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Ordered mesoporous materials are promising catalyst supports due to their uniform pore size distribution, high specific surface
area and pore volume, tunable pore sizes, and long-range ordering of the pore packing. The evaporation-induced self-assembly
(EISA) process was applied to synthesize mesoporous mixed oxides, which consist of cobalt ions highly dispersed in an alumina
matrix. The characterization of the mesoporous mixed cobalt-aluminum oxides with cobalt loadings in the range from 5 to 15wt%
and calcination temperatures of 673, 973, and 1073K indicates that Co2+ is homogeneously distributed in the mesoporous alumina
matrix. As a function of the Co loading, different phases are present comprising poorly crystalline alumina and mixed cobalt
aluminum oxides of the spinel type. The mixed cobalt-aluminum oxides were applied as catalysts in CO oxidation and turned out
to be highly active.

1. Introduction

Supported metal oxide catalysts have attracted much atten-
tion in recent years due to their widespread applicabil-
ity in industrially and academically important reactions.
The extent and nature of the interaction, dispersion, and
reducibility of the metal oxides depend on the synthesis
method, loading, calcination temperature, and time. Cobalt
supported on alumina is a typical catalyst, which is specially
important for Fischer-Tropsch synthesis. Conventionally, the
preparation of cobalt catalysts is performed by incipient
wetness impregnation using suitable cobalt precursors on
commercial alumina at low pH.Weak interaction is normally
observed between the positively charged alumina carrier and
the cobalt cations resulting in relatively large crystallite sizes
[1–4]. Continuous efforts have been made in the last few
decades by several groups [5–7] to synthesize porous alumina
with high surface area by high-temperature dehydration of

bulk powders [8], modified sol-gel synthesis in the presence
of organic moieties [9, 10], different surfactants [3], block
copolymers [11–14], or evaporation-induced self-assembly
(EISA) with colloidal precursors and amine structural agents
[15, 16]. These materials represent an active support, which
may participate positively or negatively in the formation of
the final catalysts. Moreover, the methods of hard templating
[17] (carbon template) and microwave irradiation [18] in
the presence of surfactants have been applied to synthesize
alumina materials with crystalline, ordered, and uniform
mesopores.However, this process is very time consuming and
hardly scalable for industrial applications.

Ordered mesoporous materials are promising catalyst
supports due to their favourable structural characteristics
[11]. The presence of surface hydroxyl groups offers the
opportunity to supportmetals andmetal oxides with catalytic
activity. Moreover, due to the large pores they provide less
diffusion limitation for the reactants and products. Transition
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aluminas are mainly used as either catalysts or catalyst
supports in various industrially relevant processes. Tradi-
tional alumina supports are nonporous or show disordered
structures with wide pore-size distributions, which makes
it difficult to differentiate which pores are involved in the
reaction. After the discovery of well-ordered, periodically
organized mesoporous silica materials (M41S family, Mobil
[19]), extensive efforts have beenmade to extend the group of
mesoporous materials to alumina systems [20].

The evaporation-induced self-assembly (EISA) process
is a highly suitable approach to design functional meso-
porous oxides with fine-tuned structural, compositional, and
morphological properties [21]. The EISA technique can be
considered liquid crystal template strategy. In this process,
a homogeneous precursor solution is dispersed into fine
droplets and subsequently dried and calcined, which results
in the formation of mesostructured materials. The present
contribution describes an improved synthesis methodology
of mesoporous mixed cobalt-aluminum oxides with vari-
ous cobalt loadings using the EISA process. The materials
were thoroughly characterized by nitrogen physisorption, X-
ray diffraction (XRD), transmission and scanning electron
microscopy (TEM, SEM), X-ray photoelectron spectroscopy
(XPS), and ultra-high vacuum Fourier transformed infrared
spectroscopy (UHV-FTIR) using CO as probe molecule. As
a first catalytic test reaction to monitor the redox properties,
the mixed metal oxides were applied in CO oxidation.

2. Experimental

2.1. Synthesis. All solvents and chemicals were obtained
from Aldrich Chemicals and used as received. The required
amounts of cobalt nitrate and 6.0 g of (EO)20(PO)70(EO)20
triblock copolymer (Pluronic P123) were dissolved in 100mL
of ethanol. Additionally, 12 g of aluminium isopropoxide
was dissolved in 10mL of nitric acid (68%) and 100mL of
ethanol. Once dissolved, the two solutions were combined
and allowed to stir for 5 h. The obtained materials were dried
and calcined at the desired temperatures in a calcination
furnace applying a heating rate of 2 K/min and holding the
final temperature for 6 h.The obtained catalysts were denoted
as 𝑥Co–Al

2
O
3
, where 𝑥 is the Co loading in wt%.

2.2. Characterization. Theprepared catalysts and the support
were characterized by N

2
physisorption measurements at

77 K using a slightly modified Autosorb 1C setup (Quan-
tachrome). Prior to the measurements, the samples were
degassed under vacuum for 2 h at 473K. The specific surface
areas were determined from the adsorption isotherms in the
relative pressure (𝑝/𝑝

0
) range from 0.06 to 0.20 applying

the BET method. The pore-size distributions (PSDs) were
calculated from the nitrogen desorption branch using the
Barrett-Joyner-Halenda (BJH) method considering the max-
imum of the PSD as the average pore size. The pore volume
was considered as the volume of liquid nitrogen adsorbed at
𝑝/𝑝
0
∼ 1.

XRDpatterns were recorded in the 2𝜃 range from 0.5 to 5∘
using D8-Advance-Bruker-AXS diffractometer and 10 to 70∘
(stepwidth of 0.0308∘)with a PanalyticalMPDdiffractometer

using Cu K
𝛼
radiation (𝜆 = 1.5418 Å) at 45 kV and 40mA,

0.58 divergent and antiscatter slits, a 0.2mm high receiving
slit, incident and diffracted beam 0.04 rad soller slits, and a
secondary graphite monochromator. Powder diffraction files
(PDFs) from the International Centre of Diffraction Data
(ICDD) combined with the X’Pert Line software (Panalytical,
Almeno) were used for qualitative phase analysis.

TEM analysis was carried out using a Hitachi H-8100
transmission electron microscope (200 kV, LaB

6
filament).

The samples were prepared by dispersing the powdermaterial
in isopropanol and putting a drop of the solution on a carbon-
coated Cu grid. SEM measurements of the powder materials
were performed with a high-resolution thermally aided field
SEM (Zeiss, LEO1530 Gemini).

X-ray photoelectron spectroscopy (XPS) measurements
were carried out in an ultra-high vacuum (UHV) setup
equipped with a monochromatic Al K

𝛼
X-ray source (h] =

1486.6 eV) operated at 14.5 kV and 35mA and a high-
resolution Gammadata-Scienta SES 2002 analyzer. The base
pressure in the measurement chamber was maintained at
about 7 × 10−10mbar. The measurements were carried out in
the fixed transmission mode with a pass energy of 200 eV
resulting in an overall energy resolution better than 0.5 eV.
A flood gun was applied to compensate the charging effects.
High-resolution C 1s, O 1s, Al 2p, and Co 2p spectra
were recorded. The binding energy scales were recalibrated
based on the C 1s line from adventitious hydrocarbons at
284.8 eV.The Casa XPS software [22] with a 70 : 30 Gaussian-
Lorentzian product function and Shirley background sub-
traction was used for peak deconvolution. The Co 2p spectra
were normalized to the corresponding Al 2p peak areas for
better comparison.

In addition, the interaction of CO with Al
2
O
3
and

Co–Al
2
O
3
nanoparticles was investigated employing UHV-

FTIR spectroscopy. CO was used to probe the comparable
substrates in order to get more information on the local
structure of CO adsorbed on Al

2
O
3
and Co–Al

2
O
3
surfaces

using a novel UHV apparatus combining a state-of-the-art
vacuum IR spectrometer (Bruker, VERTEX 80v) with an
UHV system (Prevac) [23, 24]. Pure alumina and mixed
Co–Al oxide powder samples were first pressed on a gold-
coated stainless steel grid and then mounted on a sample
holder that was specially designed for the FTIR transmission
measurements under UHV conditions. The base pressure in
the measurement chamber was 2 × 10−10mbar. The optical
path inside the IR spectrometer and the space between the
spectrometer andUHVchamberwere also evacuated to avoid
atmosphericmoisture adsorption resulting in high sensitivity
and stability. The samples were cleaned in the UHV chamber
by heating to 850K in order to remove adsorbed species (e.g.,
carbonate and hydroxyl groups) [24]. Prior to each exposure,
the spectrum of clean powder was used as a background
reference. All UHV-FTIR spectra were collected with 1024
scans at a resolution of 4 cm−1 in the transmission mode.

2.3. Catalytic Testing. CO oxidation was performed in a
glass-lined fixed-bed microreactor with an inner diameter
of 4 mm coupled to a gas supply equipped with mass-flow
controllers. Gases were obtained by Air Liquide with the
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Table 1: N2 physisorption results obtained with the Co–Al2O3 oxides.

Sample Surface area/m2 g−1 Pore diameter/nm Pore volume/cm3 g−1

Al2O3 300 6.8 0.70
5Co/Al2O3 (973) 287 8.8 0.82
10Co/Al2O3 (973) 258 7.7 0.74
15Co/Al2O3 (973) 258 5.6 0.66
5Co/Al2O3 (673) 275 8.8 0.78
5Co/Al2O3 (1073) 284 6.6 0.62
𝑥Co–Al2O3 (𝑦) = cobalt loading (wt%) in Al2O3 (calcination temperature, K).
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Figure 1: N
2
physisorption isotherms of (a) pure Al

2
O
3
and (b) 5Co–Al

2
O
3
; the corresponding pore size distributions (BJH method) are

shown in the insets.

following purities: 1.97% H
2
(99.9999%) in He (99.9999%),

1% CO (99.997%), and 20% O
2
(99.995%) in He (99.999%),

as well as pure He (99.9999%).The reactor was filled with 100
mg of the samples in the sieve fraction of 250–350 𝜇m. Prior
to the reaction, the catalysts were reduced with 1.97% H

2
at

573K. After cooling to room temperature, a flow of 1% CO
and 20%O

2
in He was applied (55Nmlmin−1) increasing the

temperature with 5Kmin−1 up to 573K. The concentrations
of CO and CO

2
at the gas outlet were continuously detected

by a nondispersive infrared analyzer, while the O
2
concentra-

tion was measured with a paramagnetic sensor analyzer (X-
STREAM, Emerson).

3. Results and Discussion

The obtained mixed oxides were investigated by N
2

physisorption. The resulting isotherms for the Al
2
O
3
and

the mesoporous Co–Al
2
O
3
oxides were found to be type

IV isotherms with H1 hysteresis loop with a sharp increase
in the amount of nitrogen adsorbed at a relative pressure
(𝑝/𝑝
0
) of about 0.6–0.9. The shape of the isotherm confirms

the mesoporosity of Al
2
O
3
(Figure 1(a)) [11]. Moreover,

even after the addition of cobalt (Figure 1(b)) the textural
properties of Al

2
O
3
weremaintained.The pure Al

2
O
3
sample

exhibited a maximum pore diameter of about 6.8 nm and a
specific surface area of 300m2 g−1 (Table 1). Adding more
cobalt during the synthesis changed the pore size from 8.8 to
5.6 nm. The decrease in pore size could be due to formation
cobalt oxide in the pores in case of higher loading and led to
a slight decrease of the specific surface area.

The TEM images of the mixed Co–Al
2
O
3

samples
(Figure 2) also provide strong evidence that the hexagonally
ordered mesoporous structure of Al

2
O
3
is maintained. The

pore diameters estimated from the micrographs were found
to be 8-9 nm, which is in good agreement with the physisorp-
tion results.

The bulk structure of the Co–Al
2
O
3
samples was inves-

tigated by powder X-ray diffraction. The low angle XRD
measurements (Figure 3) reveal a peak in the range between
0.5 and 5∘ which is in good agreement with the TEM image
of the hexagonally ordered material. The XRD patterns show
the presence of X-ray amorphous alumina and the formation
of a crystalline spinel phase in the samples with higher Co
loadings (Figure 4(a)) and higher calcination temperatures
(Figure 4(b)), which is in good agreement with the results
reported in the literature [25]. It is not possible to differentiate
between Co

3
O
4
and a mixed CoAl

2
O
4
phase, because both

phases crystallize in the cubic spinel structure (Fd3m) and the
ionic radii of Co3+ and Al3+ are nearly of the same value.
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Figure 2: TEM images of the 5Co–Al
2
O
3
oxide calcined at 973K.
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Figure 3: Low angle XRDof the 5Co–Al
2
O
3
oxide calcined at 973K.

Themorphology of the materials was further investigated
by means of SEM. The micrograph of one Co–Al

2
O
3
sample

is shown in Figure 5(a). It indicates that the mixed Co–Al
2
O
3

oxides consist of irregularly shaped agglomerates exhibiting
a sponge-like structure. The homogeneous distribution of
Co inside the alumina matrix is demonstrated by elemental
mapping (Figure 5(b)).

Samples with different Co loadings and different calcina-
tion temperatures were analyzed by means of XPS. The Co
2p spectra of three mixed oxides with different Co loadings
(5, 10, and 15wt%) calcined ex situ at 973K are shown in
Figure 6. All spectra exhibit the same features consisting of
the two main Co 2p

3/2
and 2p

1/2
peaks and two pronounced

satellites at their high-energy side designated as sat1 and sat2.
It is known that the occurrence of satellites is related to the
shake-up process of Co2+ ions in a high-spin configuration,
which is the case for Co–Al

2
O
3
[26]. The analysis of the peak

energies results in a shake-up splitting of 4.9 eV for sat1 and a
Co 2p

3/2
binding energy of 781.4 eV that is in good agreement

Table 2: XPS-derived surface compositions (atom%) of the Co–
Al2O3 oxides.

Sample Co/at% Al/at% sat1/Co 2p
3/2

∗

5Co/Al2O3 (973) 0.5 41.8 0.9
10Co/Al2O3 (973) 0.9 43.1 0.8
15Co/Al2O3 (973) 1.0 42.3 0.7
𝑥Co/Al2O3 (𝑦) = cobalt loading (wt%) on Al2O3 (calcination temperature,
K).
∗Area ratios from the Co 2p region spectra.

with those reported for Co in the CoAl
2
O
4
spinel structure

[22, 26]. The surface concentrations in at% are summarized
in Table 2.

Figure 7 shows the Co surface atomic concentration
(left axis) and the sat1/Co 2p

3/2
area ratio (right axis) as a

function of the Co loading. Comparing the atomic surface
concentrations of Co with the respective sat1/Co 2p

3/2
area

ratios, opposite trends are observed as a function of the Co
loading. When the bulk Co loading is increasing from 5 to
10wt%, the total Co atomic surface concentration increases
from 0.50% to 0.94% indicating that the surface atomic
concentration changes at about the same proportion as the
bulk concentration.However, further addition of Co does not
change the surface composition. Increasing the Co loading
enhances the formation tendency of the pure cobalt oxide
phase Co

3
O
4
, which has weak satellite peaks.This oxide with

spinel structure is a mixture of two different Co oxidation
states with one Co2+ ion in a tetrahedral site and two Co3+
ions in octahedral sites. While the former one is in a high-
spin state, the second is in a low-spin state and does not lead
to a shake-up process [26]. When the XPS area ratio of sat1 to
Co 2p

3/2
is analysed as a function of the Co loading, indeed

a decreasing trend is observed. According to these results, it
is not possible to rule out the existence of a small amount of
Co in the form of Co

3
O
4
in the Co–Al

2
O
3
samples with high

Co loading.
The UHV-FTIR spectra recorded after CO adsorption on

the 5Co–Al
2
O
3
sample at 100K are presented in Figure 8.
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Figure 4: XRD patterns of the Co–Al
2
O
3
oxides with (a) different cobalt loadings: (A) 5wt%, (B) 10wt%, (C) 15 wt%, and (b) different

calcination temperatures: (A) 673K, (B) 973K, and (C) 1073K. The reflections originate from the spinel structure.
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Figure 5: Representative SEM images (a) and elemental mapping (b) of 5Co–Al
2
O
3
.
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oxides calcined at 973K

with different Co loadings.
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Figure 8:UHV-FTIR spectra obtained after exposing the cleanCo
𝑥
O
𝑦
/Al
2
O
3
composite to different doses ofCOat 100K in anUHVchamber;

(a) (A) clean surface, (B) 5 × 10−7mbar, (C) 1 × 10−6mbar, (D) 5 × 10−6mbar, (E) 1 × 10−5mbar, (F) 5 × 10−5mbar, and (G) 1 × 10−4mbar CO;
(b) further heating to the indicated temperatures under UHV.

In order to obtain a clean and adsorbate-free surface the
sample was pretreated in UHV at 850K (Figure 8(a)). After
exposing the clean sample to CO at 100K, a broad single
CO stretching band is observed at 2176 cm−1, which is
asymmetric to higher wavenumbers. This band appears at
higher wavenumbers compared with the corresponding gas
phase CO band (2143 cm−1), which is characteristic for CO
adsorption on oxide surfaces. The interaction of CO with
5Co–Al

2
O
3
was further investigated by varying the temper-

ature. Figure 7(b) shows the UHV-FTIR spectra recorded
after exposing the clean Co–Al

2
O
3
sample to CO at 100K

followed by subsequent heating.With increasing temperature
the intensity of the CO band at 2176 cm−1 decreases markedly
and almost disappears at around 240K.

In order to identify the influence of the cobalt ions
on CO adsorption, further UHV-FTIR experiments were
carried out for a pure mesoporous Al

2
O
3
sample (Figure 9).

After exposing the clean mesoporous Al
2
O
3
sample to CO

at 110 K, a single CO stretching band appears at 2192 cm−1.
This band is assigned to a CO species bound to the Al3+
cations of the mesoporous Al

2
O
3
surface. Figure 8(b) shows

the UHV-FTIR spectra recorded after the sample was heated
subsequently to higher temperatures. Upon heating, the
intensity of theCOband at 2192 cm−1 decreases until the band
completely disappears at around 210K. Simultaneously, the
band shifts slightly to higher frequencies. The blue shift of
the CO band on mesoporous Al

2
O
3
is related to the decrease

of CO coverage at higher temperatures, which is in line with
the results for CO adsorption on other oxide surfaces such as
ZnO [27].

In general, the blue shift of the CO band on both pure
mesoporous Al

2
O
3
and Co–Al

2
O
3
with respect to the gas

phase value can be explained by both the Stark effect and 5𝜎
donation fromCO to the surface cations [23–31]. Importantly,
for both the mesoporous Al

2
O
3
and the 5Co–Al

2
O
3
sample

only one dominating CO band was identified. In comparison
to the band at 2192 cm−1 for pure alumina, the band observed
for 5Co–Al

2
O
3
at 2176 cm−1 is clearly shifted. These findings

provide further spectroscopic evidence for the incorporation
of the Co2+ ions into Al

2
O
3
during the synthesis instead of a

mixture of separated Co and Al oxides.
In previous studies, UHV-FTIR has been used tomonitor

the coadsorption of CO and CO
2
on ZnO nanoparticles

[32]. It was found that the preadsorption of CO
2
leads to

a slight blue shift of the C–O vibrational band. This shift
originates from the formation of tridentate carbonate species
on the nonpolar ZnO(10-10) surface, which increases the
Lewis acidity of neighboring Zn2+ cations and shifts the CO
band to higher wavenumbers [27]. The reverse scenario was
observed for the Co–Al

2
O
3
samples. The presence of Co2+

ions in the Al
2
O
3
structure led to a decrease of the Lewis

acidity of the neighboring Al3+ cations resulting in a decrease
of the C–O stretching band for the mixed Co–Al

2
O
3
oxide

compared with pure alumina. In addition, the observation of
a significantly broader CO band on Co–Al

2
O
3
also implies

the adsorption of CO molecules on different cationic sites.
Further investigations are in progress to gain deeper insight
into the interaction of CO with Co–Al

2
O
3
.

There are ample examples that have been found in current
literature for application of mixed oxide for CO oxidation.
The catalytic redox performance was investigated by applying
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Figure 10: CO oxidation over the Co–Al
2
O
3
composites calcined at

973K as a function of the Co loading.

the mesoporous mixed oxides in CO oxidation. The results
are shown in Figure 10. Prior to reaction, the samples were
reduced in 2% H

2
at 573K. It is evident from the results

that all the samples exhibited good CO oxidation activity,
which strongly increases with increasing Co loadings. The
sample 15Co–Al

2
O
3
reaches full conversion already at about

450K. At 573K, the degree of conversion of the catalysts
remains stable for 1 h time on stream. Cao et al. reported
copper catalyst supported by ceria-zirconia and iron. The
most active catalyst they observed 25% of CuO on ceria-
zirconia and 15–20% of CuO on iron support [27, 32];
moreover, the report demonstrates that both the supports
are active for CO oxidation without copper. We are using
nearly an inert support alumina compared with highly active

not only used as support but also used catalyst phase Fe
2
O
3

and Ce0.8Zr0.2O
2
. Moreover, we are using low amount of

cobalt 5–15% age compared with 20–30% age of copper.
These results demonstrate that EISA is a promising synthetic
approach for catalytic applications.

4. Conclusions

A simple and reproducible synthesis of mesoporous mixed
cobalt aluminumoxides with well-ordered pore structure in a
single-step approach has been successfully demonstrated for
Co contents in the range from 5 to 15 wt%. The cobalt ions
were found to be homogeneously dispersed in a poorly crys-
talline Al

2
O
3
matrix. The surface areas and the TEM results

reflect thewell-orderedmesoporosity of themixedCo–Al
2
O
3

oxides. XPS andUHV-FTIRCOadsorption studies reveal the
presence of CoAl

2
O
4
-like surface species for samples with

low Co loading. The red shift of the CO band relative to pure
Al
2
O
3
indicates a decrease of the surface Lewis acidity due to

the presence of the Co2+ cations. The catalytic CO oxidation
activity was found to increase with the Co loading. For the
catalyst with a Co loading of 15 wt%, 50% CO conversion was
reached at 429K.
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[6] J. Čejka, “Organized mesoporous alumina: synthesis, structure
and potential in catalysis,”Applied Catalysis A: General, vol. 254,
no. 2, pp. 327–338, 2003.

[7] J. T. Pinnavaia, R. Z. Zhang, and R. W. Hicks, “An overview of
mesostructured forms of alumina with crystalline framework
walls,” Studies in Surface Science and Catalysis, vol. 156, pp. 1–10,
2005.

[8] X. S. Fang, C. H. Ye, X. X. Xu, T. Xie, Y. C. Wu, and L. D. Zhang,
“Synthesis and photoluminescence of𝛼-Al

2
O
3
nanowires,” Jour-

nal of Physics: Condensed Matter, vol. 16, p. 4157, 2004.
[9] R.H. Zhao, C. P. Li, F. Guo, and J. F. Chen, “Scale-up preparation

of organized mesoporous alumina in a rotating packed bed,”
Industrial & Engineering Chemistry Research, vol. 46, pp. 3317–
3320, 2007.

[10] T. M. Zima, N. I. Baklanova, and N. Z. Lyakhov, “Mesoporous
structure of Al

2
O
3
prepared from poly(N-vinylpyrrolidone)-

modified sols of hydrousmetal oxides,” InorganicMaterials, vol.
44, no. 2, pp. 146–153, 2008.

[11] P. Yang, D. Zhao, D. I. Margolese, B. F. Chmelka, and G. D.
Stucky, “Generalized syntheses of large-pore mesoporous metal
oxides with semicrystalline frameworks,” Nature, vol. 396, no.
6707, pp. 152–155, 1998.

[12] K. Niesz, P. Yang, and G. A. Somorjai, “Sol-gel synthesis of
ordered mesoporous alumina,” Chemical Communications, no.
15, pp. 1986–1987, 2005.

[13] Z. Zhang and T. J. Pinnavaia, “Mesostructured 𝛾-Al
2
O
3
with

a lathlike framework morphology,” Journal of the American
Chemical Society, vol. 124, no. 41, pp. 12294–12301, 2002.

[14] S. M. Morris, P. F. Fulvio, and M. Jaroniec, “Ordered meso-
porous alumina-supported metal oxides,” Journal of the Ameri-
can Chemical Society, vol. 130, no. 45, pp. 15210–15216, 2008.

[15] Q. Yuan, A. X. Yin, C. Luo et al., “Facile synthesis for ordered
mesoporous 𝛾-aluminas with high thermal stability,” Journal of
the American Chemical Society, vol. 130, no. 11, pp. 3465–3472,
2008.

[16] M. Kuemmel, D. Grosso, C. Boissière et al., “Thermally stable
nanocrystalline 𝛾-alumina layers with highly ordered 3Dmeso-
porosity,” Angewandte Chemie, vol. 44, no. 29, pp. 4589–4592,
2005.

[17] Q. Liu, A. Wang, X. Wang, and T. Zhang, “Ordered crystalline
alumina molecular sieves synthesized via a nanocasting route,”
Chemistry of Materials, vol. 18, no. 22, pp. 5153–5155, 2006.

[18] T.-Z. Ren, Z.-Y. Yuan, and B.-L. Su, “Microwave-assisted prepa-
ration of hierarchical mesoporous-macroporous boehmite
AlOOH and 𝛾-Al

2
O
3
,” Langmuir, vol. 20, no. 4, pp. 1531–1534,

2004.
[19] C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, and J. S.

Beck, “Ordered mesoporous molecular sieves synthesized by a
liquid-crystal template mechanism,” Nature, vol. 359, no. 6397,
pp. 710–712, 1992.

[20] G. J. D. A. A. Soler-Illia, C. Sanchez, B. Lebeau, and J. Patarin,
“Chemical strategies to design texturedmaterials: frommicrop-
orous andmesoporous oxides to nanonetworks andhierarchical
structures,” Journal of Chemical Reviews, vol. 102, no. 11, pp.
4093–4138, 2002.

[21] D. Grosso, F. Cagnol, G. J. D. A. A. Soler-Illia et al., “Funda-
mentals of mesostructuring through evaporation-induced self-
assembly,” Advanced Functional Materials, vol. 14, no. 4, pp.
309–322, 2004.

[22] N. Fairley, CasaXPS Version 2.3.15, Copyright 1999–2009, Casa
Software, 1999.

[23] H. Noei, H. Qiu, Y. Wang, M. Muhler, and C. Wöll, “Hydrogen
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