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Abstract

An approach for solving the hollow fiber bioreactor design equations is presented. The original set of differential mass balance equations
is cast into an equivalent system of integral equations by generating the appropriate Green’s functions. Mathematical features common
to all hollow fiber bioreactors (HFBRs) operating with laminar flow are imbedded in the corresponding Green’s functions on the lumen
side, and thus separated from specific aspects arising from mass transport through the permeable wall. On the spongy matrix side, the
appropriate Green’s functions are expressed in terms of the mass transfer properties without involving any chemical kinetic parameters;
this avoids repetitive computational effort when treating different reaction kinetics.

The derived integral equations are numerically solved on an appropriately transformed coordinate system. The numerical method is well
suited for problems where steep gradients of concentration cause an inaccurate numerical integration and low rates of convergence if the
equations are solved with a uniform rectangular grid on the original coordinate system. The effectiveness of the proposed approach for
the simulation of HFBRs with power-law, Michaelis–Menten and zero-order kinetics is demonstrated. The method is readily extendible to
treat problems with chemical kinetics described by any arbitrary functional form. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Advances in the integration of permeable and selective
membranes with biological catalysts such as live cells and
enzymes provide the basis to develop competitive biopro-
cessing schemes. Several configurations having a bundle
of hollow fibers as core of the membrane device are used
in diverse applications including reverse osmosis, ultrafil-
tration, dialysis, and biocatalyst immobilization. After the
successful use of hollow fiber bioreactors (HFBRs) for the
cultivation of mammalian cells [1], HFBRs have found ap-
plications in enzymatic reactions, microbial fermentations,
animal cell culture and plant cell culture [2–4].

Consequently, the design and simulation of HFBRs has
been dealt with in different ways and with different levels of
simplification [5]. In this regard, several papers have been
written among which we can cite some of the best known
fundamental contributions from the numerical solution
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viewpoint. Exact analytic expressions for the substrate con-
centration profile throughout an HFBR have been deduced
for a first-order reaction rate using an integral formulation
and solving Michaelis–Menten kinetics by numerical finite
difference [6]. Analytic solutions have been developed in
terms of Kummer functions with constants depending on
the value of the Sherwood number at the permeable wall
[7]. Models utilising effectiveness factors for both first- and
zero-order kinetics have been developed [8]. A mathemat-
ical analysis of oxygen depletion has been performed in
order to develop effectiveness factor plots to aid in the
scaling of HFBRs [9]. A non-linear mixed-type problem
similar to that described for HFBRs has been solved by
a non-iterative finite difference method [10,11] or by an
iterative fourth-order Runge–Kutta–Gill algorithm [12]. A
procedure based on a Crank–Nicolson discretization has
been developed to solve a generalized mathematical model
for describing annular reactors and HFBRs as particular
applications [13]. Methodologies for simplifying the solu-
tion of HFBR design equations have been described for the
first-order and zero-order limits of the Michaelis–Menten
kinetics [14,15]. Numerical solutions are required to
solve zero-order kinetics with substrate exhaustion, but
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Nomenclature

a inner radius of the membrane (cm)
An normalization constant for thenth

eigenfunction (dimensionless)
b outer radius of the membrane (cm)
c concentration (mol cm−3)
c array of concentrations in the spongy matrix

region (mol cm−3)
C c/c0, concentration (dimensionless)
C array of concentrations in the spongy matrix

region (dimensionless)
Cb averaged bulk concentrations (dimensionless)
d outer radius of the spongy matrix wall (cm)
D diffusion coefficient of substrate (cm2 s−1)
G Green’s function
Ge a/L, geometrical parameter (dimensionless)
H −DIIKa/DI ln(a/b), membrane mass transfer

coefficient (dimensionless)
J Jacobian
K Kb/Ka , lumen/spongy matrix partition

coefficient (dimensionless)
Ka lumen/membrane partition coefficient

(dimensionless)
Kb membrane/spongy matrix partition coefficient

(dimensionless)
KM Michaelis–Menten constant (mol cm−3)
L hollow fiber length (cm)
Le entrance length (cm)
M confluent hypergeometric function
n reaction order
N total number of species in the system
Pe Vmx a/D

I , Peclet number (dimensionless)
r radial coordinate (cm)
R reaction rate (s−1)
Re 2aVmxρ/µ, Reynolds number (dimensionless)
VM maximum reaction rate (s−1)
Vmx maximum velocity (cm s−1)
z axial coordinate (cm)

Greek letters
αζ , αϕ parameters in Eqs. (70) and (71)
β d/b, parameter (dimensionless)
δ Dirac delta function
ζ dimensionless transformed axial coordinate
ϕ dimensionless transformed radial coordinate
Θ step function
λn nth eigenvalue defined by Eq. (24)
µ viscosity (P)
ν stoichiometric coefficient
ξ z/L (dimensionless axial coordinate)
ρ r/a (zone I) orr/b (zone III)

(dimensionless radial coordinate);
density (g cm−3)

φn nth eigenfunction defined by Eq. (23)
Φ Thiele modulus,(b2VM(c

0)n−1/DIII )1/2

for power-law kinetics,(b2VM/KM DIII )1/2

for Michaelis–Menten kinetics, and
(b2VM/c

0DIII )1/2 for zero-order kinetics
Ω b2RIII /c0DIII (dimensionless reaction rate)

Superscripts
I, II, III lumen, fiber, and spongy matrix regions,

respectively
0 at the reactor inlet

Subscripts
c at critical boundary
i denotes componenti
n nth value

analytical solutions in terms of Kummer functions are
possible for either first-order or zero-order with substrate
remaining constant everywhere in the HFBR. An extension
to treat first-order kinetics and power-law-type fluids has
been presented [16]. A method based on the shooting tech-
nique has been proposed to avoid problems accompanying
the application of the orthogonal collocation on finite el-
ements [17]. Finite difference and orthogonal collocation
methods have been used to solve dynamic models of HF-
BRs [18–21]. Also, the mathematical modelling of HFBRs
has been reviewed with illustrative computational model
calculations [5].

This work deals with the solution of the HFBR design
equations for the case in which the kinetics may be de-
scribed by any arbitrary function. The original set of differ-
ential balance equations with the corresponding initial and
boundary conditions is turned into an equivalent system
of integral equations that represents the formal solution to
the original differential problem. On the lumen side, the
species mass balance equation is expressed in terms of
eigenfunctions whose eigenvalues do not depend on the
value of the Sherwood number at the permeable wall. This
is particularly advantageous since in contrast with other re-
sults once the eigenvalues are calculated, they become a set
of values which is valid for all cases. On the spongy matrix
side, the governing differential equation for the substrate is
cast in terms of an integral equation by the definition of a
Green’s function which depends neither on the functional
form of the kinetic equation nor on the value of the kinetic
parameters. Thus, this generalized formulation is valid for
any arbitrary kinetic equation, including zero-order reaction
rate with substrate depleted before reaching the outer annu-
lar wall. For the last case, an unmatched expression upon
the knowledge of the critical radius at any axial position is
obtained in terms of characteristic parameters of the HFBR.

Efficient numerical schemes of solution are designed by
means of a simple iterative process along the permeable wall
and through the spongy matrix, without having to resort to
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the complete concentration profiles in the lumen. Since sig-
nificant concentration gradients may truly exist in HFBRs
[22], it is showed that the integral equations can be solved
very efficiently using a continuous coordinate transformation
from a variable grid, which has a severe stretching in regions
with steep changes of concentration, to another fixed one.
Consequently, an improved accuracy of the solution with-
out wasting computer memory space and running time is
obtained. The computations are quite simple and faster than
the one corresponding to the original integral equations. The
flexibility of the proposed iterative scheme is demonstrated
through its application to several types of kinetic equations.
Comparative convergence maps are presented in terms of
the model parameters.

For zero-order kinetics, maps to know a priori if the sub-
strate concentration drops to zero inside the spongy matrix
are given in terms of the parameters of the HFBR model.
The one-dimensional free-boundary problem which arises if
the substrate becomes depleted at the so-called critical ra-
dius is efficiently solved using any standard method to solve
zeros of non-linear equations.

2. Assumptions and mathematical model

A schematic representation of a conventional HFBR is
shown in Fig. 1, where a cross-sectional view of an individ-
ual hollow fiber in the HFBR shows three regions. Region I
is the lumen (inner tube), region II is the permeable mem-
brane (wall of the inner tube), and region III is the spongy
matrix (annular region) inside which an active biocatalyst
in the form of either enzymes or live cells is immobilized.
The substrate solution is fed through the lumen and diffuses
inside out through the permeable membrane to react by cat-
alytic effect of active enzymes or live cells supported on the
spongy matrix. The product diffuses back to the lumen and
flows downstream.

The physical model for steady-state and isothermal regime
includes the following simplifying assumptions: For region

Fig. 1. Schematic diagram of the hollow fiber bioreactor with laminar velocity profile in the lumen region: (a) axial cross-section, and (b) radial
cross-section.

I: (i) laminar flow with parabolic and totally developed ve-
locity profile, (ii) negligible axial diffusion with respect to
the convective flux, (iii) Fickian diffusion in the radial direc-
tion, (iv) absence of homogeneous reaction rate in the bulk
of the lumen, (v) constant physical properties. For region
II: (vi) inert membrane, (vii) axial diffusion and convec-
tive flux negligible with respect to the radial diffusion, (viii)
mass transfer and partition coefficients are constants. For
region III: (ix) axial diffusion and convective transport are
neglected in all regions, and (x) kinetics model is described
by any arbitrary function of the reactant concentrations.

The governing mass balance differential equations for the
ith species in each of the three regions are:

DI
i

1

r

∂

∂r

[
r
∂

∂r
cI
i (r, z)

]
− 2Vmx

[
1 − r2

a2

]
∂

∂z
cI
i (r, z)

= 0, 0 < r < a, 0 < z < L (1)

DII
i

1

r

∂

∂r

[
r
∂

∂r
cII
i (r, z)

]
= 0, a < r < b, 0 < z < L (2)
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r

∂
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[
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∂
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cIII
i (r, z)

]
− νiR

III (c(r, z))

= 0, b < r < d, 0 < z < L (3)

with the boundary conditions:
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i (b, z)

cII
i (b, z)

(6)

DIII
i

∂

∂r
cIII
i (d, z) = 0 if cIII

i (d, z) ≥ 0 (7a)
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DIII
i

∂

∂r
cIII
i (rc, z) = 0 if cIII

i (rc, z) = 0 for b ≤ rc < d

(7b)

and with the initial conditions:

cI
i (r,0) = cI0

i (r) for i = reactant (8a)

cI
i (r,0) = 0 for i �= reactant (8b)

By using the following definitions,

Ci = ci

c0
i

(9)

ρ =




r

a
, zone I

r

b
, zone III

(10)

ξ = z

L
(11)

Ge= a

L
(12)

Pei = Vmx a

DI
i

(13)

Hi = −DII
i

DI
i

Ka
i

ln(a/b)
(14)

and taking advantage of the special definition of the dimen-
sionless radial coordinate, the mass balance equation in the
membrane can be written after analytical integration as a
modified boundary condition atρ = 1. This boundary con-
dition lumps the mass balance in the membrane and couples
directly the dimensionless mass balance equations in the lu-
men and spongy matrix regions [10,14]. This is very useful
for further numerical integration purposes because the num-
ber of differential equations to be solved reduces from three
to two in the domain 0≤ ρ ≤ β and 0≤ ξ ≤ 1, as follows:

1

ρ

∂

∂ρ

[
ρ
∂

∂ρ
CI
i (ρ, ξ)

]
− 2Ge Pei [1 − ρ2]

∂

∂ξ
CI
i (ρ, ξ)

= 0, 0 < ρ < 1, 0 < ξ < 1 (15)

1

ρ

∂

∂ρ

[
ρ
∂

∂ρ
CIII
i (ρ, ξ)

]
− νiΩ

III (C(ρ, ξ))

= 0, 1 < ρ < β, 0 < ξ < 1 (16)

with boundary conditions given by

∂

∂ρ
CI
i (ρ, ξ)

∣∣∣∣
ρ=0

= 0 (17)

∂

∂ρ
CI
i (ρ, ξ)

∣∣∣∣
ρ=1

− Hi [C
I
i (1, ξ) − KiC

III
i (1, ξ)] = 0 (18)

∂

∂ρ
CIII
i (ρ, ξ)

∣∣∣∣
ρ=β

= 0 if CIII
i (β, ξ) ≥ 0 (19a)

∂

∂ρ
CIII
i (ρ, ξ)

∣∣∣∣
ρ=ρc

= 0

if CIII
i (ρc, ξ) = 0 for 1 ≤ ρc < β (19b)

and with the following initial condition:

CI
i (ρ,0) = CI0

i (ρ) for i = reactant (20a)

CI
i (ρ,0) = 0 for i �= reactant (20b)

Eq. (18) lumps the mass balance in the membrane.
Eqs. (19a) and (19b) account for either the fixed bound-
ary value problem or the free boundary value problem
arising for certain kinetic models. As a complete deple-
tion of substrate cannot occur for all non zero-order re-
action rates, then Eq. (19a) is always fulfilled for non
zero-order kinetic models [13,15]. However, two situa-
tions can be identified for the zero-order reaction rate:
(a) the substrate concentration does not become zero at
any point within the spongy matrix, thus Eq. (19a) is
ultimately fulfilled; and (b) the substrate concentration
drops to zero at some pointρc within the spongy ma-
trix, thus Eq. (19b) must be satisfied instead of Eq. (19a).
The boundary value problem with Eq. (19b) is known as
a free boundary problem because the location at which
the substrate becomes depleted,ρc, is not previously
known.

All these boundary conditions are taken into consid-
eration because there is no restriction on the functional
form of the dimensionless kinetic equation to be spec-
ified for each particular application. The most general
case of non-linear kinetics model will be mathematically
treated by settingΩ III (C(ρ, ξ)) as any arbitrary function
of the species concentrations,C(CIII

1 , . . . , CIII
i , . . . , CIII

N ).
As a particular case, the solution for zero-order kinetics
will be derived from the general solution to be obtained
further on.

For simplicity, from now on the subindexi will be dropped
from the dimensionless parameters and concentration of the
ith species.

3. Design equations in terms of integral equations

3.1. Lumen region

To transform differential mass balance equations, like to
Eq. (15), into their equivalent integral equations we have suc-
cessfully applied an approach which consists of four steps:
(1) define an appropriate differential problem for Green’s
function which leads to a suitable form of the formal inte-
gral solution, (2) identify Green’s function by comparing the
expression of the formal solution with that corresponding to
its generalized Fourier expansion, (3) solve the associated
homogeneous eigenvalue problem, and finally, (4) overcome
the difficulty introduced by the fact that any function with
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simple jump discontinuities cannot be uniformly approxi-
mated by a Fourier series in an interval close to the discon-
tinuity (problem known as Gibbs phenomenon), as it is the
case with the non-homogeneous boundary condition given
by Eq. (18). This approach was used to solve the design
equations for mass transfer in dialyzers [23], in packed-bed
with adsorption at the wall and bulk reaction [24], in tubu-
lar reactors with heterogeneous reactions [25–28], and for
reactive systems involving Couette flows [29,30].

Because Eqs. (15), (17) and (18) are quite similar to
those treated in previous contributions, we need not present
details of the transformation to the corresponding integral
equation and shall write only the resulting final expression
[23,25,26,28,31]:

CI(ρ, ξ) =
[ ∞∑

1

φn(1)φn(ρ)

A2
nλ

2
n

− (ρ2 − 1

4
ρ4 − 7

24
)

]

×H [CI(1, ξ) − KCIII (1, ξ)]

+
∫ 1

0
dρ̄ ρ̄(1 − ρ̄2)GI(ρ, ξ/ρ̄,0)CI(ρ̄,0)

− 1

2Ge Pe

∫ ξ

0
dξ̄ GI(ρ, ξ/1, ξ̄ )H [CI(1, ξ̄ )

−KCIII (1, ξ̄ )] (21)

On the right-hand side of Eq. (21), the first term accounts
for the non-zero gradients at the permeable wall imposed
by the non-homogeneous boundary condition atρ = 1; the
second term can be identified as the contribution of the inlet
condition, and the last one takes into account the species
mass transfer through the permeable wall [23,25,26].

Green’s function is the following Fourier expansion
[31]:

GI(ρ, ξ/ρ̄, ξ̄ ) =
∞∑
0

A−2
n exp

[
− λ2

n

2Ge Pe
(ξ − ξ̄ )

]

×φn(ρ)φn(ρ̄)Θ(ξ − ξ̄ ) (22)

where φn(ρ) and λn are orthogonal eigenfunctions and
eigenvalues, respectively, given by

φn(ρ) = exp

[
−λnρ

2

2

]
M

(
2 − λn

4
,1, λnρ

2
)

(23)

λn

{[
1 − λn

2

]
M

(
6 − λn

4
,2, λn

)
− M

(
2 − λn

4
,1, λn

)}
= 0 (24)

with A2
n normalization coefficients defined by∫ 1

0
dρ̄ ρ̄(1 − ρ̄2)φn(ρ̄)φm(ρ̄) = A2

nδnm (25)

whereM is Kummer’s function [32] andδnm is the Kro-
necker delta.

To calculate the numerical values ofCI(ρ, ξ) using
Eq. (21), it is necessary to know beforehand the axial
concentration profile at the permeable wall. According
to Eq. (21) for ρ = 1, such concentration profile may
be obtained by a simple iterative scheme at the wall
using:

CI(1, ξ) =
[ ∞∑

1

φn(1)φn(1)

A2
nλ

2
n

− 11

24

]
H [CI(1, ξ)

−KCIII (1, ξ)]

+
∫ 1

0
dρ̄ ρ̄(1 − ρ̄2)GI(1, ξ/ρ̄,0)CI(ρ̄,0)

− 1

2Ge Pe

∫ ξ

0
dξ̄ GI(1, ξ/1, ξ̄ )H [CI(1, ξ̄ )

−KCIII (1, ξ̄ )] (26)

where the values ofCIII (1, ξ) may also be evaluated quickly
by using a simple iterative scheme based on the integral
equation to be immediately deduced for the substrate in the
spongy matrix.

3.2. Spongy matrix region

If the substrate concentration does not become de-
pleted at some intermediate position in the reactor an-
nulus, the handling of spatial discontinuities imposed by
the boundary conditions is straightforward because their
location is fixed (Case (a)). The problem becomes more
difficult to handle if the substrate concentration drops to
zero at some pointρc within the spongy matrix region.
In such case, only the zone 1< ρ < ρc is effective for
reaction and, therefore, Eq. (16) must be solved in the
space domain with substrate concentration greater than
zero (Case (b)). Both cases are treated systematically as
follows.

As a starting point, the governing local equation for the
substrate concentration is advantageously expressed as a lo-
cal field equation which is entirely valid in the whole an-
nular space even if the substrate concentration is not finite
everywhere inside the reactor annulus. For such purpose, an
indicator function is defined as

Θ(ρc − ρ) =
{

1 if ρc ≥ ρ

0 if ρc < ρ
(27)

Θ(ρc −ρ) being a Heaviside step function whose derivative
is given by

d

dρ
Θ(ρc − ρ) = −δ(ρc − ρ) (28)

whereδ(ρc − ρ) is the generalized delta function [33].
Using the indicator function as follows:

Θ(ρc − ρ)

{
1

ρ

∂

∂ρ

[
ρ
∂

∂ρ
CIII (ρ, ξ)

]
− νΩ III (C(ρ, ξ))

}
= 0, 1 < ρ < β, 0 < ξ < 1 (29)
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the governing differential equation for substrate concentra-
tion can be now expressed as

1

ρ

∂

∂ρ

{
ρ
∂

∂ρ
[Θ(ρc − ρ)CIII (ρ, ξ)]

}
−Θ(ρc − ρ)νΩ III (C(ρ, ξ))

= −δ(ρc − ρ)
∂

∂ρ
CIII (ρ, ξ)

− 1

ρ

∂

∂ρ
[ρδ(ρc − ρ)CIII (ρ, ξ)],

1 < ρ < β, 0 < ξ < 1 (30)

which, unlike Eq. (16), is a field equation because it is valid
in all the space domain occupied by the spongy matrix.

Thus, in turn, the boundary conditions given by Eqs. (18)
and (19a) become

∂

∂ρ
[Θ(ρc − ρ)CI(ρ, ξ)]

∣∣∣∣
ρ=1

+ H [Θ(ρc − 1)CI(1, ξ)

−KΘ(ρc − 1)CIII (1, ξ)] = δ(ρc − 1)CIII (1, ξ) (31)

∂

∂ρ
[Θ(ρc − ρ)CIII (ρ, ξ)] − δ(ρc − ρ)CIII (ρ, ξ)

∣∣∣∣
ρ=β orρc

= 0 (32)

One may notice that if there is total depletion of the sub-
strate, local sources arise from the discontinuity atρ = ρc.
Otherwise, Eqs. (30)–(32) become Eqs. (16), (18), (19a) and
(19b). In accordance with the properties of a Dirac function,
these field equations have full significance under an integral
operator.

To obtain the integral formal solution, an integra-
tion of Eq. (30) is performed withρ as weight function
and with a test functionGIII (ρ/ρ̄), still unspecified, as
follows:

∫ β

1
dρ̄ GIII (ρ/ρ̄)

∂

∂ρ̄

{
ρ̄
∂

∂ρ̄
[Θ(ρc − ρ̄)CIII (ρ̄, ξ)]

}

= +ν

∫ β

1
dρ̄ ρ̄GIII (ρ/ρ̄)Θ(ρc − ρ̄)Ω III (C(ρ̄, ξ))

−
∫ β

1
dρ̄ ρ̄GIII (ρ/ρ̄)δ(ρc − ρ̄)

∂

∂ρ̄
CIII (ρ̄, ξ)

−
∫ β

1
dρ̄ GIII (ρ/ρ̄)

∂

∂ρ̄
[ρ̄δ(ρc − ρ̄)CIII (ρ̄, ξ)] (33)

Successive integrations by parts on the left-hand side
of Eq. (33), followed by some rearrangements taking
into account Eqs. (31) and (32), lead to the following
equation:

∫ β

1
dρ̄ Θ(ρc − ρ̄)CIII (ρ̄, ξ)

∂

∂ρ̄

{
ρ̄
∂

∂ρ̄
GIII (ρ/ρ̄)

}

= +ν

∫ β

1
dρ̄ ρ̄GIII (ρ/ρ̄)Θ(ρc − ρ̄)Ω III (C(ρ̄, ξ))

+Θ(ρc − 1)CIII (1)
∂

∂ρ̄
GIII (ρ/ρ̄)

∣∣∣∣
ρ̄=1

−Θ(ρc − 1)GIII (ρ/1)
∂

∂ρ̄
CIII (ρ̄, ξ)

∣∣∣∣
ρ̄=1

−βΘ(ρc − β)CIII (β)
∂

∂ρ̄
GIII (ρ/ρ̄)

∣∣∣∣
ρ̄=β

+Θ(ρc − β)GIII (ρ/β)
∂

∂ρ̄
CIII (ρ̄, ξ)

∣∣∣∣
ρ̄=β

+
∫ β

1
dρ̄ ρ̄CIII (ρ̄)

∂

∂ρ̄
GIII (ρ/ρ̄)δ(ρc − ρ̄)

−
∫ β

1
dρ̄ ρ̄GIII (ρ/ρ̄)

∂

∂ρ̄
CIII (ρ̄, ξ)δ(ρc − ρ̄) (34)

which reduces as follows:

1. For the Case (a) asρc ≥ β, then

Θ(ρc − β) = 1 (35)

and

δ(ρc − ρ̄) = 0 for 1 ≤ ρ̄ ≤ β (36)

thus Eq. (34) becomes

∫ β

1
dρ̄ Θ(ρc − ρ̄)CIII (ρ̄, ξ)

∂

∂ρ̄

{
ρ̄
∂

∂ρ̄
GIII (ρ/ρ̄)

}

= +ν

∫ β

1
dρ̄ ρ̄GIII (ρ/ρ̄)Θ(ρc − ρ̄)Ω III (C(ρ̄, ξ))

+Θ(ρc − 1)CIII (1)
∂

∂ρ̄
GIII (ρ/ρ̄)

∣∣∣∣
ρ̄=1

−Θ(ρc − 1)GIII (ρ/1)
∂

∂ρ̄
CIII (ρ̄, ξ)

∣∣∣∣
ρ̄=1

−βΘ(ρc − β)CIII (β)
∂

∂ρ̄
GIII (ρ/ρ̄)

∣∣∣∣
ρ̄=β

+Θ(ρc − β)GIII (ρ/β)
∂

∂ρ̄
CIII (ρ̄, ξ)

∣∣∣∣
ρ̄=β

(37)

2. For the Case (b) asρc < β, then

Θ(ρc − β) = 0 (38)

and taking into account the following property of the
delta function,∫ β

1
dρ̄ F (ρ̄)δ(ρc − ρ̄) = −F(ρc) (39)
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Eq. (34) becomes∫ β

1
dρ̄ Θ(ρc − ρ̄)CIII (ρ̄, ξ)

∂

∂ρ̄

{
ρ̄
∂

∂ρ̄
GIII (ρ/ρ̄)

}

= +ν

∫ β

1
dρ̄ ρ̄GIII (ρ/ρ̄)Θ(ρc − ρ̄)Ω III (C(ρ̄, ξ))

+Θ(ρc − 1)CIII (1)
∂

∂ρ̄
GIII (ρ/ρ̄)

∣∣∣∣
ρ̄=1

−Θ(ρc − 1)GIII (ρ/1)
∂

∂ρ̄
CIII (ρ̄, ξ)

∣∣∣∣
ρ̄=1

+ ρcC
III (ρc)

∂

∂ρ̄
GIII (ρ/ρ̄)

∣∣∣∣
ρ̄=ρc

− ρcG
III (ρ/ρc)

∂

∂ρ̄
CIII (ρ̄, ξ)

∣∣∣∣
ρ̄=ρc

(40)

Upon examining Eqs. (37) and (40), the convenience of re-
quiring thatGIII (ρ/ρ̄) should be the solution of the problem

∂

∂ρ̄

[
ρ̄
∂

∂ρ̄
GIII (ρ/ρ̄)

]
= −δ(ρ − ρ̄) (41)

∂

∂ρ̄
GIII (ρ/ρ̄)

∣∣∣∣
ρ̄=1

− HKGIII (ρ/1) = 0 (42)

∂

∂ρ̄
GIII (ρ/ρ̄)

∣∣∣∣
ρ̄=β orρc

= 0 (43)

is apparent.
By substitution of Eqs. (41)–(43), together with Eqs. (18),

(19a) and (19b), into Eqs. (37) and (40), we obtain the fol-
lowing formal solutions:

1. For the Case (a)

CIII (ρ, ξ) = GIII (ρ/1)HΘ(β − ρ)CI(1, ξ)

+ν

∫ β

1
dρ̄ ρ̄GIII (ρ/ρ̄)Θ(β − ρ̄)

×Ω III (C(ρ̄, ξ)) (44)

2. For the Case (b)

CIII (ρ, ξ) = GIII (ρ/1)Θ(ρc − 1)HCI(1, ξ)

+ν

∫ β

1
dρ̄ ρ̄GIII (ρ/ρ̄)Θ(ρc − ρ̄)

Ω III (C(ρ̄, ξ)) (45)

thus, the critical concentration of substrate atρ = 1 for
which the concentration just becomes zero atρ = ρc is
given by

CI(1, ξ) = −ν

GIII (ρc/1)H

∫ β

1
dρ̄ ρ̄

GIII (ρc/ρ̄)Θ(ρc − ρ̄)Ω III (C(ρ̄, ξ)) (46)

Therefore, Eqs. (44) and (46) allow us to recast the origi-
nal problem forCIII (ρ, ξ) in the form of integral equations

whose terms account for the mass transfer through the per-
meable wall and the chemical reaction in the spongy matrix
contributions. Although Green’s function has been charac-
terized by Eqs. (41)–(43), it still has to be calculated.

The identification of Green’s functionGIII (ρ/ρ̄) is per-
formed through a procedure quite similar to those which
have been applied in previous works [27,34]. The general
solution of Eq. (41) is

GIII (ρ/ρ̄) = [A1 + B1 ln ρ̄]Θ(ρ − ρ̄)

+[A2 + B2 ln ρ̄]Θ(ρ̄ − ρ) (47)

whereΘ(ρ − ρ̄) andΘ(ρ̄ − ρ) are step functions, andA1,
B1, A2 andB2 are coefficients to be determined from the
following four additional conditions.

A first condition is obtained by integration of Eq. (41)
over theρ − ε to ρ + ε range,

ρ̄
∂

∂ρ̄
GIII (ρ/ρ̄)

∣∣∣∣
ρ̄=ρ+ε

ρ̄=ρ−ε

= −1 (48)

A second condition is provided by the continuity condition
of Green’s function for anȳρ �= ρ,

GIII (ρ/ρ̄ + ε) = GIII (ρ/ρ̄ − ε) (49)

ε being a small positive quantity. The third and fourth con-
ditions are the previously introduced boundary conditions
given by Eqs. (42) and (43).

Applying these four conditions to Eq. (47), the expression
of Green’s functionGIII (ρ/ρ̄) finally becomes

GIII (ρ/ρ̄) =
[

1

HK
+ ln ρ̄

]
Θ(ρ − ρ̄)

+
[

1

HK
+ ln ρ

]
Θ(ρ̄ − ρ) (50)

Substitution of Eq. (50) into Eqs. (44)–(46) defines the inte-
gral equations to describe the substrate concentration in the
spongy matrix region with kinetics equationΩ III (C(ρ, ξ))
to be described by any arbitrary function.

Coupled equations given by Eq. (21) and either Eq. (44) or
Eqs. (45) and (46) are formal integral solutions which fulfil
all conditions stated in the original mass balance of species in
the lumen and spongy matrix regions, respectively. Green’s
functions defined by Eqs. (22) and (50) are fundamental
ingredients for the determination of the limiting form of the
general solution and to devise efficient numerical schemes
of solution.

Fig. 2 shows the response surface described by the kernels
of the aforementioned integral equations forρ̄ = 1 and
three values of the Thiele modulus for zero-order kinetics.
It may be noticed that the response surface drops to zero
as long as the radial position surpasses the critical radius
which is a function of the axial position. It is also evident
that by increasing the Thiele modulus, the region where the
response level is zero also increases.
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Fig. 2. Response surfaces described by the kernel of Eq. (45) for zero-order kinetics: (a)Φ2 = 0.1, (b) Φ2 = 0.3, and (c)
Φ2 = 1.0 (DI = 1.0 × 10−5 cm2 s−1, DII = 4.9 × 10−7 cm2 s−1, Ge Pe = 0.5, Ka = 1, Kb = 1, a = 1.00 × 10−2 cm, b = 1.05 × 10−2 cm,
d = 1.75× 10−2 cm, L = 2 × 101 cm).

4. Simplified models

4.1. Uniform concentration at the inlet of the
lumen region

In case the substrate concentration be assumed uniform
at the lumen inlet, the first integral term on the right-hand
side of Eq. (21) simplifies to 1 [23,31]. Thus Eq. (21)
becomes

CI(ρ, ξ) = 1 +
[ ∞∑

1

φn(1)φn(ρ)

A2
nλ

2
n

− (ρ2 − 1

4
ρ4 − 7

24
)

]

×H [CI(1, ξ) − KCIII (1, ξ)]

− 1

2Ge Pe

∫ ξ

0
dξ̄ GI(ρ, ξ/1, ξ̄ )H [CI(1, ξ̄ )

−KCIII (1, ξ̄ )] (51)

and the averaged bulk concentration defined by

CI
b(ξ) = 4

∫ 1

0
dρ̄ ρ̄(1 − ρ̄2)CI(ρ̄, ξ) (52)

can be conveniently expressed as

CI
b(ξ) = 1 − 2

Ge Pe

∫ ξ

0
dξ̄ H [CI(1, ξ̄ ) − KCIII (1, ξ̄ )] (53)

which has a more convenient format than Eq. (52) because
the numerical value ofCI

b(ξ) may be obtained only from
concentration profiles at the permeable wall, without having
to solve complete concentration profiles in the lumen bulk.

4.2. Zero-order kinetics with substrate concentration
remaining greater than zero throughout the
spongy matrix (Case (a))

The non-dimensional kinetic expression for zero-order re-
action rate is

Ω III (C(ρ, ξ)) = Φ2, 1 < ρ < β, 0 < ξ < 1 (54)

whereΦ2 is the Thiele number defined as the ratio between
the diffusive mass transport and the chemical reaction char-
acteristic times in the spongy matrix region.
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By integration of Eq. (44) with Eqs. (50) and (54), we
obtain the following explicit expression:

CIII (ρ, ξ) = 1

K
CI(1, ξ)

+νΦ2
{

1

2HK
[β2−1]− 1

4
[ρ2−1]+ β2

2
ln ρ

}
(55)

from which theCIII (ρ, ξ) profile can be readily obtained
once theCI(1, ξ) profile is available. From Eq. (55), it imme-
diately follows that the impulsive force for the mass transfer
between the lumen and spongy matrix sides is

H [CI(1, ξ) − KCIII (1, ξ)] = −1
2ν(β

2 − 1)Φ2 (56)

Then, substituting this relationship into Eq. (51), it becomes

CI(ρ, ξ) = 1 + νΦ2β
2 − 1

2

{
ρ2 − 1

4
ρ4 − 7

24
+ 2

Ge Pe
ξ

−
∞∑
1

φn(ρ)φn(1)

A2
nλ

2
n

exp

(
− λ2

n

2Ge Pe
ξ

)}
(57)

from which, forρ = 1, we obtain

CI(1, ξ) = 1 + νΦ2β
2 − 1

2

{
11

24
+ 2

Ge Pe
ξ

−
∞∑
1

φ2
n(1)

A2
nλ

2
n

exp

(
− λ2

n

2Ge Pe
ξ

)}
(58)

The uncoupled Equations (57) and (58) have validity when-
ever the substrate concentration at the permeable wall is
greater than the critical concentration for which the concen-
tration just depletes at the shell wall, that is whenever the
condition

CI(1, ξ) ≥ −νΦ2

×
{

1

2H
[β2 − 1] − K

4
[β2 − 1] + β2K

2
ln β

}
(59)

is satisfied. This result provides a lower bound for the
substrate concentration at the lumen wall above which the
boundary condition given by Eqs. (19a) and (19b) has full
validity.

4.3. Zero-order kinetics with substrate depleted before
reaching the shell wall (Case (b))

So long as the reaction rate is zero if the substrate concen-
tration drops to zero, the non-dimensional kinetic equation
can be formally expressed as

Ω III (C(ρ, ξ)) = Θ(ρc − ρ)Φ2,

1 < ρ < β, 0 < ξ < 1 (60)

Substitution of Eq. (60) into Eq. (45) followed by integration
using Eq. (50) gives

CIII (ρ, ξ) = Θ(ρc − 1)
1

K
CI(1, ξ) + Θ(ρc − ρ)νΦ2

×
{

1

2HK
[ρ2

c − 1] − 1

4
[ρ2 − 1] + ρ2

c

2
ln ρ

}
(61)

from which theCI(1, ξ) profile can be easily obtained in-
voking the substrate depletion just atρ = ρc, thus:

CI(1, ξ)

= −νΦ2K

{
1

2HK
[ρ2

c −1]− 1

4
[ρ2

c −1]+ ρ2
c

2
ln ρc

}
(62)

Substitution of Eq. (62) into Eq. (61) leads to a simple equa-
tion which describes the substrate concentration profile in
the spongy matrix region:

CIII (ρ, ξ) = Θ(ρc − ρ)νΦ2
{

1

4
[ρ2

c − ρ2] + ρ2
c

2
ln

ρ

ρc

}
(63)

whereρc remains still unspecified. Then, from Eqs. (60)–(63)
comes out the need for the knowledge of the critical radius
ρc.

An additional condition to be satisfied byρc comes from
Eq. (55) evaluated atρ = 1:

H [CI(1, ξ) − KCIII (1, ξ)] = −1
2ν(ρ

2
c − 1)Φ2 (64)

Then, substitution of Eq. (64) into Eq. (51), after integration,
yields

CI(ρ, ξ) = 1 + νΦ2ρ
2
c − 1

2

{
ρ2− 1

4
ρ4− 7

24
+ 2

Ge Pe
ξ

−
∞∑
1

φn(ρ)φn(1)

A2
nλ

2
n

exp

(
− λ2

n

2Ge Pe
ξ

)}
(65)

which for ρ = 1 becomes

CI(1, ξ) = 1 + νΦ2ρ
2
c − 1

2

{
11

24
+ 2

Ge Pe
ξ

−
∞∑
1

φ2
n(1)

A2
nλ

2
n

exp

(
− λ2

n

2Ge Pe
ξ

)}
(66)

Finally, by linking Eqs. (62) and (66), it results that

0 = 1 +νΦ2K

{
1

2HK
[ρ2

c − 1] − 1

4
[ρ2

c − 1] + ρ2
c

2
ln ρc

}

+νΦ2ρ
2
c − 1

2

{
11

24
+ 2

Ge Pe
ξ

−
∞∑
1

φ2
n(1)

A2
nλ

2
n

exp

(
− λ2

n

2Ge Pe
ξ

)}
(67)
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from which the critical radius can be numerically obtained
as a function of the axial position.

As a limiting case of this generalized formulation, Eq. (67)
provides an unmatched expression upon the knowledge of
the critical radius as a function of the axial position and the
diffusive-to-convective (Pe) and diffusive-to-reaction (Φ2)
characteristic times ratios, the partitioning parameters (K),
the mixed parameters (H ), and the geometrical ratio (Ge)
of the HFBR. The values of the critical radius can be ob-
tained according to Eq. (67) by application of any standard
method to solve zeros of a system of nonlinear equations.
Then, once the values of the critical radius are known, the
substrate concentration profiles in the active matrix and lu-
men regions can be straightaway obtained from Eqs. (63)
and (65), respectively, without having to resort to an itera-
tive scheme of numerical solution.

5. Numerical solution

5.1. Numerical algorithm

The concentration profiles of substrate at the membrane
wall on the lumen side can be obtained from Eq. (26), and on
the spongy matrix from Eq. (44) evaluated atρ = 1. Then the
proposed iterative procedure to obtain the solution proceeds
as follows: (i) assume values for the concentration profiles
on the boundary atρ = 1; (ii) solve Eq. (26) according to
the sequence:

CI(1, ξ)j+1 = F [CIII (1, ξ), CI(1, ξ)j ] (68)

until the resulting axial profile has the desired accuracy; (iii)
solve Eq. (44) with the result obtained in step (ii) following

Fig. 3. Distribution of the substrate concentration in the lumen and spongy matrix regions: (a) Michaelis–Menten kinetics(Φ2 = 1 andKM = 1 mol cm−3),
and (b) zero-order kinetics(Φ2 = 1) (DI = 1.0× 10−5 cm2 s−1, DII = 1.0× 10−6 cm2 s−1, DIII = 1.0× 10−5 cm2 s−1, Ge Pe= 0.125,Ka = 1, Kb = 1,
a = 1.00× 10−2 cm, b = 1.05× 10−2 cm, d = 1.75× 10−2 cm, L = 2 × 101 cm).

the sequence:

CIII (ρ, ξ)k+1 = F [CI(1, ξ), CIII (ρ, ξ)k] (69)

until the resulting radial profile has the desired accuracy;
(iv) evaluateCIII (1, ξ) from the values obtained in step (iii)
and compare with the old profile assumed in step (i); and
(v) proceed with the iterative scheme until each value of
CIII (1, ξ) calculated between two consecutive steps of over-
all iteration has a relative error smaller than the prescribed
value. Thus, the iterative process proceeds on the boundary
at ρ = 1 and throughout the spongy matrix, without having
to solve the complete concentration profiles in the lumen
region.

The sequences described by Eqs. (68) and (69) converge if
a Lipzchitz condition is satisfied by both equations [35,36].
Convergence is usually obtained for typical values of the
model parameters and for a wide variety of differentiable
kinetic equations as will be analyzed below.

For integration purposes, the use of uniform rectangular
grids in theρ, ξ -space is simple, but not suitable for the sim-
ulation of HFBRs operating in reaction regimes controlled
by the mass diffusion rate, i.e.,Ge Pe< 1 and/orΦ2 > 1. In
such case, a rapid depletion of the substrate can take place
near the inner tube entrance and/or the membrane wall on
the spongy matrix side, as shown in Fig. 3. Then, if the
number of grid points is not large enough the numerical in-
tegration cannot be sufficiently accurate. However, the use
of enough grid points will be prohibitively demanding com-
puter memory space and with computation times unaccept-
ably large. For example, the total number of grid points used
in ξ -space essentially depends upon the value of the param-
eterGe Pe. In Table 1, results obtained with different mesh
sizes are compared with those accepted as the exact solution,
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Table 1
Errors relative to the exact solution in terms of theGe Peparameter for different mesh sizesa

Ge Pe Relative error (%)

50 meshes 100 meshes 200 meshes 400 meshes 600 meshes 800 meshes 1000 meshes

(a) Percentage error in predictions of the substrate concentration at the membrane wall on the lumen side atξ = 0.1
0.50 8.47 5.15 2.97 1.41 0.72 0.29 0.00
1.00 6.99 4.35 2.53 1.22 0.62 0.27 0.00
2.00 5.61 3.53 2.06 0.99 0.50 0.20 0.00
4.00 4.40 2.76 1.58 0.73 0.35 0.14 0.00
(b) Percentage error in predictions of the substrate averaged bulk concentration on the lumen side atξ = 0.1
0.50 0.55 0.05 0.18 0.14 0.08 0.04 0.00
1.00 0.49 0.10 0.02 0.04 0.03 0.01 0.00
2.00 0.34 0.10 0.02 0.00 0.00 0.00 0.00
4.00 0.20 0.07 0.02 0.00 0.00 0.00 0.00

aDI = 1.0 × 10−5 cm2 s−1, DII = 1.0 × 10−6 cm2 s−1, Ge Pe= 0.5, Ka = 1, Kb = 1, H = 2.0, n = 1, a = 1.00× 10−2 cm, b = 1.05× 10−2 cm,
d = 1.75× 10−2 cm, L = 2 × 101 cm.

which are achieved with a fixed axial grid containing 1000
meshes. It is noticeable that a workable mesh size in a per-
sonal computer, for example 200 meshes, only provides an
acceptable agreement with the exact solution for values of
Ge Pegreater than 1. However, for the same number of grid
points, non-uniform grids give more accurate results. Then
the mentioned limitation can be overcome using a contin-
uous transformation of theξ -coordinate and the numerical
integration can be done on a uniform rectangular grid in
the transformed space. A similar approach can be applied to
transform theρ-coordinate in the spongy matrix region.

5.2. Grid transformations

Several techniques for grid generation and the use thereof
in the numerical solution of differential equations have been
proposed to obtain grid points closely spaced in regions
with steep gradients and widely spaced where the changes

Fig. 4. Coordinate transformations for the integral equations governing the species mass balances: (a) in the lumen region, and (b) in the spongy matrix
region.

are smooth [37–39]. We have found that the following
transformations are quite suitable to solve the derived inte-
gral equations:

1. In the lumen region, a newζ -coordinate can be suitably
related to the originalξ -coordinate through the following
equation:

ξ = 1 − tanh [(1 − ζ ) tanh−1√1 − αζ ]√
1 − αζ

(70)

where 0 ≤ ξ ≤ 1, 0 ≤ ζ ≤ 1, and αζ is an ad-
justable parameter ranging between 0 and 1 [37]. Note
that whenαζ is equal to 1, Eq. (70) reduces to the identity
transformationξ = ζ . According to this transformation,
uniform mesh sizes inζ -coordinate have grid points in
ξ -coordinate closely spaced near the entrance of the inner
tube and widely spaced far from that, as shown in Fig. 4a.

2. In the spongy matrix region, the newϕ-coordinate to
be related with the originalρ-coordinate is given by the
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following transformation:

ρ = 1 + β

{
1 − tanh [(1 − ϕ) tanh−1√1 − αϕ ]√

1 − αϕ

}
(71)

where 1≤ ρ ≤ β, 1 ≤ ϕ ≤ β, andαϕ is an adjustable
parameter ranging between 0 and 1. Ifαϕ is equal to 1,
Eq. (71) reduces to the identity transformationρ = ϕ.
Unlike the previous choice, this transformation produces
a continuous stretching of the mesh size inρ-coordinate
at the vicinity of the membrane on the spongy matrix
side, as illustrated in Fig. 4b. It is noticeable that the
smaller theαϕ and αζ values become, the higher the
stretching results.

5.3. Transformed integral equations

The governing integral equations are now subjected to the
proposed transformations. According to the transformation
defined by Eq. (70), Eq. (26) inρ, ζ -space becomes

CI(ρ, ζ ) =
[ ∞∑

1

φn(1)φn(ρ)

A2
nλ

2
n

− (ρ2 − 1

4
ρ4 − 7

24
)

]

×H [CI(1, ζ ) − KCIII (1, ζ )]

+
∫ 1

0
dρ̄ ρ̄(1 − ρ̄2)GI(ρ, ζ/ρ̄,0)CI(ρ̄,0)

− 1

2Ge Pe

∫ ζ

0
dζ̄ JζG

I(ρ, ζ/1, ζ̄ )H [CI(1, ζ̄ )

−KCIII (1, ζ̄ )] (72)

then

CI(1, ζ ) =
[ ∞∑

1

φ2
n(1)

A2
nλ

2
n

− 11

24

]
H [CI(1, ζ ) − KCIII (1, ζ )]

+
∫ 1

0
dρ̄ ρ̄(1 − ρ̄2)GI(1, ζ/ρ̄,0)CI(ρ̄,0)

− 1

2Ge Pe

∫ ζ

0
dζ̄ JζG

I(1, ζ/1, ζ̄ )H [CI(1, ζ̄ )

−KCIII (1, ζ̄ )], 0 ≤ ζ ≤ 1 and 0≤ ζ̄ ≤ 1

(73)

where the integration is now realized by taking equal in-
crements inζ -coordinate, instead ofξ -coordinate, and the
JacobianJζ is given by

Jζ = tanh−1√1 − αζ sech2[(1 − ζ ) tanh−1√1 − αζ ]√
1 − αζ

(74)

According to Eq. (71), Eq. (44) inϕ, ξ -space becomes

CIII (ϕ, ξ) = GIII (ϕ/1)HCI(1, ξ)

+ν

∫ β

1
dϕ̄ Jϕϕ̄G

III (ϕ/ϕ̄)Ω III (C(ϕ̄, ξ)),

1 ≤ ϕ̄ ≤ β (75)

with

CIII (1, ξ) = GIII (1/1)HCI(1, ξ)

+ν

∫ β

1
dϕ̄ Jϕϕ̄G

III (1/ϕ̄)Ω III (C(ϕ̄, ξ)),

1 ≤ ρ̄ ≤ β (76)

respectively, where the integration is now realized by taking
equal increments inϕ-coordinate instead ofρ-coordinate.
The JacobianJϕ is given by

Jϕ = β tanh−1√1 − αϕ sech2[(1 − ϕ) tanh−1√1 − αϕ ]√
1 − αϕ

(77)

5.4. Numerical exploitation

Eqs. (73) and (76) were solved through the iterative pro-
cedure proposed in Section 5.1 until relative errors smaller
than 10−4 were achieved. A simple equispaced quadrature
algorithm, such as the Newton38 method, was used to per-
form the numerical integration. All calculations were per-
formed in double precision arithmetic.

Fig. 5a and b shows the axial profiles of the substrate con-
centration at the membrane wall on the lumen side and the
averaged bulk concentration, both in a region near to the en-
trance of the HFBR, for two typical values of the parameter
Ge Pe. Results obtained by solving Eqs. (73) and (75) with
a workable number of mesh points (grids with 200 meshes
andαζ = 0.1,0.5 and 1.0) are compared with those which
can be accepted as the exact solution (fixed grid with 1000
meshes). There are significant deviations between the pre-
dicted values with a fixed grid with 200 meshes (αζ = 1)
and the exact values obtained with 1000 meshes (αζ = 1). It
is apparent that the lower the value ofGe Pe, the greater the
deviations become. Then the computation would be done on
a very refined equispaced grid inξ -space. However, the use
of grids with more than 250 meshes is not practical since
achieving the solution requires excessive computational ef-
fort and computer memory space. The transformation given
by Eq. (70) allows us to overcome such difficulties. In fact,
the continuous variable grid method with 200 meshes and
αζ ≤ 1 × 10−1 predicts concentration profiles similar or
equal to those which are achieved with 1000 meshes, as
shown in Fig. 5a and b. For the case analyzed, the optimal
value of parameterαζ was found to be around 1×10−1 and
essentially depends on the value ofGe Pe. After considerable
number of attempts, we proposed to chooseαζ according to
the following relationship:

αζ =
{

1 for Ge Pe≥ 2

0.2Ge Pe for Ge Pe< 2
(78)

In the spongy matrix region, the advantages of using the
transformation given by Eq. (71) was corroborated. It was
found that the simplest choice ofαϕ in terms of the parameter



M.I. Cabrera et al. / Chemical Engineering Journal 84 (2001) 445–461 457

Fig. 5. Predicted axial profiles: (a) substrate concentration at the membrane wall on the lumen side, and (b) averaged bulk concentration. The profiles
correspond toPe= 400 and 1200,Ge= 5 × 10−4, H = 2, K = 1 andΦ2 = 1. (�) exact value withαζ = 1 and 1000 meshes; (�) αζ = 1 and 200
meshes; (�) αζ = 0.5 and 200 meshes; and (�) αζ = 0.1 and 200 meshes.

of the model which governs the concentration profiles in this
region is given by

αϕ =
{

1 forΦ2 ≤ 1

1/Φ2 forΦ2 > 1
(79)

6. Applications and performance of the
numerical method

For all calculations presented herein,a = 100�, b =
105�, d = 175�, Re≤ 1500, 250≤ Pe ≤ 1200, 10−4 ≤
Ge ≤ 10−3, 5 × 10−1 ≤ H ≤ 8, and 10−1 ≤ Φ2 ≤
10. This set of values is in accordance with the model as-
sumptions and covers typical operating conditions for HF-
BRs. In order to fulfil the assumption (i), the length of
the lumen region flow before the spongy matrix was esti-
mated to be less than 1 cm because the parabolic axial ve-
locity profile is fully developed for an entrance lengthLe ≤
5.75 × 10−2 × 2a Re [40]. The assumption (ii) is fulfilled
whenever the convective transport is two orders of mag-
nitude greater than the axial diffusive transport. In mathe-
matical terms, it means 2Pe(1 − ρ2) ≥ 102 Ge, which in
the range 0≤ ρ ≤ 0.999 is nearly satisfied forPe ≥ 250
and Ge ≤ 10−2. In the practice, it might be that the ra-
dial convective transport will be no null. However, it is to
be hoped that the assumption (iii) be acceptable in accor-
dance with the fact that the radial convective transport can
be still neglected with respect to the radial diffusive flux
for upper bounds of the radial Peclet number [9]. Assump-
tions (v) and (viii) are made to reduce computational ef-
forts, but there are no restrictions other than the usual ones
on the dependence of the physical properties. The validity
of assumptions (vi), (vii) and (ix) will particularly depend
on the permeable membrane and spongy matrix characteris-
tics. A comprehensive analysis on this matter can be found
elsewhere [9].

6.1. Power-law kinetics

The more simplified representation for the substrate reac-
tion rate is the power-law model

Ω III (C(ρ, ξ)) = Φ2CIII (ρ, ξ)n (80)

where the dimensionless reaction rate is expressed in terms
of the Thiele number and the reaction order (n < 0). Partic-
ularly, the first-order limit of the Michaelis–Menten kinetics
has been typically used to describe enzymatic reaction rates
[7,8,41–44].

The performance of the computational method was an-
alyzed covering a wide range of operating conditions and
reaction orders. For all the values explored, the calculation
times to achieve a specified accuracy are reduced by almost
an order of magnitude if the transformed grid method is used
instead of a fixed grid in the originalρ, ξ -space. Conver-
gence is ensured when the Lipzchitz condition is satisfied.
For Eq. (75) with first-order kinetics, the Lipzchitz condi-
tion becomes

1

Φ2
>

(1 + β)2

2
ln(1 + β) + ((1 + β)2 − 1)

(
1

2HK
− 1

4

)
(81)

This means that the convergence is surely obtained when
the overall rate of the process is controlled by the chem-
ical reaction, i.e., when either the diffusional resistance in
the spongy matrix is negligible (Φ2 < 1), the spongy ma-
trix is thin (β → small value), the coefficient of mass trans-
fer through the membrane or the partition coefficients are
high (HK > 1). The condition given by Eq. (81) was nu-
merically corroborated, as illustrated in Fig. 6a–c. For all
analyzed values ofH andGe Pe> 1, the convergence do-
mains (lower-left) are exactly described by Eq. (81) since
the convergence is governed by Eq. (75). ForGe Pe< 0.25
the convergence domains begins to be governed by Eq. (73)
for which, unlike Eq. (75), an explicit expression to predict
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Fig. 6. Convergence domains (lower-left regions) for power-law kinetics. The border lines correspond to half-order (n = 0.5), first-order (n = 1) and
second-order (n = 2) kinetics. The dashed lines indicate the limits predicted by the Lipzchitz condition for the first-order kinetics.

the convergence conditions cannot be obtained. The con-
vergence domains are then completed by computational ex-
perimentation. Likewise, Fig. 6a–c shows the convergence
maps corresponding to half-order and two-order kinetics. It
is noticeable that the convergence domains broaden when
the membrane resistance is lower and the reaction order is
higher. The convergence domains significantly reduce for
operating conditions leading to a process rate significantly
controlled by diffusive mass transport in the lumen, mem-
brane and spongy matrix regions, but such combination of
conditions is either unusual or undesirable in practical ap-
plications because the effectiveness of the HFBR becomes
excessively low.

6.2. Michaelis–Menten kinetics

The kinetics for enzymatic reactions are usually ex-
pressed on the basis of the general formulation given by
Michaelis–Menten:

Fig. 7. Convergence domains (lower-left regions) for Michaelis–Menten kinetics. The border lines indicate the limits for different values of thec0/KM

parameter.

Ω III (C(ρ, ξ)) = Φ2CIII (ρ, ξ)

1 + (c0/KM)CIII (ρ, ξ)
(82)

which resembles that suggested by Langmuir for sur-
face catalysis. Significant analyses of HFBRs with
Michaelis–Menten kinetics have been published elsewhere
[5,8,23,42,45–47].

Fig. 7a–c illustrate the convergence domains for a wide
range of values of the kinetic parameters. It is apparent that
the convergence can be achieved in a domain wider than
the one obtained for first-order kinetics. In regions close to
the convergence limits, the results have repeatedly shown
high-gradients of concentration which severely restrict the
substrate available to the cells, the reaction conditions
becoming vastly inadequate. From a practical viewpoint,
non-convergence domains coincide with unacceptable spec-
ifications of the HFBR system. For the most demanding
conditions, the computing times obtained with the trans-
formed grid method become nearly one order of magni-
tude smaller than the corresponding one to fixed grids in
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ρ, ξ -space, as mentioned in Section 5.4. The convergence
maps can be used to know a priori the feasibility to imple-
ment iterative schemes of sure and fast convergence.

6.3. Zero-order kinetics

Some enzymatic reactions can be approximated as
zero-order reactions. While the substrate concentration re-
mains finite, the non-dimensional kinetic equation becomes
independent of the concentration:

Ω III (C(ρ, ξ)) = Φ2 (83)

but as long as the substrate concentration drops to zero —
at the so-called critical radius — the local reaction rate be-
comes zero. Theoretical analysis of HFBRs with zero-order
kinetics as limiting form of the Michaelis–Menten kinetics
can be found in several contributions [8,15,41,42].

The values of the critical radius can be obtained as roots
of the following implicit equation:

1 + νΦ2K

{
1

2HK
[ρ2

c − 1] − 1

4
[ρ2

c − 1] + ρ2
c

2
ln ρc

}

+νΦ2ρ
2
c − 1

2

×
{

11

24
+ 2

Ge Pe
ξ −

∞∑
1

φ2
n(1)

A2
nλ

2
n

exp

(
− λ2

n

2Ge Pe
ξ

)}

= 0 (84)

which was derived as particular case of Eq. (45). The sub-
routine ZSPOW of the IMSL library has proved to be ef-
fective to solve Eq. (84). The algorithm is a variation of the
Newton method and takes precautions to avoid large step
sizes or increasing residuals [48].

Once the values of the critical radius are known, the con-
centration profiles can be obtained without having to resort
to an iterative scheme of numerical solution.

Fig. 8. Maps showing the domains (left regions) for which the substrate concentration remains greater than zero everywhere inside the spongy matrix
for zero-order kinetics. The border lines indicate the limits for different values of the lumen/spongy matrix partition coefficient.

Case (a). When the substrate concentration remains greater
than zero throughout the spongy matrix (i.e., whereρc ≥ β),
the following explicit equations must be solved:

CI(ρ, ξ) = 1 + νΦ2β
2 − 1

2

{
ρ2− 1

4
ρ4− 7

24
+ 2

Ge Pe
ξ

−
∞∑
1

φn(ρ)φn(1)

A2
nλ

2
n

exp

(
− λ2

n

2Ge Pe
ξ

)}
(85)

and

CIII (ρ, ξ) = 1

K
CI(1, ξ) + νΦ2

×
{

1

2HK
[β2 − 1] − 1

4
[ρ2 − 1] + β2

2
ln ρ

}
(86)

Case (b). When the substrate concentration depleted before
reaching the shell wall (i.e., whereρc < β), the following
explicit equations must be used:

CI(ρ, ξ) = 1 + νΦ2ρ
2
c − 1

2

{
ρ2− 1

4
ρ4− 7

24
+ 2

Ge Pe
ξ

−
∞∑
1

φn(ρ)φn(1)

A2
nλ

2
n

exp

(
− λ2

n

2Ge Pe
ξ

)}
(87)

and

CIII (ρ, ξ) = Θ(ρc − ρ)νΦ2
{

1

4
[ρ2

c − ρ2] + ρ2
c

2
ln

ρ

ρc

}
(88)

Numerical computations are very fast as corroborated by
an extensive numerical exploitation. Nevertheless, it seems
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convenient to present maps in terms of the HFBR parame-
ters showing if the substrate concentration can be depleted
before reaching the shell wall, and thus knowing a priori
if Eq. (84) must be solved. Results of numerous computa-
tions are shown in Fig. 8a–c on which the operation point
can be located according to the operating conditions to be
analyzed. If the operation point is located within the corre-
sponding dashed region, the substrate concentration remains
greater than zero everywhere inside the spongy matrix, and
then only Eqs. (85) and (86) must be solved. Otherwise, the
axial profile of the critical radius must be necessarily ob-
tained from Eq. (84).

7. Conclusions

A formal general solution of the mass balance equations
for HFBRs with any arbitrary kinetic equation was obtained
by means of the Green’s function method. The general so-
lution is said formal because it is expressed in terms of im-
plicit integral equations which require some iterative scheme
of solution. The substrate remaining finite throughout the
spongy matrix and the substrate exhausted before reaching
the shell wall cases are both treated in systematic form using
an indicator function whose values are one if the substrate
concentration is finite, and zero if the substrate concentra-
tion is equal to zero. The obtained general solution renders
explicit analytical forms for limiting cases, some of them
have been treated in the literature.

The main advantages of the solution for the substrate con-
centration lies in the following facts: (i) on the lumen side,
Green’s functions are expressed in terms of an eigenvalue
problem which depends neither on the particular conditions
of the laminar flow nor on the coefficients of mass transfer
through the permeable membrane, so that once eigenvalues
are calculated, they become a result which does not vary
from one application to another; (ii) on the spongy matrix
side, Green’s functions do not depend on the kinetic equa-
tion, this avoids repetitive computational effort when treat-
ing different reaction kinetics; (iii) the resulting format of
integral equations is apt to devise a numerical solution based
on a simple iterative process along the permeable wall and
through the spongy matrix, without having to resort to the
complete concentration profiles in the lumen, which yield
to iterative schemes of fast convergence; and (iv) zero-order
kinetics are treated as a particular case of the general so-
lution which lead to an unmatched expression in terms of
the critical radius and operative parameters of the HFBR,
from which it is possible to calculate the critical radius in
a fast, direct, reliable manner using the proposed numerical
algorithms. Once the values of the critical radius are known,
the substrate concentration profiles in the lumen and spongy
matrix can be straightaway obtained from explicit analytical
equations.

The numerical procedure can adequately handle problems
with steep axial and radial gradients of concentration in the

lumen and spongy matrix regions, respectively. In regard to
implementation, an improvement of the accuracy of the so-
lution without wasting computer memory space and running
time was obtained with the transformed grid method using
hyperbolic tangent functions. The method can be extendible
to other continuous transformations by the simple substitu-
tion of the corresponding Jacobian expression in Eqs. (72),
(73), (75) and (76). Then, the computation can be done on a
fixed uniform grid using standard techniques of integration.
The convergence of the iterative procedure can be achieved
for a wide range of operating conditions having practical
importance. The results presented herein demonstrate the
effectiveness of this approach for the simulation of HFBRs
with power-law, Michaelis–Menten and zero-order kinetics;
however it is readily extendible to any arbitrary functional
form of the kinetic equation.
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