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a  b  s  t  r  a  c  t

The  study  of  biosensors  based  on  graphene  has  increased  in  the  last  years,  the  combination  of  excellent
electrical  properties  and  low  noise  makes  graphene  a material  for  next  generation  electronic  devices.
This work  discusses  the application  of  a  graphene-based  biosensor  for  the  detection  of  amino  acids  histi-
dine  (His),  alanine  (Ala),  aspartic  acid (Asp),  and tyrosine  (Tyr).  First, we  present  the  results  of  modeling
from  first  principles  the  adsorption  of the four  amino  acids  on  a graphene  sheet,  we  calculate  adsorp-
tion  energy,  substrate-adsorbate  distance,  equilibrium  geometrical  configurations  (upon  relaxation)  and
densities  of  states  (DOS)  for each  biomolecule  adsorbed.  Furthermore,  in order  to evaluate  the  effects  of
amino  acid  adsorption  on  the electronic  transport  of  graphene,  we  modeled  a device  using  first-principles
mino acid
dsorption

calculations  with a  combination  of Density  Functional  Theory  (DFT)  and Nonequilibrium  Greens  Func-
tions  (NEGF).  We  provide  with  a detailed  discussion  in terms  of  transmission,  current–voltage  curves,
and  charge  transfer.  We  found  evidence  of differences  in  the electronic  transport  through  the  graphene
sheet  due  to amino  acid adsorption,  reinforcing  the  possibility  of  graphene-based  sensors  for  amino  acid
sequencing of  proteins.

© 2017  Elsevier  B.V.  All  rights  reserved.
. Introduction

The analysis and quantification of biomolecules is crucial in clin-
cal diagnosis and treatment, for this reason in the last years, the
onstruction of biosensors with biomedical application has gained
reat importance [1–3]. For building biosensors, it is needed to
xplore materials with high biocompatibility, sensitivity, selec-
ivity with fast response time, and feasible nanoscale fabrication
rocedures. Graphene, a single layer of carbon atoms, has exhibited
uperior physical and chemical properties than other 3D materials,
ositionning it as a strong candidate for the construction of biosen-
ors [4,5]. This material is characterized as a semi-metal or zero
ap semiconductor. As for its electrical properties, it has shown (i)

 remarkably high electron mobility at room temperature—with
xperimentally reported values in excess of 15,000 cm2 V−1 s−1
6]—, (ii) low resistivity (10−6� cm), (iii) low Johnson noise, which
long with its high electron mobility allow it to be utilized as
he channel in a field effect transistor (FET), (iv) high surface area

∗ Corresponding author.
E-mail address: sindy.rodriguez@ifis.santafe-conicet.gov.ar (S.J. Rodríguez).

ttp://dx.doi.org/10.1016/j.apsusc.2017.05.031
169-4332/© 2017 Elsevier B.V. All rights reserved.
2620 m2/g for both sides of graphene [7], and 1310 m2/g for one-
side (e.g., supported on a substrate).

Theoretical and experimental advances in structures of
graphene-based nanomaterials reported changes in electronic
transport properties of a graphene sheet, due to interactions by
covalent or non-covalent forces between graphene and sever-
als organic molecules [8–12]. Viswanathan et al. [13] described
an approach for the development of a graphene-based biosen-
sor platform using glucose as an example of target molecule.
The presence of external molecules can vary its conductivity and
this variation can either be monitored using a simple chemiresis-
tor or by a transistor based sensor. Ohno et al. [14] investigated
graphene field-effect transistors (GFETs) for electrical detection of
pH and protein adsorptions, the GFETs thus acted as highly sen-
sitive electrical sensors for detecting biomolecule concentrations.
Furthermore, smaller molecules have been sensed: dopamine [15],
and nucleotides in a DNA chain, among others. Zou et al. [16]
reported a DNA sensor based on graphene, the current signals of

the four bases guanine (G), adenine (A), thymine (T) and cyto-
sine (C), were separated efficiently. Zhen et al. [17] developed a
novel FET nanobiosensor based on a chemical vapor deposition

dx.doi.org/10.1016/j.apsusc.2017.05.031
http://www.sciencedirect.com/science/journal/01694332
http://www.elsevier.com/locate/apsusc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.apsusc.2017.05.031&domain=pdf
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Fig. 1. Configuration of the system treated by the NEGF method, with infinite left
S.J. Rodríguez et al. / Applied S

CVD)-grown monolayer of graphene, their sensor turned out ultra-
ensitive, label-free, and highly specific for detection of DNA.

In order to evaluate the possibility of using graphene as an
mino acid sequencer in a protein [18,19], in this work we  stud-
ed the effects produced by the adsorption of amino acids on the
lectronic transport properties of a graphene sheet. The study is
ivided into two parts: (1) equilibrium configuration and charge
ransfer upon adsorption of four amino acids—histidine (His), Ala-
ine (Ala), aspartic acid (Asp) and tyrosine (Tyr)—on a graphene
heet (throughout the article the optimized (i.e., relaxed) struc-
ures are notated as His/grap, Ala/grap, Asp/grap and Tyr/grap).
2) Evaluation of the non-equilibrium transport properties of
raphene—probability of transmission and the current–voltage
I–V) curve—, before and after adsorption.

. Computational details

All the calculations were performed within a pseudopotentials
pproach to the Density Functional Theory (DFT), utilizing the code
penMX3.8 [20,21] and adopting a DFT-D3 approximation for the
xchange-correlation potential (DFT-D3 corrections included van
er Waals interactions [22,23]). First we studied the adsorption of
he four amino acids on graphene: His, Ala, Asp and Tyr, basic, neu-
ral, acid, and aromatic neutral amino acids, respectively. Amino
cids are composed of a carboxyl group ( COOH), an amino group

 NH2), and a side-chain (R group), which distinguishes the nature
f each amino acid. Subsequently, we modeled a device to study the
ffects of the molecules on the electronic transport of graphene.

In order to calculate the adsorption energy Eads(eV) and adsorp-
ion distance dads(Å) a set of relaxations were carried. First, for
ach amino acid (His, Ala, Asp and Tyr), an initial geometry was
btained by optimizing the amino acid structure. Later, with the
im to eventually find the most stable system geometry, the relaxed
olecule was located on a graphene sheet at heights and ori-

ntations diferents—with and within carboxyl and amine groups
arallels to graphene sheet—, and for each atomic arrangement,

 total relaxation of the system was carried out (amino acids
nd graphene atoms). The interaction energy (Eint) was calculated
ccording to:

int (h) = Esub−ads(h) − Eref (1)

here the Esub−ads (h), is the energy of the substrate-adsorbate
ystem for each distance (h) and Eref is the total energy when
he interaction between substrate-adsorbate system is negligible
there is no interaction between amino acids and graphene when

 = 12.5 Å). Finally, the Eads is the minimum interaction energy.
A cut-off energy of 180 Ry was used in the numerical integra-

ions and the solution of Poisson equation, and a k-mesh of 5 × 5 × 1
as used for the self-consistency. For the relaxation, the conver-

ence criterion was of 0.02 eV/Å. The charge transfer was  calculated
rom Mulliken population analysis. The electronic density redistri-
ution over the graphene sheet induced by the adsorbed amino
cids was defined as:

D  = Damino.acid+graphene − Damino.acid − Dgraphene (2)

here D is the charge density.
The effects of the adsorption on the electronic transport proper-

ies of graphene were investigated by first-principles calculations
ithin a combination of DFT and Nonequilibrium Green′s Functions

NEGF). We  defined three regions L, R and C. A central scattering
egion (C) sandwiched between a semi-infinite source (left, L) and
 drain (right, R) electrode regions. We  considered infinite left L and
ight R graphene leads along the x-axis under a two-dimensional
eriodic boundary condition on the yz plane (see Fig. 1). The cen-
ral region C contained the molecules adsorbed on graphene. The
and  right graphene leads along the x-axis under a two-dimensional periodic bound-
ary  condition on the yz plane. The central region is determined as the equilibrium
geometry of amino acids on graphene.

supercell had dimensions 21.30 × 12.29 × 25.00 Å3 with the two
electrode regions containing 20 carbon atoms each, whereas the
central (scattering) region contained 60 carbon atoms belonging
to graphene, plus the amino acid. The voltage was applied along
the x-axis, and a temperature of 600 K was used in the Fermi-Dirac
distribution, which yields a good compromise between accuracy
and efficiency in the implementation of the non-equilibrium Green
function method [21].

We  modeled five devices: His/grap, Ala/grap, Asp/grap, Tyr/grap
and graphene alone. We  applied bias voltages (Vb) between the two
electrodes of the device in the interval of −2 V to 2 V, with the aim of
obtaining the probability of transmission and the current–voltage
(I–V) curve. The transmission probability of electrons incident at
an energy E through the device under the potential bias Vb was
calculated using Landauer′s formula:

T(E) = 1
Vc

∫
BZ

dk3Tk(E) (3)

where Tk(E) is the k-resolved transmission, expression within a
Green′s functions formalism.

The current is evaluated by

I = e

h

∫
dET(E)�f (E) (4)

where f(E) is the difference of Fermi-Dirac distribution functions
centered at the electrodes’ electrochemical potentials.

3. Discussion of results

3.1. Amino acid adsorption
In Fig. 2 the equilibrium configurations are presented. A ten-
dency to a parallel configuration between rings and graphene is
observed for His/grap and Tyr/grap (amino acids His and Tyr have
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Table 1
Adsorption energy (Eads), adsorption distance (dads), and transferred charge (Q) for
substrate-adsorbate systems: His/grap, Ala/grap, Asp/grap and Tyr/grap.

Gap Graphene acceptor or donor Q (e) dads (Å) Eads (eV) Adsorbate

No Donor 0.18 2.97 1.49 His
No  Donor 0.10 3.15 0.91 Ala
ig. 2. Equilibrium geometry for amino acids on graphene (a) His/grap, (b) Ala/grap,
c)  Asp/grap and (d) Tyr/grap. All distances are in Å.

 side-chain composed of an imidazole ring and a phenol group,
espectively). In Tyr/grap the phenol ring is composed of an OH
roup, the stronger interaction between the oxygen atom and
he graphene sheet generates a completely parallel arrangement
etween the ring and the graphene sheet. The nature of tyrosine
olecules to adopt a flat orientation is consistent with experi-
ental studies on graphene oxide (GO) [7]. A parallel arrangement

etween the COOH and NH2 groups and the graphene sheet is
bserved for all systems with minimal energy.

In Table 1 we present Eads and dads (adsorption distance is mea-
ured from the geometric center of the biomolecule to the graphene
heet) for each system. We  report that Eads

Tyr/grap
> Eads

His/grap
> Eads

Asp/grap

 Eads
Ala/grap

, whereas dads
Asp/grap

> dads
Ala/grap

> dads
His/grap

> dads
Tyr/grap

. The
ystems with the highest Eads present lesser substrate-adsorbate
istances (His and Tyr). The amino acids adsorbed on graphene
resent a strong physisorption with substrate-adsorbate distances
No  Donor 0.17 4.00 1.17 Asp
No  Donor 0.12 2.89 1.63 Tyr

greater than 2.8 Å —the values calculated for dads eliminate any
chance of covalent bond formation, i.e. chemisorption is not viable.

We report a charge transfer from the graphene sheet to the
biomolecules of 0.18 e, 0.10 e, 0.17 e and 0.12 e for, His, Ala, Asp and
Tyr, respectively. Graphene is a weak electron donor in all cases.
The order of magnitude of transferred charge is in accordance with
other works [24]. For instance, graphene donates 0.99 electrons to
molecules of 7′70′8′80′-tetracyano-p-quinonedimethane (TNCQ),
in this systems, the adsorption opens a gap in the graphene [25].
For smaller adsorbates NO2 and H2O 0.09 e and 0.025 e are trans-
ferred from the graphene, respectively [26]. The results are shown
in Fig. 3. The green regions correspond to �D> 0, i.e., higher elec-
tron density due to adsorption. The blue regions correspond to
�D<0, the lower charge density due to adsorption. The green sur-
faces are located between the molecule and the graphene sheet;
the electrons that participate in �-� interactions cause the charge
excess (interaction of the �-orbitals residing on the amino acids
and the delocalized p-electrons of graphene). In His/grap, Ala/grap,
and Tyr/grap, the transfer charge generates a vertical dipole, with
the graphene sheet losing charge and the molecule gaining it, as
shown in Fig. 3. The most important effect is a horizontal charge
polarization over the graphene sheet forming a local longitudinal
dipole. A significant charge density over the graphene sheet com-
ing from the COOH and NH2 groups is displayed by Asp/grab—in
this system the local transversal dipole is mainly due to carboxyl
and amine groups, breaking with the vertical dipoles symmetry of
the other amino acids adsorbed. This result is consistent with stud-
ies of the adsorption of benzene rings with carboxyl groups [3,27],
whose the interaction with carboxyl groups and graphene is pre-
dicted to induce adsorbate dipoles through charge transfer between
the molecules and graphene substrates.

We  calculated the density of states (DOS) of graphene alone,
His/grap, Ala/grap, Asp/grap and Tyr/grap. The solid black line
of Fig. 4a displays the well-known DOS for graphene, with its
zero gap and zero states at Fermi energy (Diracs points). His, Asp
and Tyr amino acids introduce states near the Fermi energy level
of graphene at −1.2 eV, −1.8 eV, and −1.3 eV, respectively. These
states do not produce an open-gap in graphene. Ala/grap introduces
states in EF: −2.3 eV (states close to typical DOS of graphene alone).

On the other hand, Fig. 4b shows the states-contribution of the
COOH and NH2 groups to the total DOS, for each system. In all

systems studied, the states at energies −3.8 eV and −2.1 eV are
typical contributions of the COOH (red line with symbols) and

NH2 (dotted turquoise line) groups, respectively (see arrows in
Fig. 4b). The states nearer the Fermi Energy are introduced by the
R groups in His/grap and Tyr/grap (systems with greater adsorp-
tion energy), while for Ala/graphene the states are introduced by
carboxyl and amine groups. Only in the Asp/grap, there are states
at energy −3.1 eV due to carboxyl and amino groups, this explains
the difference in charge distribution for this system Fig. 3c.

3.2. Electronic transport
In Fig. 5, the transmission for the five systems studied, for Vb
= −1, −1.5 and −2 V, is presented, and significant differences in
transmission are given for these bias voltage values. The transmis-
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Fig. 3. Charge density. Light grey regions (green color online) accepted electrons
(�D  > 0), while the dark grey regions (blue color online) lost electrons (�D<0).
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Fig. 4. (a)Total DOS His/grap, Ala/grap, Asp/grap, Tyr/grap and graphene alone. (b)
Total DOS His/grap, Ala/grap, Asp/grap and Tyr/grap. Including for each amino acid,
the individual contribution to the DOS of the lateral chain (violet dotted lines), the
a) His/grap. (b) Ala/graph. (c) Asp/graph. (d) Tyr/grap. (For interpretation of the
eferences to color in this figure legend, the reader is referred to the web version of
his  article.)

ion for adsorbed His, Ala and Asp amino acids (1) increases for Vb
 −1, −1.5 and −2 V, (2) is different in comparison to the graphene
heet alone, and (3) is different for each adsorbed amino acid. Tyr
mino acid shows an increased transmission for Vb = −1, −1.5 V,
ut Tyr causes a decrease for Vb = −2 V. Differences in the transmis-
ions of the amino acids are important if a highly selective device is
equired. The calculated transmissions are in accordance with the
urrent–voltage curves.

Fig. 6 displays the current–voltage (I–V) curve for His/grap,
la/gra, Asp/grap, Tyr/grap and graphene alone. The I–V curve of

he graphene sheet alone exhibits a clear nonlinear behavior, con-
istent with it being a zero-gap semiconductor. In all systems the
alue of the current is very low for an applied Vb between −0.5 V
nd 0.5 V, subsequently, there are significant variations of the cur-
ent, which depend on each amino acid adsorbed. Between 0.5 V

nd 2 V the proposed device has the same sensitivity for His and
la amino acids, this is due to the current corresponding to the
is remains close to the current of the Ala. The device has high

pecificity and sensitivity for Vb between −1 V and −2 V, e.g., for
COOH group (red lines with symbols), and the NH2 group (turquoise dashed
lines). (For interpretation of the references to color in this figure legend, the reader
is  referred to the web  version of this article.)

Vb = −1.5 V, the current difference �I  between each amino acid
adsorbed and the graphene sheet is 0.84 �A, 1.05 �A, 1.52 �A, and
0.27 �A for His, Ala, Asp and Tyr, respectively (in Table 2, �I for dif-
ferent Vb is reported). The values of �I,  are in the order of magnitude
of the �A. Given that this difference is compared with electrical
sensitivity for graphene-based devices, we  propose that through
measurements of the differential drain-source current, the sensor
could detect amino acids in the range of −1 V to −2 V, which could
be useful for protein sequence determination (see Table 2).

It is worth mentioning that the electronic response of some
materials, particularly the 2D systems, can be improved not only by
manipulation of the charge and spin, but also of the valley degrees
of freedom [32–34], which result from the anisotropies in a local
minimum of the conduction bands, or in a maximum of the valence
bands. While this is a plus [35] in carrying and storing information,
it requires more complicated sample geometries, magnetic fields,

or the use of circularly polarized light to read the additional infor-
mation. In our case, however, we consider convenient to keep our
device as simple as possible, as a sensor driven by just an elec-
tric field. Our calculations demonstrate that our standard device
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Fig. 5. Transmission for Vb = −1, −1.5 and 2 V for the graphene sheet alone, His/grap, Ala/grap, Asp/grap, and Tyr/grap. In general, the adsorbed amino acid increases
transmission, only for Tyr/grap a decrease in transmission at Vb = −2 V is observed.
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Table 2
Our theoretical calculations of current sensibility (�I = |Igraphene.alone −
Iamino.acid.adsorbed|) upon amino acid adsorption on graphene (upper part of
table). For comparison, we also show (lower part of the table) orders of magnitude
of experimentally measured currents on biosensing applications based on graphene
FETs available in the literature.

Theoretical graphene-based amino acid biosensing (this work)

�I,  �A (Vb = 2 V) �I, �A (Vb = −1.5 V) �I,  �A (Vb = −1 V) Amino acid

0.31 0.84 0.29 His
0.79 1.05 0.37 Ala
1.87 1.52 0.69 Asp
0.46 0.27 0.18 Tyr

Experimental graphene-based devices

References I (�A) Biomolecule Detected biomolecule

[28] 0.05 Immunoglobulin Ig (G) Protein
[29] 5 E. coli Bacteria
[30] 4 DNA Nucleic acids
Fig. 6. Current–voltage curves.

odel is highly sensitive to amino acids adsorption for a bias volt-
ge, without the need of using the more sophisticated valleytronic
echanisms.

. Conclusions
We  modeled a graphene-based device for amino acid sensing.
he modification of the electronic properties of the graphene sheet
hrough noncovalent functionalization (simple molecular adsorp-
[7] 10 DNA
[31] 1 DNA

tion) is clearly possible. The adsorption process was studied for
four amino acids: His, Ala, Asp and Tyr. We report that Eads

Tyr/grap
>

Eads
His/grap

> Eads
Asp/grap

> Eads
Ala/grap

, whereas dads
Asp/grap

> dads
Ala/grap

> dads
His/grap

> dads
Tyr/grap

. The values reported are typical of a strong physisorption.
A transfer of charge from the graphene to the molecules is
generated due to the substrate-adsorbate interaction (graphene
acts as a weak electronic donor). Local longitudinal and transverse
dipoles are induced by the charge transfer toward the adsorbates.
In order to evaluate the changes in electronic transport of graphene,
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e sandwiched the adsorbed molecule between two graphene
lectrodes (drain-source). When the Vb applied is between −1 V
nd −2 V, the modeled device has high specificity and sensitivity
or the amino acids His, Ala, Asp and Tyr. The theoretical values
or the current are of the same order of magnitude as experi-

ental measurements reported for graphene FET biosensors for
ther biomolecules. The results suggest the possibility to use a
raphene-based biosensor for electrical detection of amino acids,
ith potential application for a protein sequencer.
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