmful substance (Stivorova et al. 2009; Johnson
et al. 2010). This dye has been found alone or in association
with other Sudan dyes (Tripathi et al. 2007; Mishra et al.
2007). Moreover, Sudan I + IV dyes is the most common
mixture found in spices as reported by the Rapid Alert System
for Food and Feed (RASFF 2005; RASFF 2006). Since each
Sudan dye is degraded to different hazardous metabolites in
human body (Xu et al. 2010), it is also necessary to detect
adulterated foods containing more than one Sudan dye be-
cause their toxicity may be enhanced by the simultaneous
presence of such dyes.
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European countries have established uniform controls at
the point of entry into the Community (Commission Decision
2009/669/EC) instead of the analytical report for each con-
signment of imported products; as the notifications
concerning adulterated foods with Sudan dyes has decreased
in the last few years (RASFF 2008). In such scenario, screen-
ing methods represent a good means for implementing mon-
itoring and control or routine analysis.

The use of Sudan dyes as food additives is expected to
continue, as high levels of these dyes have recently been
found (Tripathi et al. 2007; Mishra et al. 2007, RASFF
2006) in other countries; particularly in non-branded or loose
spices. Moreover, other food products have been recently
adulterated with Sudan dyes such as poultry feed for egg yolk
(Hou et al. 2010; Qiao et al. 2011) and preserved beancurds
products (Yan et al. 2012). Therefore, development of accu-
rate and fast methods for detecting Sudan dyes in foodstuff is
required for ensuring food safety to protect consumer health.

A wide variety of analytical methodologies have been
developed for the determination of Sudan dyes in foodstuffs
and the most popular are based on the use of liquid chroma-
tography associated with different detectors and sample pre-
treatments (Rebane et al. 2010). These techniques shows high
sensitivity but suffer from some drawbacks including time-
consuming, pre-treatments, and expensive instrumentation.
More recently, immunoassays methods have also been used
(Anfossi et al. 2009; Xiao et al. 2011; Liu et al. 2012) but
although they do not need an extensive cleanup, they are
expensive. Besides, spectrometric methods coupled with mul-
tivariate analysis have alternatively been used. Previous works
have demonstrated the ability of spectroscopic techniques
such as UV-visible (Di Anibal et al. 2009; Yuan et al. 2008),
"H-NMR (Di Anibal et al. 2011), and Raman (Di Anibal et al.
2012; Cheuung et al. 2010) to detect food adulteration with
Sudan dyes in an individual way.

Multivariate analysis plays an important role in analytical
chemistry because it provides a means for extracting the
maximum useful information from analytical data. In food
science, multivariate tools have been successfully employed
in a variety of analytical problems. Specifically, classification
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techniques have been widely used in the food area for classi-
fication, authentication, characterization, and discrimination,
for determining food origin and quality and to assure food
products safety. Some examples can be cited, as the determi-
nation of illegal enhancing agents in meat (Della Donna et al.
2009), honey adulteration with fructose corn syrup (Chen
et al. 2011), milk adulteration with whey (Almeida et al.
2011), minced meat with adulterants (Meza-Marquez et al.
2010), and wheat flour adulteration with bleaching agents
(Yuan et al. 2011).

The aim of the present study is to evaluate the use of UV-
visible spectroscopy with multivariate analysis as a screening
tool to identify the adulteration of culinary spices with either
Sudan I or blends of Sudan I + IV dyes at three concentrations
levels that are within the range used for adulterating spices
nowadays. The spices were aji molido (argentine spice), and
three paprika varieties (mild, hot, and smoked). Principal
components analysis (PCA) was applied as an exploratory
analysis and two classification techniques based in different
fundament were applied: K-nearest neighbors (KNN) and
partial least squares-discriminant analysis (PLS-DA).

Materials and Methods
Reagents and Samples

Sudan I and IV dyes were purchased from Sigma Aldrich (Bs.
As., Argentina). A total of 43 samples distributed among mild,
hot, smoked paprika and aji molido were purchased from
different sale-points.

Sample Preparation

Aji molido samples were firstly milled to obtain a homoge-
neous powder. All samples had the following extraction pro-
cess: 200 mg of each sample was weighed and 10 mL of
ethanol (96 %, v/v) was added, then samples were shaken in
an automatic shaker (Shaker Pro Vicking) during 15 min at
150 rpm and the resulting extracts were filtered through a
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0.45-um nylon syringe filters (Microclar Argentina). The
obtained extracts were used to prepare original samples (non-
adulterated samples with Sudan dyes) and adulterated samples
with Sudan I and blends of Sudan [ + 1V dyes (50 % each dye).
For original samples, an aliquot of each extract (300 uL of
paprika and 700 uL of aji molido) was taken and diluted to
10 mL in volumetric flasks (ethanol 96 % v/v), and for
adulterated samples an appropriate amount of Sudan dye was
also added to get a final concentration of 1, 2.5, and 5 ppm
(mg LY. The stock solution of Sudan I was prepared in
ethanol and the Sudan IV stock solution was initially dissolved
in a small fraction of chloroform and then diluted with ethanol.

UV-Visible Analysis and Software

A UV-visible spectrophotometer (Agilent 8453, USA)
equipped with a diode array detector was used to acquire
spectra. UV-visible spectrum scanning was carried out in the
wavelength range of 260—600 nm (each nm) which represents
341 variables.

Multivariate analysis was performed under Matlab soft-
ware (Version 7.0, The Math Works Inc., Natick, USA) and
PLS Toolbox 3.5 (Eigenvector Research Incorporated).

Multivariate Analysis
Principal Components Analysis

PCA is an unsupervised analysis that was applied as a first
step for detecting trends and patterns in the measured data.
PCA projects high-dimensional data onto lower-dimensional
space, so all redundant information is summarized which
simplifies the graphical interpretation of the data.

K-Nearest Neighbors

KNN is a simple distance-based classification technique. In
this method, the training set is directly used to classify new
samples, so an unknown sample is classified according to the
majority of the class membership of its & nearest neighbors in
the training set. The method works as follow: (a) calculate
distances between an unknown (test) object (1) and all the
objects in the training set; (b) select from the training set k&
objects most similar to object u, according to the calculated
distances (k is usually an odd number), and (c) classify object
u with the group to which a majority of k objects belongs.
Usually Euclidean distance is employed but other distances
can also be used (Mahalanobis, weighted Euclidean, and
Manhattan). Neighbors number is selected by the optimization
through the lowest prediction error or by a cross-validation
approach. For many applications this technique proved to be
much better than others, even more complex chemometric
approaches (Oliveri et al. 2009).

Partial Least Squares-Discriminant Analysis

Although partial least squares was developed as a regression
technique, it can also be used for classification in the form of
PLS-DA. The idea is to find compressed variables (latent
variables) that sequentially describe the most variance in both
the independent variables X (spectra) and the dependent
variables Y (classes). Hence, the X and Y data are simulta-
neously modeled to find the latent variables in X that will
predict latent variables in Y, like a classical PLS model. In
PLS-DA, a model is developed for each class. Prediction
values for each class range from 0 (not belonging) to 1
(belonging), so it is necessary to establish a threshold be-
tween these two values. This threshold is calculated by as-
suming that the class predicted values follow a Gaussian
distribution, which is estimated by using the mean and stan-
dard deviation of the predicted values for each class. The
number of PLS-DA latent variables (LVs) can be selected by
means of the root mean squared error of cross-validation
(RMSECV) (Bakeev 2010).

Dataset

Data set was divided into training set (samples used to build
the classification rule) and test set (samples used to test the
ability of the classifier). Training and test set were obtained
by random selection. Classes were defined as follows: class 1
correspond to original (unadulterated) samples, class 2 corre-
spond to adulterated samples with Sudan I, and class 3
correspond to adulterated samples with blends of Sudan I
and IV (50 % each dye). Adulterated classes contain the three
studied concentration levels (1, 2.5, and 5 ppm). Test set was
form by selecting 12 out of 43 samples for class 1 and 36 out
of 129 for both adulterated classes (12 from each concentra-
tion level), which represent a 28 % of the total samples
number. Finally, the data was mean-centered before the mul-
tivariate analysis.

Results and Discussion

The studied concentration levels (1, 2.5, and 5 ppm) were
selected lower than previous studies (Di Anibal et al. 2009),
taking into account that the concentrations used to adulterate
culinary spices are in the studied range (ASTA 2005; Mishra
et al. 2007).

Spectra Characterization
The spectra of Sudan I, Sudan IV standards, and Sudan [ + IV
blend at 5 ppm (mg L") are shown in Fig. 2a. Both Sudan

dyes have different spectral shape although they are partially
overlapped. The maximum absorbance of Sudan I is
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Fig. 2 a UV-visible spectra of Sudan I (solid line), Sudan IV (dotted
line), and Sudan I + IV blend (dashed line); b spectra of mild paprika
(solid line), hot paprika (dashed line), smoked paprika (dotted line), and
aji molido (dashed-dotted line) samples

positioned at 481 nm whereas for Sudan IV is at 513 nm, and
they also have other maximums in the UV zone. Finally,
considering the spectrum of a mixture of the two dyes, it can
be seen the additive contribution of Sudan I and IV dyes.

Figure 2b shows the spectra of four random unadulterated
spices (mild paprika, hot paprika, smoked paprika, and aji
molido). Tt can be observed that within each group of
paprika samples (mild, hot, and smoked) the spectra are
slight different. Instead, aji molido samples present similar
spectral shape and lower absorbance values than paprika
samples.

Figure 3 shows the spectra of a paprika sample with Sudan
I 'and Sudan I + IV at the three concentration levels. It can be
seen that both adulterated samples follow the same spectral
trend as standards Sudan dyes and they shift slightly towards a
longer wavelength respect to the unadulterated one.
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Fig. 3 a UV-visible spectra of adulterated sample with Sudan I
(dashed line), Sudan 1 + IV blend (dotted line) at the three studied
concentration levels (1, 2.5, and 5 ppm), and original sample (solid line)

Multivariate Analysis: PCA

As it was previously mentioned, PCA was applied before
classification techniques in order to see the three classes
distribution in the multivariate space defined by few PCs.
Figure 4 shows PCA scores plot for the first three principal
components, which represent 98.93 % of the original infor-
mation (PC1=79.65 %; PC2=16.71 %, and PC3=2.57 %).
It can be seen that along PCI1 the original samples
(unadulterated) can be generally differentiated from adulterat-
ed samples (with Sudan I or Sudan I + IV dyes). The original
samples have the most PC1 negative scores values while the
adulterated ones have both, negative and positive scores
values. On the other hand, PC3 allows to distinguish between
adulterated samples with Sudan I (negative scores values) and
adulterated samples with Sudan I+ IV (positive scores values)
which means that the information provided by this component

o
o 3y

(=]
W

Scores,on PC 3 (2.57%)

Fig. 4 PCA scores plot of original samples (triangles), samples spiked
with Sudan I dye (circles), and Sudan I + IV dyes (squares)
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Fig. 5 PCA loadings plot for PC1, PC2, and PC3

is related with the adulterant. Finally, most samples containing
Sudan I dye have PC2 negative scores values.

In addition, PCA loadings (Fig. 5) and the correlation
coefficients between the spectra of Sudan I, Sudan IV, the
blend of Sudan I + IV, and unadulterated samples (mean
spectrum) were examined. PC1 loading has a similar shape
to Sudan I dye spectrum with the maximum correlation coef-
ficient value. On the other hand, PC3 is highly correlated to
Sudan IV dye spectrum (highest correlation value). Finally,
the assignation for PC2 is more dubious as the loading of this
component resemble in its negative contribution to the un-
adulterated samples although the maximum correlation values
are for both Sudan IV and the blend. These results suggest that
sometimes it is difficult to assign each PC to each pure
component, mostly taking into account the complex food
matrices we are working with.
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Fig. 6 Q residuals and T Hotelling statistics from PLS-DA model.
Original samples (triangles), samples with Sudan I dye (circles), and
with Sudan I + IV dyes (squares)

Table 1 RMSECYV values for PLS-DA and prediction rates for KNN

RMSECYV in PLS-DA Prediction rate in KNN

Lvs C1 C2 C3 K= Cl C2 Cc3

1 0.14630  0.56920  0.38710 1 833 917 86.1
2 0.14630  0.23550  0.18130 3 833 833 86.1
3 0.13500  0.10030  0.02809 5 75 833  80.6
4 0.01667 0.01557 0.02671 7 75 86.1 75

5 0.05621  0.02273  0.03933 9 66.7 86.1 722
6 0.11500  0.00560  0.03790 11 66.7 917 722

Final selected values are depicted in bold
Classification Techniques

In order to discuss the classification results, the following null
hypothesis was considered: “Sample is not adulterated with
Sudan dyes”. Therefore, two types of errors can be obtained:
false positives and false negatives. In this context the implication
of each error has different impact. The most serious risk for
consumer health is associated with false negatives results be-
cause adulterated samples could be considered safe for con-
sumption. Otherwise, false positives results have lesser impact
because they only represent an economical risk: unadulterated
samples are considered as adulterated samples. As consequence,
these samples must be unnecessary withdrawn from sell points
and submitted to a confirmatory analysis.

Also, there are two parameters for evaluating the classifi-
cation model quality: sensitivity and specificity. Sensitivity is
defined as the proportion of samples belonging to a class that
were correctly identified by the model while specificity is the
proportion of samples not belonging to a class which were
identified as being foreign by the model.

During the model development, it is important to detect if
there are samples with extreme behavior which could worsen
the classification performance (outliers). Outliers can be de-
tected by inspection of O residuals and Hotelling 772 values
obtained during PLS-DA model construction (Bakeev 2010).
O values represent a measure of variance which is not cap-
tured by the model (fit of samples outside the model) while 7
values reflects the variance captured by the model (fit of
samples within the model). Figure 6 shows Q residuals values
plotted against 7% values with limits defined at a 95 % level of

Table 2 PLS-DA and KNN classification results

% Model ability % Prediction ability

PLS-DA PLS-DA KNN
Class 1 94 92 83
Class 2 98 100 92
Class 3 96 89 86
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Table 3 Class assignation, sen-

sitivity, and specificity results for Sample class  No. of samples  Classified in Sensitivity ~ Specificity
PLS-DA and KNN
Cl C2 C3 NAC % %
PLS-DA  Model Cl 31 29 0 0 2 94 100
C2 91 0 89 0 2 98 100
C3 92 0 0 88 4 96 100
Prediction C'1 12 12 1 0 0 92 100
C2 36 0 36 0 0 100 96
C3 36 0 1 32 3 89 100
KNN Prediction C'1 12 10 1 1 0 83 100
C2 36 0 33 3 0 92 88
NAC not in any class, C/ class 1, C3 36 0 5 31 0 86 92

C2 class 2, C3 class 3

confidence for the training data. It can be seen that three
samples fall outside the limits defined by O and 7 values
(samples 34, 36, and 155), so these samples were considered
as outliers and a new classification models was built.

Regarding the classification parameters, the optimal num-
ber of PLS-DA latent variables was chosen using leave-one-
out cross-validation to minimize the RMSECYV for each class,
and the final value is selected considering the optimal value
for each class (four LVs). Otherwise, in KNN the number of
neighbors (k) was chosen according to the minimum percent-
age prediction error (k=1; Table 1).

Table 2 shows the classification performance for PLS-DA
and KNN. It can be observed that global classification accu-
racy was satisfactory: for PLS-DA model between 94 and
98 %, PLS-DA prediction step between 89 and 100 %, and
the prediction rate for KNN was between 83 and 92 %.

PLS-DA gives three types of results: samples wrongly
assigned, samples assigned to more than one class and samples
not assigned to any class. Otherwise, KNN always assigns
samples to a certain class. A deep look at the classification results
can be seen in Table 3. It has to be mentioned that no false
negatives were obtained with both classification techniques. This
has a great significance from the point of view of its implication,
as the risk involved when adulterated samples are being con-
sumed as unadulterated is highly minimized. Otherwise, few
false positives were obtained. This situation corresponds to
unadulterated samples (class 1) that were wrongly classified as
adulterated or samples classified in more than one class: its real
class (class 1) and another class (2 or 3). Such types of errors
involve an economical risk, as these samples must be immedi-
ately withdrawn until its real state is confirmed with other
technique such as HPLC. Finally, there are some misclassifica-
tions between adulterated classes, where samples are either
assigned to another adulterated class or not assigned to any class.

Concerning the studied concentrations, PLS-DA misclassified
samples belong to the lowest level (1 ppm) and KNN gives
more misclassifications at 1 ppm with only one sample that
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belongs to 2.5 ppm. Therefore, adulterated samples at 5 and
2.5 ppm and most samples at 1 ppm are correctly classified
with both classification techniques. It should be highlighted
that PLS-DA misclassified samples are coincident with KNN
samples, so although PLS-DA and KNN are based on a
different fundament both techniques give concordant results.
Regarding sensitivity (Table 3), quite satisfactory results were
obtained with PLS-DA: between 93 and 99 % considering the
three classes. In this case, few samples that do not belong to any
class influence these percentages. For KNN, sensitivity percent-
ages are slightly lower: between 83 and 92 %, where samples
wrongly assigned to another class are responsible of such values.
In view of these results, PLS-DA outcomes are more advanta-
geous because wrongly class assignations are minimized. Fur-
thermore, excellent specificity values were obtained for class 1
(unadulterated samples) with both PLS-DA and KNN, as all
adulterated samples were correctly rejected (100 % specificity,
no false negative results). For adulterated samples with Sudan I
or blends of Sudan I+ 1V, respectively (classes 2 and 3), PLS-DA
gave almost 100 % of specificity, which means that false posi-
tives (related with unadulterated samples) and samples adulterat-
ed with either individual or blend of dyes are quite likely to be
excluded from the corresponding class. In case of KNN, wrong
assignations between adulterated classes (classes 2 and 3) de-
crease the specificity, although it is still considered satisfactory.

Conclusions

The use of UV-visible spectroscopy and multivariate analysis
represent a fast, simple, and affordable screening tool for the
identification of Sudan I and blends of Sudan I + IV dyes in
three varieties of paprika and aji molido samples at three
concentration levels. This methodology can be implemented
as an alternative to the classical methods for determining
Sudan dyes in foods. Adulterated samples with single or
blended dyes were detected in concentrations that are within
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the usual range to obtain commercial benefits. The capability
of detecting mixtures of Sudan dyes is a very important
advantage because each Sudan dye generates different haz-
ardous metabolites in human body so their toxicity may be
enhanced by the simultaneous presence of such dyes.

Two classification techniques were used: PLS-DA and
KNN. Considering the null hypothesis, no false negatives
were obtained with both techniques which is quite satisfactory
because this type of result implies a risk for consumer health.
The sensitivity and specificity of the models were satisfactory
but PLS-DA gives slightly better results than KNN.

This work opens the possibility for implementing portable
UV-visible spectrometers that makes accessible the analysis to
be used in situ. This methodology would be very useful when
arapid response is required like situations commonly found in
international commerce, where the screening of food products
is mandatory to evaluate their safety or their accomplishment
according to a specific legislation.

Acknowledgments Financial support from the Consejo Nacional de
Investigaciones Cientificas y Tecnologicas (CONICET), the SeCyT-
Universidad Nacional del Sur, and the FIA Laboratory of the Analytical
Department (INQUISUR-UNS) are gratefully acknowledged.

Conflict of Interest Carolina Di Anibal declares that she has no con-
flict of interest. Maria Susana Rodriguez declares that she has no conflict
of'interest. Liliana Albertengo declares that she has no conflict of interest.
This article does not contain any studies with human or animal subjects.

References

Almeida MR, Oliveira KS, Stephani R, de Oliveira FLC (2011) J Raman
Spectrosc 42:1548-1552

Anfossi L, Baggiani C, Giovannoli C, Giraudi G (2009) Food Addit
Contam Part A 26:800-807

ASTA (2005) American spice Trade Association. <http://www.astaspice.
org/files/public/SudanWhitePaper.pdf>

Bakeev KA (2010) Process analytical technology, 2nd edn. Wiley,
Chichester

Chen L, Xue X, Ye Z, Zhou J, Chen F, Zhao J (2011) Food Chem 128:
1110-1114

Cheuung W, Shadi IT, Xu Y, Goodacre R (2010) J Phys Chem C 114:
7285-7290

Commission Decision 669/2009/EC of July 2009 (2009) Off J Eur
Commun L194:11-21

Della Donna L, Ronci M, Sacchetta P, Di Ilio C, Biolatti B, Federici G,
Nebbia C, Urbani A (2009) Biotechnol J 4:1596-1609

Di Anibal CV, Odena M, Ruisanchez I, Callao MP (2009) Talanta 79:
887-892

Di Anibal CV, Ruisanchez I, Callao MP (2011) Food Chem 12:1139-1145

Di Anibal CV, Marsal LF, Callao MP, Ruisanchez I (2012) Spectrochim
Acta Part A 87:135-141

Fonovich T (2013) Drug Chem Toxicol 36:343-352

Hou X, Li Y, Wu G, Wang L, Hong M, Wu Y (2010) J Chromatogr Sci
48:22-25

IARC (International Agency for Research on Cancer) (1975) Lyon. IARC
monographs on the evaluation of the carcinogenic risk of chemicals
to man: some aromatic azo compounds 8:224-231

Johnson GE, Quick EL, Parry EM, Parr JM (2010) Mutagenesis 25:327-333

LiuJ, Zhang H, Zhang D, Gao F, Wang J (2012) Anal Biochem 423:246-252

Meza-Marquez OG, Gallardo-Velazquez T, Osorio-Revilla G (2010)
Meat Sci 86:511-519

Mishra KK, Dixit S, Purshottam SK, Pandey RC, Das M, Khanna SK
(2007) Int J Food Sci Technol 42:1363—-1366

Oliveri P, Baldo MA, Daniele S, Forina M (2009) Anal Bioanal Chem
395:1135-1143

Qiao J, Yan H, Wang H, Wu Y, Pan P, Geng Y (2011) Chromatographia
73:227-233

RASFF (2005) Rapid Alert System for Food and Feed, Annual Report.
http://ec.europa.eu/food/food/rapidalert/report2005 en.pdf.
Accessed 03.13

RASFF (2006) Rapid Alert System for Food and Feed, Annual Report.
http://ec.europa.eu/food/food/rapidalert/report2006 en.pdf.
Accessed 03.13

RASFF (2008) Rapid Alert System for Food and Feed, Annual Report.
http://ec.europa.eu/food/food/rapidalert/report2008 en.pdf.
Accessed 03.13

Rebane R, Leito I, Yurchenko S, Herodes K (2010) J Chromatogr A
1217:2747-2757

Stivorova M, Martinek V, Semanska M, Hodek P, Dracinsky M, Cvacka
J, Schmeiser HH, Frei E (2009) Interdisc Toxicol 2:195-200

Tripathi M, Khanna SK, Das M (2007) Food Control 18:211-219

Xiao F, Zhang N, Gu H, Qian M, Bai J, Zhang W, Jin L (2011) Talanta 84:
204-211

Xu H, Heinze TM, Chen S, Cerniglia CE, Chen H (2007) Appl Environ
Microbiol 73:7759-7762

Xu H, Heinze TM, Paine DD, Cerniglia CE, Chen H (2010) Anaerobe 16:
114-119

Yan H, Qiao J, Pei Y, Long T, Ding W, Xie K (2012) Food Chem 132:
649-654

Yuan J, Liao L, Lin Y, Deng C, He B (2008) Anal Chim Acta 607:160-167

Yuan W, Xiang B, Yu L, Xu J (2011) Food Anal Methods 4:550-558

@ Springer


http://www.astaspice.org/files/public/SudanWhitePaper.pdf
http://www.astaspice.org/files/public/SudanWhitePaper.pdf
http://ec.europa.eu/food/food/rapidalert/report2005_en.pdf
http://ec.europa.eu/food/food/rapidalert/report2006_en.pdf
http://ec.europa.eu/food/food/rapidalert/report2008_en.pdf

	UV-Visible...
	Abstract
	Introduction
	Materials and Methods
	Reagents and Samples
	Sample Preparation
	UV-Visible Analysis and Software
	Multivariate Analysis
	Principal Components Analysis
	K-Nearest Neighbors
	Partial Least Squares-Discriminant Analysis

	Dataset

	Results and Discussion
	Spectra Characterization
	Multivariate Analysis: PCA
	Classification Techniques

	Conclusions
	References


