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A numerical method to compute the viscoelastic melt-spinning model with radial resolutions of
temperature and stress fields is formulated and applied to the low speed range. The starting
framework is the reduction of the complete continuous model into both the perturbed
two-dimensional model and the perturbed average model obtained from a first-order regular
perturbation analysis available in the literature. The polymer rheology is described with the
nonisothermal Phan-Thien and Tanner and Giesekus constitutive equations. By using the implicit
tridiagonal scheme of finite differences coupled to the fourth-order Runge-Kutta method, an
iterative numerical algorithm is proposed for the computation of the coupled balance equations.
The temperature and stress fields in the filament as functions of axial and radial positions are
obtained for a well-refined mesh and with high numerical precision. The numerical algorithm
considers the appropriate interplay between axial and radial varying temperature and stress
fields and the rigorous averaged balances of momentum and energy and averaged constitutive
equation. The development of a skin-core structure is predicted with the two rheological models.

Introduction

In fiber melt spinning, a bunch of polymer melt
filaments are continuously drawn and simultaneously
cooled with air in order to obtain solidified yarns, which
later compose the synthetic fiber in the bobbin (Figure
1 shows a scheme for this operation involving one
filament only). Melt spinning is a basic nonisothermal
operation in the production of synthetic fibers (see, for
example, Denn1,2 and Schowalter3), and hence a model
describing the velocity, stress and temperature fields
in the filaments can be useful to control the quality of
the final product. Nevertheless, this model is rather
complex because it shall involve basically the balance
equations of momentum and energy coupled to ap-
propriate nonisothermal constitutive equations of the
polymeric material. The filament also presents a free
surface that must be determined together with the field
solutions, introducing thus an additional complexity into
the model.

In fiber melt spinning, the radial and axial variations
of stresses and temperature are believed to control
strongly the mechanical and physical properties of fibers
obtained under specific thermal operating conditions.
In the last years, researches were placing emphasis on
the quantification of this particular aspect when a model
for the fiber spinning process was proposed. In this
sense, Henson et al.4 have studied a model for the fiber
spinning operation to account for the most relevant
phenomena associated with a two-dimensional (2D)
description of temperature and stress fields. This model
was formulated for the low speed range (flow-induced
crystallization was not considered) through a regular
perturbation analysis that included the slenderness
approximation associated with long fibers of very small
diameters. These authors analyzed deeply the math-
ematical structure of the perturbed 2D model including

its relation with the classical one-dimensional (1D)
model that resulted from the radial average of momen-
tum and energy balances and constitutive equation. It
was found analytically that a first-order axial velocity
radially uniform could be computed within the same
order of magnitude with a radially varying temperature,
which was responsible for the radial variations of
stresses in the fiber. These authors illustrated the 2D
model by assuming, as a first approximation, that the
melt was a Newtonian fluid. Their results were impor-
tant to yield a robust model structure, allowing one to
quantify the interplay between the operational variables
in fiber melt spinning and the axial and radial temper-
ature and stress fields. Therefore, one can use a simpler
version of the complete 2D model that may be rather
complex to solve at the present time.

More recently, Doufas and McHugh5 studied the fiber
melt-spinning operation under the same mathematical
structure of the 2D model proposed by Henson et al.4
with the inclusion of the flow-induced crystallization
(FIC) phenomenon that is important mainly for the high
speed range of take-up velocities (velocities greater than
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Figure 1. Scheme of the spinning operation for one filament.
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3000 m/min). For this case, two coupled constitutive
equations were necessary:6 one for the flow-induced
crystallized phase and the other for the ordering amor-
phous phase in the elongational flow field. The relevant
parameter for the coupling mechanism, apart from the
temperature field, was the degree of crystallization
evaluated through a modified Avrami equation. Apart
from describing the relevant fields in the filament, these
authors also predicted phenomena present in fiber melt-
spinning operations such as the skin-core structure.

From the above analysis, it is clear that the radial
and axial stress and temperature fields in fiber melt
spinning may be estimated within a consistent theoreti-
cal framework of a perturbed 2D model that uses the
slenderness approximation for both low and high speed
ranges. For this purpose, robust numerical algorithms
computing the resulting momentum and energy bal-
ances coupled to constitutive equations are also useful.
Otherwise, one exploits partially the potentiality of the
perturbed 2D model. Several works have used ad-
ditional hypotheses by considering the average mass
and momentum balances and average constitutive
equation in order to be able to compute a 2D tempera-
ture field within the consistent mathematical structure
described above (hybrid 1D fluid mechanics/2D thermal
models, as designated by Doufas and McHugh5). For
these calculations, approximations associated with the
average of terms involving temperature and stresses are
required. Without these hypotheses, the method of lines,
which uses a polynomial approximation for the radial
and axial variations of the temperature and stress fields,
was used more recently to evaluate the perturbed 2D
model with both viscoelastic melt and flow-induced
crystallization (two-fields model).5 Polynomials of fourth
order were used to reach the desired precision.

One of the purposes of our work is to show here that,
within the structure of the perturbed 2D model dis-
cussed above, an iterative numerical algorithm can be
generated to compute the axial varying velocity coupled
to the axial and radial temperature and stress fields in
the filament by using finite differences. With this
specific target, we use the analytical coupling between
the perturbed average model resulting from the rigorous
radial average of the perturbed 2D model and the
associated pointwise energy balance and constitutive
equations for stresses. The perturbed average model is
solved with the Runge-Kutta method, and the 2D
balances are solved through finite differences, both
coupled iteratively at each axial step and fulfilling
convergence criteria. The finite difference equations
involve the implicit tridiagonal algorithm for the tem-
perature field and the explicit-implicit backward dif-
ferences for the stresses. Fine meshes can be generated
to the desired precision (for instance, 100 radial nodes
and axial step sizes of 10-5, with these aspects depend-
ing on the precision and details required). In this work,
we consider the low speed range of fiber spinning by
following strictly the 2D model proposed by Henson et
al.4 and FIC is not accounted for. In this sense, it is clear
that, for the case considering FIC, the model must
include an additional constitutive equation and the rate
of crystallization presented already by Doufas and
McHugh.6

In addition, the numerical method is illustrated with
two different viscoelastic constitutive equations: Phan-
Thien and Tanner and Giesekus models. The viscoelas-
tic polymer is described through two mechanical con-

tributions to the extra stress tensor τ ) τs + τp. One of
them considers a Newtonian response, τs, in general
attributable to the retardation effects of the macromo-
lecular structure in the viscoelastic relaxation phenom-
ena. The other contribution, τp, describes the instanta-
neous elastic response of the polymer in the sense
discussed by Denn.7 The retardation effects included in
these rheological models allowed us to introduce the
initial conditions of the spinning model at a well-
specified position in the fiber, as is described below (see
also Ottone and Deiber8). In these models the thermal
history is considered through the term D ln T/Dt, which
involves the rate of change of temperature.9,10 In addi-
tion, the polymer heat capacity cv, the relaxation time
λ, and the relaxation modulus G are considered func-
tions of temperature. Numerical results are validated
with experimental data of the spinning process reported
for a poly(ethylene terephthalate) (PET).

Basic Equations

In this section we present the so-called complete
model, which is formulated for the steady-state regime.
Because the polymer is considered incompressible, the
mass balance implies

where v is the velocity vector. The balance of momentum
in the filament is expressed as

where F is the polymer density, p is the pressure field,
g is the gravity vector, and τ3 is the extra stress tensor
considered symmetric throughout this work. The energy
balance in the filament is

where cv ) a + bT is the polymer thermal capacity and
T is the temperature field (temperature T is expressed
in degrees Celsius throughout this work). In eq 3, q )
-ks‚∇T is the heat flux vector, ks is the thermal
conductivity, and D:τ is the mechanical power. This
term involves the rate of deformation tensor D ) (∇v
+ ∇vT)/2, which is a function of the fluid kinematics
v(r,z) ) vzez + vrer, where vz and vr are the axial and
radial components of the velocity vector, respectively,
in the cylindrical coordinate system. Here the angular
component of the velocity vector is null because no
perturbation in the flow field is considered.

The appropriate set of boundary conditions to solve
eqs 1-3 is taken directly from Denn.2 In addition,
because in our model the PTTM and GM are considered
with the retarded elastic response (the term τs ) 2ηsD
is included), initial values for τs

zz and τs
rr are needed at

z ) 0, apart from the stress τp
zz and the relation Rel )

τp
rr/τp

zz already discussed in the literature.2 This re-
quirement is equivalent to the assignment of a value to
the velocity derivative at z ) 0. This additional initial
condition was expressed as ∂vz/∂z ≈ 0, which is an
estimate for the velocity derivative at the maximum
filament swelling.8 In fact, it was found with the PTTM
that, for ∂vz/∂z f 0, the numerical solutions obtained
for the average temperature and velocity of the filament
were not dependent on the small values assigned to this
derivative. On the other hand, when this rheological

(∇‚v) ) 0 (1)

Fv‚∇v ) -∇p + ∇‚τ + Fg (2)

Fcvv‚∇T ) -∇‚q + D:τ3 (3)
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model with instantaneous elastic response was used (the
term 2ηsD was not included), the condition ∂vz/∂z ≈ 0 is
not satisfied for any assumed initial filament radius,
and hence, the position z ) 0 is not well determined in
relation to the capillary exit. Usually, authors suggest
in this case to put it around 2-4 capillary diameters
below the capillary exit.11

In the sense discussed above, we fix the origin of the
coordinate system at the maximum swelling of the
polymer melt, where the jet forms at the exit of the
extrusion capillary. At this place the properties are
assumed to be uniform in the radial direction.2 There-
fore, throughout this work we designate initial condi-
tions to the boundary conditions at z ) 0, which for any
value of r are

where r0(z) is the fiber radius as a function of the axial
direction z, vs is the melt velocity at the maximun
swelling with radius rs, and T0 is the extrusion melt
temperature. Thus, vs ) vcrc

2/rs
2 where vc is the melt-

averaged velocity in the extrusion capillary of radius
rc. Also the stress ratio Rel can be varied in the range
-1/2 < Rel < 0 for viscoelastic fluids. This result has
been fully discussed in the literature,2 where it was
reported that numerical solutions were not sensitive for
values of Rel within this specific range and that the
condition Rel ≈ 0 is a good approximation.12,13 Never-
theless, one should also consider that the initial stress
required for a viscoelastic model must be determined
more rigorously by the flow history of the material prior
to spinning. In this sense, the kinematics assumptions
leading to the thin filament equations are not valid for
the portion of the history prior to the spinneret, as was
clearly stated in the revision work by Denn.2 Therefore,
this mechanical aspect is, in some degree, captured with
the imposition of the initial filament radius, which, in
principle, can be correlated with the first normal stress
difference and the shear stress associated with the
material flowing through the extrusion capillary (in this
work it is the maximum swelling).

Boundary conditions involving the symmetry of fields
are imposed at the center line r ) 0 for any position z.
Thus,

while at the filament free surface for r ) r0(z) and any
position z, dynamics and kinematics constraints are

for the mechanical variables and

for the temperature field. In these equations, n and t

are the unit vectors normal and tangential to the free
surface, respectively, ℵ is the curvature of the free
surface, and σ is the polymer-air surface tension. In
addition, the stress tensor T ) -pδ + τ involves the
extra stress tensor and the pressure p, where δ is the
unit tensor. In eq 10, ∆T ) T - Ta is the thermal jump
between the average air temperature Ta used to cool the
fiber (Figure 1) and the polymer temperature T evalu-
ated at the free surface. he is the external coefficient of
heat transfer to be analyzed below. We designate L as
the length from the fiber maximum swelling to the
position where the melt reaches the glassy temperature
Tg, to become solidified. Also, τa

nt is the tangential extra
stress at the fiber-air interface and va is the velocity
vector, both of the cooling air.

In relation to eq 10, we are assuming that the model
for the melt-spinning operation is uncoupled from the
model of the quenching air, which may be an appropri-
ate approximation when a monofilament spinning is
considered, like in this work. This aspect has been
analyzed and discussed thoroughly by Denn,2 indicating
that for the case of multifilament spinning additional
considerations should be quantified. For instance, fila-
ment deflection is responsible for different air convec-
tions around the fiber. Also the cross-flow between air
and filaments in the spinneret yields uneven cooling
between different filament rows generating uneven
lengths of filament solidification.

To complete the formulation of the spinning model,
the viscoelastic stress τp is required, which is a part of
the total extra stress tensor τ ) τp + τs, where τs ) 2ηsD
is associated with retardation effects. In this sense, one
expresses

for the Giesekus model (GM)14 and

for the Phan-Thien and Tanner model (PTTM).15 In eqs
11 and 12,

is the Gordon-Schowalter14,16 nonaffine time-convective
derivative, where the effect of the thermal history is
added through the term D ln T/Dt. Also L ) ∇‚v - øD
is the effective velocity gradient tensor (ø ) 0 for the
GM). We define ηs ) ηp(1 - R)/R and ηp ) λG; hence,
the instantaneous elastic response of both models can
be obtained for R ) 1.7,17

In relation to the last term of eq 13, one can find
several works18,19 indicating that the use of the time-
temperature superposition principle alone is not enough
to quantify the effect of a rapidly changing thermal
history on the stress tensor. In this sense, one should
not simply replace the relaxation time by a temperature-
dependent function in the constitutive equations for the
modeling of nonisothermal polymer processing opera-
tions. This problem was first considered by Marrucci9

showing, for instance, that the term D ln T/Dt is coupled
to the stress tensor, within the context of the kinetic
theory of the dumbbell model. This idea was then
discussed in the literature by Gupta and Metzner20 and

vz ) vs, T ) T0, τs
zz ) τs

rr ) 0

r0(0) ) rs, τzz ) τ0
zz, Rel ) τrr

τzz
(4)

∂vz

∂r
) 0, ∂T

∂r
) 0, ∂τzz

∂r
) 0, ∂τrr

∂r
) 0 (5)

(T‚n)‚t ) (Ta‚n)‚t (6)

(T‚n)‚n ) -σℵn(Ta‚n)‚n (7)

v‚n ) 0 (8)

v‚t ) va‚t (9)

q‚n ) he∆T (10)

τp + λ0
δ
δt

τp + R′
G

(τp‚τp) ) 2λ0GD (11)

τp + λ δ
δt

τp ) 2λGD (12)

δ
δt

τp ) D
Dt

τp - L‚τp - τp‚LT - τp
D ln T

Dt
(13)
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Bird10 and also extended to other rheological models
such as the PTT (Sugeng et al.15). In the particular case
in which the connector force between beads is propor-
tional to temperature, a time derivative that considers
the rate of thermal change can be defined as a first
approximation through eq 13.9,21

Because both rheological models get the linear vis-
coelastic response at the asymptotic limit of small shear
rates, the relaxation time λ0 can be expressed as λ0 )
0.016 exp[-11.9755 + 6802/(T + 273)] as reported by
Gregory and Watson.22 In particular, the PTTM consid-
ers a relaxation time that is a function of the stress
tensor expressed as λ ) λ0(T)/K(T,trτ) where K ) exp-
[êtrτ/G]. In this context of analysis, the relaxation
modulus is also allowed to change with temperature
according to G ) G0(T/Tr) where Tr is the reference
temperature.

Rheometric characterizations of these rheological
models were carried out by following the same procedure
described by Ottone and Deiber8 to evaluate the rheo-
logical parameters of the PET melt (case study of this
work) with experimental data reported by Gregory and
Watson22 involving the shear rate flow of a sample that
had the same intrinsic viscosity as that of PET used by
George23 (zero shear rate viscosity η0 ≈ 104.9 Pa s). The
results obtained are R ≈ 0.85 and R′ ≈ 4 × 10-5 for the
GM and R ≈ 0.8, ø ≈ 4 × 10-5, and ê ≈ 9.25 × 10-5 for
the PTTM (see also, Hatzikiriakos et al.24). As expected,
the PTTM predicted lower values of the elongational
viscosity for an elongational rate greater than 30 s-1.

Perturbation Analysis

We use the regular perturbation scheme proposed by
Henson et al.4 to obtain the perturbed 2D model. This
scheme allows one to neglect rigorously terms of small
orders from the balance and constitutive equations and
the boundary conditions of the complete model. Then
the perturbed 2D model is averaged in the radial
direction of the filament, without any approximation,
to yield an appropriate version of the perturbed average
model.

The complete model described by eqs 1-13 can be
expressed in dimensionless form by using the appropri-
ate scales.4 The perturbation analysis is carried out on
the dimensionless model. Therefore, any dependent
variable, represented by P in the generalized sense, can
be expressed as P ) ∑n)0

∞ ΛnP(n) ) P(o) + ϑ(Λ). In the
regular perturbation analysis, terms of order Λ and
greater order are neglected to introduce the slenderness
hypothesis. We will show below that further hypotheses
are required to compute in a consistent manner the 1D
conventional model and the hybrid 1D fluid mechanics/
2D thermal model.

Before writing the resulting equations of the per-
turbed 2D model, we must introduce first a coordinate
transformation to consider the axial variation of the
filament radius r0(z). Thus, we define new coordinates
Z ) z and ú ) r/r0(z) ) r/r0(Z) to obtain a rectangular
computational domain.5,25 It should be observed that
this transformation together with the kinematics of
spinning and its boundary conditions are appropriate
to compute fully the convective operator [vz (∂/∂z) + vr
(∂/∂r)] in the simpler form vz (∂/∂Z).

Perturbed 2D Model. The resulting perturbed 2D
model is then written by dropping the super index (o)
to avoid a complex nomenclature, although a first-order
perturbation is still implied. Because the resulting

kinematics of the spinning flow is vz ) vz(Z) and vr )
-(1/2)r0(Z) ú (∂vz/∂Z), the following momentum balances
are obtained:

for the r component and

for the z component. In the same context of analysis,
the energy balance is

Also the PTTM can be expressed as

Through a similar analysis, the GM yields

In addition, for both models τp
rr ) τp

θθ.
The initial conditions at Z ) 0 for the perturbed 2D

model are obtained directly from eq 4, while boundary
conditions at the center line of the filament still require
the constraint of symmetry but now in relation to the
new coordinate ú. The boundary conditions at the free
surface are, however, significantly simplified because
of the first-order perturbation applied to the complete
model. Thus, for ú ) 1 and any value of Z ) 0, one
obtains

1
ú

∂

∂ú
(úτrr) - τθθ

ú
- ∂p

∂ú
) 0 (14)

Fvz

∂vz

∂Z
) 1

r0(Z) ú
∂

∂ú
(úτrz) + ∂τzz

∂Z
- ∂p

∂Z
+ Fg (15)

Fcv(vz
∂T
∂Z) ) 1

r0
2(Z) ú

∂

∂ú(úks
∂T
∂ú ) + (τzz - τrr)

∂vz

∂Z
(16)

τp
zzK

λ0
+ vz

∂τp
zz

∂Z
- 2

∂vz

∂Z
(1 - ø)τp

zz - τp
zz(vz

T
∂T
∂Z) -

2G
∂vz

∂Z
) 0 (17)

τp
rrK

λ0
+ vz

∂τp
rr

∂Z
+ τp

rr ∂vz

∂Z
(1 - ø) - τp

rr(vz

T
∂T
∂Z) + G

∂vz

∂Z
) 0

(18)

τp
zz

λ0
+ vz

∂τp
zz

∂Z
- 2

∂vz

∂Z
τp

zz - τp
zz(vz

T
∂T
∂Z) + R′

Gλ0
(τp

zz)2 -

2G
∂vz

∂Z
) 0 (19)

τp
rr

λ0
+ vz

∂τp
rr

∂Z
+ τp

rr ∂vz

∂Z
- τp

rr(vz

T
∂T
∂Z) + R′

Gλ0
(τp

rr)2 +

G
∂vz

∂Z
) 0 (20)

vr -
∂r0

∂Z
vz ) 0 (21)

vz ) vaz (22)

τzr ) (τzz - τrr)
∂r0

∂Z
- τa

nt (23)

p - τrr ) σ
r0

+ pa (24)
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where r0 ≡ r0(z) ≡ r0(Z) throughout this work. Equation
21 is considered in the coordinate transformation to
express the convective terms of stresses and tempera-
ture through vz (∂/∂Z), and the use of eqs 23 and 24 is
crucial to obtain a precise averaged balance of moments
as reported below. Also, at position Z ) L, where the
fiber reaches the glassy temperature, one requires vz )
vL and T ) Tg, where vL is the tangential take-up
velocity.

Perturbed Average Model. The numerical algo-
rithm proposed in this work requires a rigorous averag-
ing in the radial direction of eqs 14-20. The radial
average is defined as follows:

to obtain a set of equations that conforms to the
perturbed average model. Thus, the continuity equation
(∇‚v) ) 0 is better expressed, for practical reasons, as a
macroscopic balance at any position Z according to
Fπr0

2vz ) m, where m is the mass flow rate in the
extrusion capillary. From eqs 14, 15, 23, and 24, the
averaged momentum balance is obtained as follows:

In eq 27 we can express τa
zr ) CfFavz

2/2, where Fa is the
air density and Cf is the friction coefficient, between
filament and air, varying with the axial position Z. This
coefficient is evaluated through the correlation Cf ) 2â-
(ηa/2Favzr0)0.61, where ηa is the air viscosity.26 In this
work, we obtained â ) 0.335 for the GM and â ) 0.32
for the PTTM. These values are within the admissible
range 0.3 e â e 0.6 usually reported in the litera-
ture.26,27 From eq 16, the averaged energy balance is

where 〈T〉 is the average filament temperature at
position Z. Therefore, the overall heat-transfer coef-
ficient h ) (1/he + 1/hi)-1, which varies with the axial
position, shall be expressed as a combination of the
internal hi and external he heat-transfer coefficients. To
evaluate the external coefficient, we use 2her0/ka )
âPr1/3Re0.39[1 + 64(var/vz)2]0.166 as proposed by Denn,26

where var is the air transversal velocity, ka is the air
thermal conductivity, and Re ) 2vzr0Fa/ηa is the air
Reynolds number that varies axially. The Prandtl
number Pr is approximately 0.684 for air at 30 °C. The
internal heat-transfer coefficient hi at each axial position
can be obtained from the knowledge of the temperature
field provided by the local balance of energy given by
eq 16.

The resulting averaged rheological equations are

for the PTTM and

for the GM. In eqs 29-32, we have rather complex
average quantities that must be calculated with the
pointwise balance of energy and constitutive equations
in the numerical method proposed below, without
introducing additional hypotheses.

For the perturbed average model, one imposes the
following conditions:

at Z ) 0 and

at Z ) L.
At this step, we have two sets of equations relevant

for the numerical algorithm described in the appendix.
One involves eqs 16-20 and the remaining boundary
condition (eq 25) to calculate the temperature and stress
fields axially and radially, and the other composes a
first-order system of differential equations (eqs 27-32)
with the constraints given by eqs 33 and 34. These two
sets are the basis of our numerical scheme described in
the appendix.

Results and Discussion

It is clear that the rigorous solution of the perturbed
average model with nonisothermal viscoelastic constitu-
tive equations expressed as a system of differential
equations, x3 ) A-1(x)‚b, is rather difficult to obtain
because the averages of nonlinear terms are unknown.
In this sense, it is interesting to point out that in order
to be able to formulate and solve the 1D conventional
model, and also the so-called hybrid models mentioned
above, one has to carry out additional approximations
to generate a consistent system of first-order differential

ks

r0

∂T
∂ú

) -he(T - Ta) (25)

〈P〉 ) 2∫0

1
P(Z,ú) ú dú (26)

Fvz

∂vz

∂Z
) 2

r0
[(〈τzz〉 - 〈τrr〉)

∂ro

∂Z
- τa

zr] +
∂〈τzz〉
∂Z

-
∂〈τrr〉
∂Z

+

Fg + σ
r0

2

∂r0

∂Z
(27)

Fvz(a ∂〈T〉
∂Z

+ b〈T ∂T
∂Z〉) ) - 2h

r0
(〈T〉 - Ta) +

(〈τzz〉 - 〈τrr〉)
∂vz

∂Z
(28)

〈τp
zzK

λ0
〉 + vz

∂〈τp
zz〉

∂Z
- 2

∂vz

∂Z
(1 - ø)〈τp

zz〉 - vz〈τp
zz

T
∂T
∂Z〉 -

2〈G〉
∂vz

∂Z
) 0 (29)

〈τp
rrK

λ0
〉 + vz

∂〈τp
rr〉

∂Z
+

∂vz

∂Z
(1 - ø)〈τp

rr〉 - vz〈τp
rr

T
∂T
∂Z〉 +

〈G〉
∂vz

∂Z
) 0 (30)

〈τp
zz

λ0
〉 + vz

∂〈τp
zz〉

∂Z
- 2

∂vz

∂Z
〈τp

zz〉 - vz〈τp
zz

T
∂T
∂Z〉 + R′〈(τp

zz)2

Gλ0
〉 -

2〈G〉
∂vz

∂Z
) 0 (31)

〈τp
rr

λ0
〉 + vz

∂〈τp
rr〉

∂Z
+

∂vz

∂Z
〈τp

rr〉 - vz〈τp
rr

T
∂T
∂Z〉 + R′〈(τp

rr)2

Gλ0
〉 +

〈G〉
∂vz

∂Z
) 0 (32)

vz ) vs, 〈T〉 ) T0

r0(0) ) rs, 〈τzz〉 ) τ0, Rel )
〈τrr〉
〈τzz〉

(33)

〈T〉 ) Tg, vz ) vL (34)
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equations that may be solved through the Runge-Kutta
method. These conditions consider that the values of the
averaged stresses are close to the values evaluated at
the filament-air interface. Thus, stresses must be
calculated at the average temperature 〈T〉 with the
consequence that their radial resolutions are lost (the
skin-core structure cannot be predicted). In this context
of analysis, when one is more interested in the evolution
of macroscopic variables concerning the spinning opera-
tion, the following approximations associated with the
determination of the stress tensor are useful (see eqs
28-32):

Under these approximations, the conventional 1D
model can be solved and hybrid models can provide an
estimation of the radial resolution of temperature alone.
Although good predictions of practical variables such
as axial velocity and average temperature can be
obtained with these approximations, more precise cal-
culations are required to explore details of the filament
microstructure. For instance, by solving the numerical
algorithm proposed here for the PET as a case study,
Figure 2 shows that numerical predictions of vz and 〈T〉
along the filament with either the PTTM or the GM
compare well with experimental data reported by
George.23 It is interesting to point out here that Doufas
and McHugh28 also obtained a good prediction for the
same case study in this work by considering a small FIC
(degrees of crystalline phase are on the order of 10-4).
All of these results are consistent in the sense that PET
does not crystallize appreciably in normal melt spinning;
at least the spinning speed is about 4000 m/min or
more.29

Figure 3a shows that the formation of a skin-core
structure is predicted with the numerical algorithm of
the viscoelastic spinning model studied here. In fact, one
observes that for a take-up velocity of 3000 m/min the
stress difference increases toward the filament free
surface in around 34% for the PTTM and 36% for the
GM as a consequence of a small radial decrease of the
temperature field (Figure 3b). Figure 4 provides a 2D
representation of the lines with a constant stress
difference to illustrate better this phenomenon. It is also
relevant to point out here that the temperature profile
predicted with the PTTM presents a small difference
from that provided by the numerical solution with GM,
mainly for high values of Z. This result is due to the
coupling effect between the air-friction coefficient and
the heat-transfer coefficient through parameter â (see
work by Denn26), which is greater for GM (â ) 0.335)
than for PTTM (â ) 0.32). In addition, this coupling
effect also indicates that, although the GM yields an
elongational viscosity higher than that of the PTTM for
elongational rates greater than 30 s-1, clearly the
mechanical power term is not enough to cancel out the
coupling effect through parameter â. It was observed
numerically that thermal and mechanical predictions
are very sensitive to this parameter and, of course,
different rheological models require different values of
â to fit appropriately the available experimental data.

Although numerical predictions for the two rheologi-
cal models used here are in good agreement with
experimental data involving velocity and average tem-

perature, these models predict, however, different stress
fields radially and axially in the filament. The additional
result is that different polymer chain conformations are
obtained in the filament, with this aspect depending on
the choice of rheological models and on the degree of
rheometric information one has available for the evalu-
ation of rheological parameters. In this sense, particular
emphasis should be placed on the rheometric charac-
terization of the polymer to be processed by combining
shear, elongational, and dynamic experimental data in
the determination of rheological parameters.

Figure 5 shows the evolution of the relative chain
extension xtrτ/3G and illustrates that chain exten-
sions are rather poor near the center of the filament,
while at the free surface high values of chain extension
for the amorphous polymer are found. For the PET

〈τ(∂ ln T/∂Z)〉 ≈ τ(〈T〉) ∂ ln 〈T〉/∂Z,
〈τ2/Gλ0〉 ≈ τ2(〈T〉)/[G(〈T〉)λ0(〈T〉)],

〈τK/λ0〉 ≈ τ(〈T〉)K(〈T〉)/λ0(〈T〉), 〈τ/λ0〉 ≈ τ(〈T〉)/λ0(〈T〉)

Figure 2. Numerical predictions of axial spinning velocity vz and
average temperature 〈T〉 for the PET case study: (a) GM; (b)
PTTM. Open and full circles refer to experimental data of George23

for a take-up velocity of 3000 m/min.
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studied here at a take-up velocity of 3000 m/min, we
found that the PTTM yielded a maximum value
(xtrτ/3G)max ≈ 32 while with the GM this value was
around 36. Although these values are relative in part
to the rheological parameters used in the constitutive
equations, mainly those involving the relaxation time
and the shear modulus, it is clear that the microscopic
stretching of polymer chains is rather small in relation
to the macroscopic amount of stretch experienced by the
filament at the draw ratio DR ) 165. Therefore,
extensive slippage of the entanglements within the
polymer network is expected in agreement with previous
results.30

Finally, although it is not reported here, we found
that the skin-core structure and the relative chain
extension increased significantly for lower values of the

polymer thermal conductivity as a consequence of a
sharper radial temperature profile obtained in the
filament. Although our numerical method is formulated
to introduce a thermal conductivity variable with the
temperature (see eq 16), we have used an averaged
value of ks because the required information is not
available in the literature at the present time.

Conclusions
More precise calculations than those reported with

1D models are required in fiber melt spinning to explore

Figure 3. Numerical predictions with PTTM and GM of the radial
variation of fields: (a) stress difference (τzz - τrr); (b) temperature
T at two axial positions. The take-up velocity is the same as that
in Figure 2.

Figure 4. Lines of constant stress difference (τzz - τrr) predicted
by the PTTM. The radial direction comprises 0 e ú e 1, and the
axial direction is within 0 e Z e LT. The plot contains 30 contour
lines and has an aspect ratio of 2 to simulate the slenderness of
the filament. The minimum value reported here is (τzz - τrr)min )
104 Pa, while the maximum value is (τzz - τrr)max ) 1.13 × 107 Pa.
The take-up velocity is 3000 m/min.

Figure 5. Tridimensional representation of the skin-core struc-
ture evaluated through the relative chain extension xtrτ/3G
with the PTTM. The maximum value is (xtrτ/3G)max ≈ 32 at LT.
The take-up velocity is 3000 m/min.
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details of the filament microstructure. For this purpose,
the perturbed 2D model must be solved rigorously.

In the present work the main results are as follows:
(1) A numerical method is proposed based on finite
differences, allowing one to compute a high radial
resolution of stresses and temperature at the precision
desired (for instance, around 100 radial grid points).
Also the classical approximations concerning the aver-
age of nonlinear terms are eliminated by using the
analytical coupling between the perturbed average
model resulting from the rigorous radial average of the
perturbed 2D model and the associated pointwise energy
balance and constitutive equations for stresses. (2) The
constitutive equations used include the retarded elastic
response allowing the computation of the flow domain
from the maximum filament swelling. This effect was
important to predict appropriately the filament velocity
in the low speed range without crystallization. Thus,
there was no need to include small crystallization effects
in the PET to improve the prediction at low take-up
velocity.28 (3) Although different constitutive equations,
like PTTM and GM, can fit well the same experimental
data involving the average temperature and axial
velocity of the filament, the stress fields obtained are
different, yielding also different polymer chain confor-
mations. This result indicates that the choice of consti-
tutive equations should be carried out by placing more
emphasis on the rheometric characterization of the
material to be processed, mainly on those tests involving
extensional flow. (4) The skin-core phenomenon was
quantitatively predicted at low take-up velocities. (5)
Although the heat transfer between cooling air and
multifilament still requires further research because of
the complex coupling between temperature and velocity
fields of both phases, we found quantitatively that for
the particular case of a monofilament the coupling
between air friction and heat transfer is very sensitive
to the values of parameter â as indicated by Denn26 and,
of course, different rheological models require different
â to fit appropriately the experimental data available.
(6) The numerical algorithm considers thermophysical
properties and rheological parameters that depend
pointwise on temperature.

Appendix: Numerical Solution by Finite
Differences

To compute the perturbed 2D model coupled to the
perturbed average model, here we present the main
considerations to be accounted for in the construction
of the numerical algorithm written in finite differences.
First, the perturbed averaged model can be expressed
in the matrix form x3 ) A-1(x)‚b where

and f ) dvz/dZ.8,31 It is then clear that these equations
require the stress fields τzz(Z,ú) and τrr(Z,ú) and the
temperature field T(Z,ú) to evaluate the nonlinear
averages indicated with 〈‚〉 and involved in matrix
A-1(x) (see eqs 28-32). Equation x3 ) A-1(x)‚b can be
written in finite differences by using the fourth-order
Runge-Kutta method32 to get the discrete vector x.
Therefore, from the perturbed 2D model, we calculate
the temperature field from eq 16 written in finite
differences.33 The resulting tridiagonal matrix for the
unknown values of temperatures at the grid points

requires the discrete temperature value at the free
surface, which can be calculated from eq 25 through a
Taylor series expansion. In this algorithm N is the
maximum number of nodes taken for the radial coor-
dinate. In addition, the stress fields from the PTTM (eqs
17 and 18) can be written in the explicit-implicit finite
differences for each axial position Z and any ú. Similar
equations can be derived for the stress fields obtained
from the GM (eqs 19 and 20). Therefore, the structure
of the numerical algorithm consists of solving the
temperature and stress fields to calculate the nonlinear
averages and internal heat-transfer coefficient required
in the perturbed average model, which in turn must be
solved by the fourth-order Runge-Kutta method. These
calculations are carried out iteratively at each axial step
until the convergence criteria are satisfied for the
evaluation of the temperature and stress fields and for
the numerical consistency between the perturbed 2D
and average model. The iterative process also requires
two convergence criteria associated with the determi-
nation of the length L, where the glass temperature is
reached and the filament moves with the take-up
velocity. The sequence of calculations and the coupling
between the perturbed 2D and average models can be
readily visualized through the steps of the flow diagram
presented below, where the iterative loops and the
criteria for convergence are indicated. We also found
that rs ) 1.44rc is the appropriate value for the
comparison with numerical results, as suggested previ-
ously by George.23 It is assumed that the filament
continues cooling for Z > L until the total length LT is
reached at the take-up roller.

The flow diagram of the numerical algorithm is
composed of the following relevant steps:

(A) Input of Numerical Data. (1) Spinning data:
vc, rc, rs, T0, Tg, DR, â, var, Ta, vL ) DRvs. (2) Rheological
parameters: ê, R, λ00, G0, ø, R′. (3) Thermophysical
properties of polymer and air: cv ) a + bT, F, ks, Fa, ηa,
ka, Pr. (4) Numerical parameters: τ0

zz, Rel, ∆Z, ∆τ0
zz, ∆ú,

N, Ev, ET, E1, E2, E3, E4. (5) Control #1.
(B) Iterative Numerical Procedure. (1) Initial

conditions: eqs 33 and 34. (2) Control #2: Z ) Z + ∆Z.
(3) Control #3. (4) Evaluation of a system of first-order
differential equations x3 ) A-1(x)‚b with the Runge-
Kutta method. (5) Control #4. (6) Pointwise calculation
of τzz, τrr, and T by finite difference: eqs 17 and 18 for
the PTTM and eqs 19 and 20 for the GM. (7) Test 1:

where k indicates an iteration number. (8) If false, go
to control #4 (step B-5). (9) Test 2:

In these equations subindex RK indicates a variable
calculated with the Runge-Kutta method and PW
stands for the variable obtained from the average of the
pointwise fields in the finite difference grid. (10) If false,
go to control #3 (step B-3). (11) Evaluation of averages
and the internal heat-transfer coefficient from temper-

x3 ) {∂vz

∂Z
, ∂f
∂Z

,
∂〈τp

zz〉
∂Z

,
∂〈τp

rr〉
∂Z

,
∂〈T〉
∂Z }

1

N
|∑
j)1

N

(Ti,j
k+1 - Ti,j

k )/Ti,j
k | e E1 ≈ 10-6 and

1

N
|∑
j)1

N

(τi,j
k+1 - τi,j

k )/τi,j
k | e E2 ≈ 10-6

|(〈T〉RK
i - 〈T〉PW

i)/〈T〉RK
i| e E3 ≈ 10-6 and

|(〈τ〉RK
i - 〈τ〉PW

i)/〈τ〉RK
i| e E4 ≈ 10-6
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ature and stress fields:

(12) Test 3: |〈T〉i - Tg|/|Tg| e ET ≈ 10-6, where i yields
the number of axial steps used to reach L. (13) If false,
go to control #2 (step B-2). (14) Test 4: |vz

i - vL|/|vL| e
Ev ≈ 10-6. Here Ev and ET are the small errors involving
the averaged temperature and axial velocity. (15) If
false, τ0

zz ) τ0
zz + ∆τ0

zz and go to control #1 (step A-5).
(C) Cooling of the Solid Fiber. (1) Control #5. (2)

Z ) Z + ∆Z. (3) Pointwise calculation of T by finite
difference with eq 16 and constant axial velocity. (4)
Test 5: Is Z ) LT? If false, go to control #5 (step C-1).

(D) Write and Plot of Results.
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