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Monadic MV-algebras I: a study of subvarieties

CeciLiA R. CIMADAMORE AND J. PATRICIO DiAZ VARELA

ABSTRACT. In this paper, we study and classify some important subvarieties of the
variety of monadic MV-algebras. We introduce the notion of width of a monadic
MV-algebra and we prove that the equational class of monadic MV-algebras of finite
width k is generated by the monadic MV-algebra [0, l}k. We describe completely the
lattice of subvarieties of the subvariety V([0,1]¥) generated by [0,1]¥. We prove that
the subvariety generated by a subdirectly irreducible monadic MV-algebra of finite
width depends on the order and rank of VA, the partition associated to A of the set
of coatoms of the boolean subalgebra B(A) of its complemented elements, and the
width of the algebra. We also give an equational basis for each proper subvariety in
V([0,1]%). Finally, we give some results about subvarieties of infinite width.

1. Introduction

To give an algebraic proof of the completeness of the Lukasiewicz infinite-
valued sentential calculus, Chang introduced MV-algebras in [2]. In [11],
Komori gave a complete description of the lattice of all subvarieties of MV-
algebras and showed that each proper subvariety is finitely axiomatizable.
Moreover, he proved that each proper subvariety of MV-algebras is generated
by a finite set of totally ordered MV-algebras (MV-chains) of finite rank. After
that, in [9], Di Nola and Lettieri gave equational bases for all MV-varieties.

Monadic MV-algebras, MM V-algebras for short, were introduced and stud-
ied by Rutledge in [13] as an algebraic model for the monadic predicate calculus
of Lukasiewicz infinite-valued logic, in which only a single individual variable
occurs. He gave MMV-algebras the name of monadic Chang algebras. Rut-
ledge followed Halmos’ study of monadic boolean algebras and represented
each subdirectly irreducible MMV-algebra as a subalgebra of a functional
MMV-algebra. From this representation, he proved the completeness of the
monadic predicate calculus.

As usual, a functional MMV-algebra is defined as follows. Let us consider
the MV-algebra VX of all functions from a nonempty set X to an MV-algebra
V, where the operations @, —, and 0 are defined pointwise. If for p € VX,
there exist the supremum and the infimum of the set {p(y) : y € X}, then we
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define the constant functions 3y (p)(x) = sup{p(y) : y € X} and VA(p)(z) =
inf{p(y) : y € X}, for every x € X. A functional MMV-algebra A’ is an
MM V-algebra whose MV-reduct is an MV-subalgebra of VX and such that the
existential and universal operators are the functions 3\, and V,, respectively.
Observe that A’ satisfies that

(1) if p € A’, then the elements sup{p(y) : y € X} and inf{p(y) : y € X} exist
in V,
(2) if p € A’, then the constant functions 3y (p) and V(p) are in A’.

By a functional representation of an MMV-algebra A, we mean simply a func-
tional MMV-algebra A’ such that A is isomorphic to A’.

As MMV-algebras form the algebraic semantics of the monadic predicate
infinite-valued calculus of Lukasiewicz, then the subvarieties of the variety
MMV of MMV-algebras are in one-to-one correspondence with the interme-
diate logics.

In this paper, we study and classify some important subvarieties of MMV-
algebras. From Rutledge’s representation of an MMV-algebra, we introduce
the notion of width of an MMV-algebra. We prove that if A is a subdirectly
irreducible MM V-algebra whose width is less than or equal to a finite positive
integer k, then A is isomorphic to a subalgebra of the functional MMV-algebra
(VA)*. We also prove that the equational class of all MMV-algebras of width
k is generated by [0, l]k, and we give the identity (*) that characterizes it.

We describe completely the lattice of subvarieties of the subvariety of MM V-
algebras 1([0,1]") generated by [0,1]". One of the most important results in
this paper is that the subvariety generated by a subdirectly irreducible MMV-
algebra A € V(]0,1]") depends on the order and rank of YA, its width, and the
partition associated to A of the set of coatoms of the boolean subalgebra B(A)
of its complemented elements. We also give the identities that characterize
each proper subvariety in V([0, 1]").

Finally in this paper, we give some results about subvarieties of infinite
width, but the problem of classification and axiomatization of these subva-
rieties in general is still open. We prove that the variety generated by a
functional MMV-algebra [0, l]X, where X is infinite, is the variety generated
by the set {[0, l]k : k positive integer}. As a consequence, we give a finite set
of generators for some simple subvarieties.

This work is the first of three. These papers can be considered as a unity
and they are part of the Ph.D. Thesis [5]. In the second paper, we study the
class of {—,V, 1}-subreducts of MMV-algebras. We introduce the equations
that characterize this class and we prove that it is a variety. An algebra in this
variety is called a monadic Lukasiewicz implication algebra. The main goal
of this work is that the width of a monadic Lukasiewicz implication algebra
A and the order of the Lukasiewicz implication algebra VA determine the
subvariety that the algebra generates, and this result determines completely
the lattice of subvarieties of the variety [7]. The last of the papers studies the
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class of {®, —,V, 1}-subreducts of monadic MV-algebras. In this case, we also
prove that this class is an equational class and we introduce a set of equations
that describe it. An algebra in this variety is called a monadic Wajsberg hoop.
One of the most important results in this last paper is that the subvariety that
generates a subdirectly irreducible monadic Wajsberg hoop A depends on its
width and the subvariety of Wajsberg hoop that VA generates. We also study
and classify the subvarieties of cancellative monadic Wajsberg hoops.

This paper is structured as follows. In Section 2, we give the basic definitions
and results about MV-algebras and MMV-algebras that we need in this paper.
In Section 3, we characterize the directly indecomposable members of MMV.
In Section 4, we give the notion of width of an MMV-algebra and we prove that
if A is a subdirectly irreducible MMV-algebra whose width is less than or equal
to k, then A is isomorphic to a subalgebra of (VA)*. We also prove that the
equational class of MMV-algebras of width k is generated by the MMV-algebra
[0, 1]’“7 and we give the identity that characterizes it. In Section 5, we study
the subvarieties generated by an algebra A of finite width and such that VA
has finite rank. In Section 5.1, we begin by studying the subvarieties generated
by simple algebras of width k. We clarify the inclusion property between them
and we give the identities that characterize them. In Section 5.2, we prove that
the subvariety generated by a non-simple subdirectly irreducible MMV-algebra
A of finite width depends on the rank of VA, the partition associated to A of
the coatoms of the boolean subalgebra B(A) of the complemented elements of
A, and its width. We also give the identities that characterize each subvariety
of this type. In Section 6, we describe the lattice of subvarieties of the variety
of MMV-algebras generated by [0,1]"
each proper subvariety in it. Finally, in Section 7, we study some subvarieties
generated by functional MMV-algebras of infinite width.

and we give an equational basis for

2. Preliminaries

In this section, we include the basic definitions and results on MV-algebras
and monadic MV-algebras that we need in the rest of the paper. We start
by recalling the definition of MV-algebras. These algebras were introduced by
C. C. Chang in [2] as algebraic models for Lukasiewicz infinitely-valued logic.
We refer the reader to [4].

An MV-algebra is an algebra A = (A; @, —,0) of type (2, 1,0) satisfying the
following identities:

(MV1) 2@ (y®2)= (zdy) @z, (MV4) -—z =z,
(MV2) zdy~ydua, (MV5) z & -0 =~ -0,
(MV3) 260 =~ x, (MV6) ~(-z@®y)Dy~-(-yPx)de.
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We denote by MV the equational class of all MV-algebras. If K is a set of
MV-algebras, we denote by Vaqp(K) the subvariety of MV generated by K.
Where there is no risk of confusion, we just write V(K). In the particular case
that K is equal to a single algebra A, then we write simply Vaq,(A).

On each MV-algebra A, we define the constant 1 and the operations ® and
— as follows: 1 := -0, 2@y := (2@ y), and x -y = Dy We
write x < gy if and only if -z @& y = 1. It follows that < is a partial order,
called the natural order of A. An MV-algebra whose natural order is total
is called an MV-chain. On each MV-algebra, the natural order determines a
lattice structure. Specifically, ztVy = (z©® ~y) Pyand c Ay =2 O (-z D y).
MV-algebras are non-idempotent generalizations of boolean algebras. Indeed,
boolean algebras are just the MV-algebras obeying the additional identity
x@ax ~ z. Let A be an MV-algebra and B(A) = {a € A: a®a = a} be
the set of all idempotent elements of A. Then B(A) = (B(A);®,—,0) is a
subalgebra of A, which is also a boolean algebra. Indeed, it is the greatest
boolean subalgebra of A.

The real interval [0, 1], enriched with the operations a®b = min{1, a+b} and
—a = 1—a, is an MV-algebra that we denote by [0,1]. Chang proved in [3] that
this algebra generates the variety MV. Let N be the set of all the positive in-
tegers. For every n € N, we denote by S,, = (S, = {O, %, ey ”771, 1} ;@,,0)
the finite MV-subalgebra of [0, 1] with n + 1 elements.

Mundici [12] defined a functor I' between MV-algebras and (abelian) (-
groups with strong unit u, and proved that I" is a categorical equivalence. For
every abelian ¢(-group G, the functor I' equips the unit interval [0, u] with the
operations t ®y = u A (z +y), " = u—ax and 1 = u. The resulting structure
I'(G,u) = ([0, u]; ®,,0) is an MV-algebra. Set S,,, = I'(Z xZ, (n,0)), where
Z is the totally ordered additive group of integers and Z x Z is the lexicographic
product of Z by itself. Note that S,, is isomorphic to I'(Z,n), and we write
S, =2T(Z,n).

A subset I’ of an MV-algebra A is a filter if it is closed under ®, and a < b,
a € Fimply b € F. Let Fg(X) denote the filter generated by X C A. It is easy
to check that Fg(X) = {b€A:a10a® - ®a, <b, ay,as,...,a, € X}.
A filter F is called prime if and only if F' # A and whenever a V b € F, then
either a € F or b € F. A filter F is called mazimal if and only if it is proper
and no proper filter of A strictly contains F'. Every maximal filter is prime,
but not conversely. Also, F'is prime if and only if A/F is totally ordered. The
intersection of all maximal filters, the radical of A, is denoted by Rad(A).

For every a € A and n € N, we write a” instead of a®---®a (n times). For
each a € A such that a # 1, we say that ord(a) = n if n is the least positive
integer such that a™ = 0. If no such integer exists, we write ord(a) = w. We
write ord(A) = m if m = sup{n € N : there isa € A — {1} with ord(a) = n},
and following [11], we define rank(A) = ord(A/Rad(A)). It is known that if
A is an MV-chain, then A/Rad(A) is a simple MV-algebra. So A/Rad(A) is
isomorphic to a subalgebra of [0, 1]. Moreover, for each non-trivial MV-algebra
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A, we have that rank(A) < n if and only if A satisfies
((n+ 1)2™)? ~ 22", (Pn)

if and only if A € V({Siw,---,Snw}), if and only if A/Rad(A) €
V({S1,...,Sn}) [9].

In [11], Komori gave a complete description of the lattice of subvarieties of
MYV and showed that each proper subvariety of MV-algebras is generated by a
finite set of MV-chains of finite rank. Indeed, he proved that a class V of MV-
algebras is a proper variety if and only if there are two finite sets I and J of
positive integers such that 7U.J is nonempty and V =V ({S; }icr U {S; w}jer)-
Furthermore, in [9], Di Nola and Lettieri gave equational bases for all MV-
varieties. They proved that if V is a proper subvariety of MV, then for any
MV-algebra A, we have that A € V if and only if A satisfies the identities

(n+1)a")? ~ 22" (Pn)
where n = max{I U J},
(pxpfl)n+1 ~ (TL + 1)xp (,an)

for every positive integer 1 < p < n such that p is not a divisor of any i € TUJ,
and
(n+1)az? = (n+2)z¢

for every g € U,c; (D(r)\U,c, D(s)), where D(r) and D(s) are the sets of
positive divisors of r and s, respectively.

An algebra A = (A;®,—,3,0) of type (2,1,1,0) is called a monadic MV-
algebra (an MMV-algebra for short) if (A;®,—,0) is an MV-algebra and 3
satisfies the following identities:

(MMV1) z < 3Jz, (MMV4) 3(Fz @ Jy) ~ Jz & Ty,
(MMV2) 3(zVy) =~ Iz V Iy, (MMV5) Az ® z) =~ Jz © Jz,
(MMV3) 3-3z ~ -3, (MMV6) 3(z @ z) ~ 3z & 3.

In an MMV-algebra A, we define V: A — A by Va = —3—a, for every a € A.
Clearly, da = —V—a. In the following lemma, we state that V satisfies identities
dual to (MMV1)—-(MMV6).

Lemma 2.1. In every MMV-algebra A, the following equations are satisfied.

(MMVT) Vz < x, (MMV10) V(Vz © Vy) = Yz O Vy,
(MMV8) V(z Ay) = Ve AVy, (MMV11) V(z© x) =~ Va O Ve,
(MMV9) V—Vz ~ Vi, (MMV12) V(z & 2) ~ Vo & Va.

For our purposes, it is more convenient to consider the operator V instead
of 3. So from now on, we consider an algebra A = (A4;®, -, V,0) as an MMV-
algebra if V satisfies the identities of Lemma 2.1. We often write (A;V) for
short.
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The variety of monadic MV-algebras is denoted by MMV . The next lemma

collects some basic properties of MMV-algebras.

Lemma 2.2. [13, 6] Let A € MMV. For every a,b € A, the following
properties hold:

(MMV13) Y0 =0 (MMV16) ¥(—a @& b) < ~Va & Vb,
(MMV14) Wa = Va, (MMV17) V(Ya V ¥b) = Va v Vb,
(MMV15) V(Va & ¥b) = Ya & Vb, (MMV18) Y(a v Vb) = Va v b.

Consider theset VA={a € A:a=Va} ={a € A:a = 3a}. It is an imme-
diate consequence of (MMV9), (MMV13), (MMV14), and (MMV15) that VA
is a subalgebra of A.

In every MMV-algebra A, congruences are determined by monadic filters.
A subset ' C A is said to be a monadic filter of A if F is a filter of A
and Va € F whenever a € F. For any set X C A, let FMg(X) denote
the monadic filter generated by X. It is easy to check that FMg(X) =
{be A:Va; ©Vas ®---OVa, <b, aj,as,...,a, € X}. Note that FMg(X)
= Fg(vVX). If F'is a monadic filter of A, then the relation 0 defined on A
by afpb if and only if (a — b) ® (e — b) € F' is a congruence. Moreover, the
correspondence F' +— @ is an isomorphism between the lattice of monadic
filters and the lattice of congruences of an MMV-algebra. On the other hand,
there exists an isomorphism between the lattice of monadic filters of A and
the lattice of filters of VA given by the correspondence F — F NVA [13].
From this, it is not difficult to see that any MMV-algebra A is isomorphic to
a subdirect product of MMV-algebras A; such that VA, is totally ordered.

The following result will also be necessary.

Theorem 2.3. [13] Let A be an MMV-algebra such that VYA is totally ordered.
For each a € A with a # 1, there is a prime filter P, of A such that

(1) a ¢ P,

(2) P,NVA = {1}, and

(3) ifr <1, thenaVVr¢ P,.

From this theorem, Rutledge proved the following characterization, which
will be needed.

Proposition 2.4. [13] If A is an MMV-algebra such that YA is totally ordered,
then the MV-reduct of A is isomorphic to a subdirect product of totally ordered
MV-algebras B;, fori € I, where the canonical projections w;: A — B; satisfy
that VA = m;(VA) C B;.

If A is a finite subdirectly irreducible MMV-algebra, then A is isomorphic
to (VA)* for some positive integer k, where @, —, and 0 are defined pointwise
and Y, : (VA)* — (VA)* is defined by

VA ({ar,ag, ... an)) = (a1 Aag A - Nap,...,a1 Nag A+ Aay).
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Let us notice that 3y ({(a1,az2,...,a,)) = (a1Vaz2V---Van,...,a1VasV---Vay,).
Moreover, VA is isomorphic to the diagonal subalgebra of the product [8].

For each integer n > 1, let K, be the class of MMV-algebras that satisfy

the identity

AR (0)
Then /C; is the variety of monadic boolean algebras, and it is clear that if
n < [, then K, C ;. If A is a finite subdirectly irreducible MMV-algebra
in IC,,, then A = SﬁT for some m such that 1 < m < n and for some k € N
(see [8]). In addition, the variety K, = V({SF, : k € N,1 <m < n} and the
variety MMV = V({SE : n,k € N}) [6].

Let A be an MMV-algebra. We define the monadic radical of A, denoted
by RadMon(A), as the intersection of all maximal monadic filters of A. Tt is
easy to see that Rad(VA) = RadMon(A) NVA. In particular, Rad(VA) = {1}
if and only if RadMon(A) = {1}.

Let us recall that in every MV-algebra A, x € Rad(A) if and only if 22" = 1
for every positive integer n. Then if A is an MMV-algebra, Rad(A) is a
monadic filter (see identity (MMV20) in Lemma 4.2). It is not difficult to see
that Rad(A) = RadMon(A).

Let us consider the set B(A) of boolean elements of an MMV-algebra A. We
know that B(A) is an MV-subalgebra of the MV-reduct of A. Furthermore,
if a € B(A), then a = a® a. So Va =V(a @ a) = VYa @ Va. Then Va € B(A).
Thus, B(A) is an MMV-subalgebra of A. If A is a subdirectly irreducible
MMV-algebra, then VA is a chain and B(A) is a simple monadic boolean
algebra. Let us recall that a monadic boolean algebra B is simple if and only
if B is subdirectly irreducible if and only if V: B — B is defined by

Va — 0 ifa<l,
1 ifa=1.

3. Direct products

In this section, we characterize the directly indecomposable members of the
variety MMV . We prove that an MMV-algebra A is directly indecomposable
if and only if the monadic boolean algebra B(A) is simple.

Let us recall that in an MV-algebra A, we have that [b) = {a € A:b < a}
is a filter of A if and only if [b) = Fg(b) if and only if b € B(A). From this,
we easily have the following.

Lemma 3.1. Let A be an MMYV-algebra. The following are equivalent:
(1) b€ B(A) and Vb =b,

(2) [b) € Far(A), where Far(A) is the set of monadic filters of A,

(3) [b) = FMg(b).

It is straightforward to see the following result.
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Lemma 3.2. Let A be an MMV-algebra and b € B(A)—{1}. Let —: A — A
and Vy: A — A be defined by —px := —x Vb and ¥ (x) := Va V b, respectively.
Then [b) = ([b); D, v, Vp, 0) is an MM V-algebra.

Corollary 3.3. For every MMV-algebra A and b € B(A) — {1} such that we
have ¥b = b, let us define the function hy: A — A by hy(x) := 2V b. Then
[b) = ([b); ®, w, ¥, b) is an MMV-algebra, and hy, is a homomorphism from A
onto [b) with Ker(hy) = [-b).

Corollary 3.4. For every MMV-algebra A and b € B(A) — {1} such that

Vb = b, we have:

(a) the MMV-algebras [b) and A/[-b) are isomorphic,

(b) [b) is a subalgebra of A if and only if b =0,

(¢) B([b)) =[b) N B(A) and in addition, if [b) is a chain, then b is a coatom
of the boolean algebra B(A).

Lemma 3.5. Let P =[], ; A; be the direct product of {A;}icr, a nonempty
family of MMV-algebras. Then there is a set {b; : i € I} C B(P)NV(P)
satisfying the following conditions:

(a) /\iEI b; =0,

(¢) A, is isomorphic to [b;) for each i.

Proof. For eachi € I,let by: I — |J;c; Ai be defined by b;(i) = 0 and b;(j) = 1
for i # j. Then b; € B(P) and Vb; = b;, and we have (a) and (b). Let
m;: P — A; be the canonical projection, and let hy,: P — [b;) be defined
as previously. Then Ker(hy,) = [-b;) = {f € P : f(i) = 1} = Ker(m;). We
conclude that [b;) is isomorphic to A; for each i € I. O

Lemma 3.6. Let A be an MMV-algebra. If for k > 2 there are boolean
elements by, ..., by such that

(a) Yb; = b; for each i,

(b) ifi # j, then b; Vb; =1, and

(¢)by A+ ANb =0,
then A is isomorphic to [by) X - -+ x [bg).

Proof. Let h: A — [by) X -+ x [by) be defined by h(a) ={aV by,...,aV by).
From (c), we have that ﬂle[—\bi) = {1}. Then h is a monomorphism. Let
(a1,...,a) € [b1) x -+ x [b). Then from (b), h(a1 A--- Aag) = (a1,...,ax).
So h is also surjective. Thus, & is an isomorphism. |

As a consequence of the above lemmas, we have the following.

Theorem 3.7. An MMV-algebra A is directly indecomposable if and only if
the boolean monadic algebra B(A) is simple.

Corollary 3.8. If A is an MMV-algebra and b € B(A) is a coatom of B(A)
such that Vb = b, then the MMV-algebra [b) is directly indecomposable.
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4. MMV-algebras of finite width

In this section, we introduce the notion of width of an MMV-algebra and
we prove that if A is a subdirectly irreducible MMV-algebra of width less than
or equal to k, then A is isomorphic to a subalgebra of (VA)*. We also prove
that the equational class of all MMV-algebras of width k is generated by the
MMV-algebra [0, 1]*.

The following result is due to Rutledge.

Theorem 4.1. [13] Let A be an MMV-algebra such that VA is totally or-
dered. Then A is isomorphic to a functional MMYV-algebra whose elements
are functions from a set I to an MV-chain V.

The set I of Theorem 4.1 is the set of all prime filters {P, : a € A — {1}}
given in Theorem 2.3. The MV-chain V has a quite convoluted construction.
For our purposes, it is enough to note that there exists an MV-monomorphism
from A/P, to V for each P, € I. We refer the reader to the monograph [13]
for details on the construction of V.

It is not difficult to see that [0,1]N = ([0,1]N;®,—,VA,0) is an MMV-
algebra. Furthermore, [0,1]" generates the variety MMYV. Indeed, for each
positive integers n and k, we have that S¥ is a subalgebra of [0,1]Y. Then

V(SE) <V ([0, 1]N>. We also know that MMV =V ({Sk :n,k € N}) (see
[6]). Thus, MMV =V ({Sk :n, k € N}) € V([0,1]") € MMV.
Since [0, 1]V generates the variety MMV, we have the following lemma.

Lemma 4.2. The following identities are satisfied in every MMV-algebra, for
each positive integer n.

(MMV19) V(nz) ~ n(Vz), (MMV21) 3(2™) =~ (Fz)™,
(MMV20) V(z") = (Va)™, (MMV?22) F(nz) ~

It is known that if A is a subdirectly irreducible MMV-chain, then VA = A
[8]. So the next lemma follows.

Lemma 4.3. Let A be a subdirectly irreducible MMV-algebra. Then A is a
chain if and only if A satisfies

Vo ~ . (ab)

For each integer k > 2, let us consider the identity

k41 k+1
V(i\:/l /\X;) —>J\=/1ij ~ 1, (k)

where X = {z1,22,..., 2k, Tp+1}, X; =X — {x;}, and A X, is the infimum
of all the elements of X .
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Let us observe that (a*) can be written as
k+1
/\ V(xz; Vay) \/ Va; ~ 1. (a®)
{1<i<j<k+1}

Let us consider the set I of Theorem 4.1 and the set I of all minimal prime
filters of A. For each P; € I, we have that P, C P, for some P, € I. Then
P, NVYA = {1} for each P, € I. From this, and by an argument similar
to the one in the proof of Proposition 2.4, we have that the MV-reduct of
A is a subdirectly product of MV-algebras A/P; totally ordered, where the
projections 7;: A — A/P; satisfy that VA = 7;(VA) C A/P;. We say that
this representation of A is minimal because the intersection of all the filters
except one is always different from {1}, and the intersection of all the filters
is equal to {1}. Then, the MV-algebra A is a subdirect product of A/P;, for
Pel.

Proposition 4.4. If A is an MMV-algebra such that (a*) holds in A and YA
is totally ordered, then the set I has at most k elements.

Proof. Suppose that the cardinal of I is greater than k. Let us consider k + 1
elements y;, for j € {1,...,k + 1}, such that for all j, y; € (", ., P, y; & P
and y; < 1. From the above paragraph, we have that A is isomorphic to a
monadic functional subalgebra of VI, Since y; € P for all P; € I, except for
P, the representation of the element y; in V7 has all its components equal to
1, except in the place j. That is,

e

v; ifi =7,

where v; < 1. Then VA (y;) = (vj,...,v5) <(1,...,1). If i # j, then y; Vy; =
(1,...,1). Let us denote by v the supremum \/fil1 v;. Since V is a chain, we
have that v < 1. Then

k41
/\ Ay Vi) — \/V/\yj 1) = (v.0)
{1§i<j§k+1}
= (v, 0) <(1,...,1)
This contradicts (a*). O

Proposition 4.5. If A is an MMV-subalgebra of a functional MMV-algebra
(V™ V) such that 'V is an MV-chain, n is a positive integer, and VA is a chain,
then A is isomorphic to a subalgebra of (VA)™.

Proof. For each i € {1,...,n}, let us consider the epimorphism m;[,: A —
V. We are going to show that for each i, m;[4(VA) = mi[4(A). Clearly,
il 4(VA) C m;]4(A). Let us prove that for every b € A, there exists ¢ € VA
such that m;(b) = m;(¢). The proof of this is an induction argument on n.
The case n = 1 is trivial because A = VA. Let us suppose that it is true
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for n = k. Let A C Vk*1 and a = (a1,0a9,...,ar,ar41) € A. Without
loss of generality, we can assume that a1 < as < -+ < ap < ag4q since V
is a chain. If i = 1 or ¢« = k 4+ 1, we have that m1(a) = a1 = m1(Va) and
Tg+1(a) = ag+1 = mg41(Ja). In addition, a —Va = (1,a2 —aq,...,ax+1 — ay)
and Ja — a = (ag+1 — a1, Q41 — A2, ..., Q41 — g, 1). Thus,

(a—Va)V(Fa—a) = (1, (aa—a1)V(agt1—a2),. .., (ax—a1)V(ag+1—ar), 1).

Let B be the subalgebra of V¥*1 on the set B = {a € Vhtl gy = ag+1}. Then
B = V¥ and (a—Va)V(Ja—a) € B. Furthermore, (a—Va)V(3a—a) € ANB.
Let 1 <i<k+1. Then m;((a = Va)V (Ja—a)) = (a; — a1) V (ar41 — a;).
Since V is a chain, two cases arise.
Suppose first that a;—a; > ar+1—a;. Then m;((a—Va)V(Ja—a)) = a;—a.
So ((a —Va)V (Ja — a)) — Va = (ej)1<j<k+1, where

ay ifj=1lorj=k+1,
ej =9 ((aj —a1)V(ag+1 —aj)) —ar ifj ¢ {1l,ik+1},
(a; —a1) — a; if j =1.

Then the i-component of ((a — Va) V (Ja — a)) — Va is equal to a; V a1 = a;.
Also, ((a —Va)V (Ja—a)) — Va € BN A, and from the induction hypothesis
on ANB = ANVF thereis ¢ € V(AN B) C VA such that 7;(c) = a;.

The other case to consider is that in which a; — a; < agy1 — a;. Then
mi((a—Va)V(Ja—a)) = apy1—a;. So ((a—Va)V(Ja—a))©3a = (e;)1<j<it1,
where

Qp+1 ifj=1lorj=k+1,
€; = ((aj —>a1)v(ak+1 —>aj))®ak+1 lfj ¢ {17i,k+1},
(ag+1 — a;) © ags1 if j =1.

Then 7;(((a — Va) V (Ja — a)) ® Ja) = ar4+1 A a; = a;. Thus, we have that
((a—Va)V (3a—a)) ®3Ja € AN B and, by the induction hypothesis, we have
that there is d € V(AN B) C VA such that m;(d) = a,. O

Corollary 4.6. Let A be a subdirectly irreducible MMV-algebra satisfying
(a¥), then A is isomorphic to a subalgebra of (VA)F.

Definition 4.7. Let A € MMYV. We define the width of A, denoted by
width(A), as the least integer k such that (*) holds in A. If k does not exist,
then we say that the width of A is infinite and we write width(A) = w.

As a consequence of Corollary 4.6, we have the following result, which will
be needed for the description of the subvarieties of MMV-algebras that sat-
isfy (a®).

Corollary 4.8. If A is a subdirectly irreducible MMV-algebra that satisfies
(a¥), then the algebra of complemented elements B(A) is isomorphic to a
subalgebra of the simple monadic boolean algebra 2.



82 C. R. Cimadamore and J. P. Diaz Varela Algebra Univers.

It is straightforward to prove the next result.

Lemma 4.9. Let X = {1,...,k} be a finite set and A be an MV-algebra (not
necessarily an MV-chain). Let us consider the product AX where @, -, and
0 are defined pointwise and ¥x: AX — AX is defined by Vn ({ay,...,a,)) =
{ag N Nap,...,a1 A+ ANayp). Then AX = (AX;®,—,VA,0) is an MMV-
algebra.

Let us observe that the MMV-algebra AX of the last lemma satisfies that
VA (AX) is isomorphic to A. From now on, we denote AX by A* if X is the
finite set {1,...,k}.

Proposition 4.10. Let A and B be two MV-algebras such that A € V 1 (B).
Then, for each positive integer k, we have that A* € V yay (BF).

Proof. Let A € Vyyp(B) = HSPauy(B). Then, there is W € SP(B)
such that A is a homomorphic image of W. Let h: W — A be the MV-
epimorphism from W onto A. This epimorphism induces naturally an MV-
epimorphism h: W* — AF defined by h((wy,...,we)) = (h(w1),..., h(wg)).
From Lemma 4.9, we know that (W¥;V,) and (A¥;V,) are MMV-algebras. It
is easy to see that h is a MMV-homomorphism.

On the other hand, W is a subalgebra of a direct product [[;.; B of B. It

is straightforward to see that (W*;V,) is an MMV-subalgebra of (IT;¢; B)k.
Moreover, : (Hiel B)]C — Hiel B* defined by cp((a})iej,...,(af)ieﬁ =
((a},...,ak))ier is an MMV-isomorphism. So A* € HSP(BF¥), and this means
that AF € VMMv(Bk) (I

Consider the MMV-algebra [0,1]" = ([0, 1]¥;®, =, VA, 0). We will now see
that the subvariety generated by [0, 1]k is the class of all MMV-algebras that
satisfy (a®).

Observe that @, =, and V,, are continuous functions over [0, 1]* with the
product topology. Recall that this topology is induced by the metric d(z,y) =
maxi<j<k{|z; —y;|}. Then for each MMV-term 7(z1, 22, ..., z5), the function
rlou*, ([0,1]¥)" — [0,1]* is continuous. It is straightforward to see that if
1 < mnp <mny < --- is an infinite sequence of positive integers, then the set
U{Sk :i=0,1,...} is dense in [0, 1]*. Then we have the following.

Lemma 4.11. Let k be a fized positive integer. If 1 < ng < nj < --- is an

infinite sequence of positive integers, then V({Sk :i=0,1,...}) =V([0, 1]k)

Let us recall that if A is an infinite subalgebra of the MV-algebra [0, 1], then
A is a dense subchain of [0, 1] [4, Prop. 3.5.3]. From this and the continuity of
the term functions over [0, 1]¥, we have the following result.

Lemma 4.12. If A is an infinite subalgebra of the MV-algebra [0, 1], then
v (a) =V (o,1]").
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In the next theorem, we prove that (a*) is the identity that characterizes
the subvariety V([0,1]") within MMYV.

Theorem 4.13. The subvariety of MMV generated by the algebra [0, l]k 18
characterized by the identity (o).

Proof. Let us consider first the case k = 1. Clearly, [0, 1] satisfies (a'). Con-
versely, if A is a subdirectly irreducible algebra that satisfies (a!), then from
Lemma 4.3, we know that A is a chain. Then A € V([0,1]).

Let k be an integer such that & > 2, and let us see that (o¥) holds in [0, 1]*.
First observe that

k+1 k+1 k1 k41
WV AXD) = Ve~ V(v AXD) = vag).
i=1 j=1 j=1 i=1
Let ay,as,...,ax, a1 € [0,1]%. Let A = {ay,as,...,ax,ary1}, and for

eachj € {1,...,k+1},let A7 = A—{a;}. Since A has k+1 elements, we have
that there is some j such that A A= A A;. Then A A; < a;. In addition, if

i # j, then A A7 < a;. Thus, \/I7] A A7 < ;. ThenV(\/kH/\A )SVaj

and from this, we have that V (\/kJr1 NAT ) —Va; = 1. This implies that (*)
is satisfied.

Let A be a subdirectly irreducible algebra that satisfies (o). From Corol-
lary 4.6, we know that A is isomorphic to a subalgebra of (VA)*. In addition,
the MV-algebra VA € V ([0, 1]). Then from Proposition 4.10, we have that
(VA)* € Vo ([0,1]7). Consequently, A € Vs (]0,1]7). 0
Corollary 4.14. V([0,1]") € V([0,1]°) if and only if t < s.

Proof. Analogously to the proof of Theorem 4.13, we can see that if ¢ < s,
then [0,1]" satisfies (a®). Hence, if ¢ < s, then V([0,1]") C V([0,1]°). Let
us prove now that if ¢ > s, then [0, 1]’ does not satisfy (o*). For that, let us
consider the subalgebra B([0,1]") of boolean elements of [0,1]". Since ¢ > s,

we can consider a set {z1,...,Zsy1} with s + 1 coatoms of B([0,1]"). Then
Va; =0 for each j € {1,...,s+1}. If i # j, then z; V z; = 1. Consequently,
s+1
/\ V(z, Vaj)— \/sz (I1—0)=0.
1<i<j<s+1
So [0,1]" does not satisfy (a®). O

From Lemma 4.11 and since the variety MMV is generated by its finite
members, we have the following result.

Lemma 4.15. If1 < ky < ko < --- is an infinite sequence of natural numbers,
then V ({[0, 0% i=1,2,... }) = MMV.
Consequently, there is an w-chain

V([0,1)) € V([0,1]) € -+ € V([0,1]") C -+ € MMV
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in the lattice of subvarieties of MMYV.

Lemma 4.16. If A is a subdirectly irreducible MMV-algebra with A = (VA)*
and rank(VA) = w, then V(A) = V([0,1]%).

Proof. Analogously to the proof of Theorem 4.13, we can see that A sat-
isfies (a*). Then V(A) C V([0,1]%). On the other hand, we know that
VA/Rad(VA) is a simple MV-algebra. Then VA/Rad(VA) is a subalge-
bra of [0,1] that is also infinite since ord (VA/Rad(VA)) = w. So from

Lemma 4.12 we conclude that V([0,1]") = V ((VA/ Rad(VA))k> C V(A).
Hence, V(A) = V([0,1]"). 0

5. Subvarieties of finite width and rank

In this section, we describe for each positive integer k the subvarieties of
width k. We divide this section into two. In Section 5.1, we study the subvari-
eties generated by simple algebras of width k. We clarify the inclusion relation
between them and we give an equational basis for each one. In Section 5.2,
we describe the subvarieties generated by non-simple algebras such that VA
has finite rank n and width k. The aim of this section is to prove that the
variety generated by a non-simple subdirectly irreducible MMV-algebra A of
finite width k depends on the order and rank of VA and partition of {1,...,k}
associated to the boolean algebra B(A) of its complemented elements.

5.1. Subvarieties generated by simple algebras. In the following, let k,
s, n, and m be positive integer numbers.

Let us consider the following subvarieties of the variety K,, defined in Sec-
tion 2. Let KF be the subvariety generated by {S¥, S5, ... Sk}, If n = 1, then
K1 is the variety of monadic boolean algebras and it is a well-known fact that
the lattice of subvarieties of Ky is an w + 1-chain

KicKic - CKI G- Sk

More generally, KL C K2 C --- C Kk C ... C K,. Also, KF C K3, if and
only if n <m and k < s [1].

Lemma 5.1. An MMV-algebra A is in KE if and only if A satisfies (o)
and (0,,).

Proof. We know that if m < n, then S,,, satisfies (§,). Then S, satisfies (§,,).
In addition, S, is a subalgebra of [0, l]k. So from Theorem 4.13 we have that
Sk satisfies (o). Thus, if A € KF = V({Sk, S5 ... ,SE1), then A satisfies
(*) and (6,).

Conversely, let A be a subdirectly irreducible algebra that satisfies (a*) and
(05,). Then VA is an MV-chain such that (d,,) holds in VA. This implies that
VA is isomorphic to S,, for some m < n. From Corollary 4.6, we have that A

is a subalgebra of S¥ . Hence, A € KF = V({S¥,Sk ... SF1). O
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Let us see now subvarieties generated by a simple MMV-algebra.

Lemma 5.2. If A € MMV is a subdirectly irreducible algebra such that
ord(VA) = m and width(A) = k, then A = SE  and hence V(A) = V(SE)).

m’

Proof. If A is subdirectly irreducible and ord(VA) = m, then VA = S,,,. Since
width(A) = k and from Corollary 4.6, we have that A is a subalgebra of S .
Then A = S¥ for some k' < k [1]. Since width(A) = k, then k = k’. Then
A = Sk | and consequently V(A) = V(Sk). O

The subvariety generated by Sk is denoted by MMV,’?,T

Corollary 5.3. The subvariety MMV} = V(S%) is characterized by the iden-
tities (01) and (a¥), and the subvariety MMVE = V(8S5) is characterized by
(62) and (aF).

Proposition 5.4. The subvariety MMV,kl = V(Sk), for n > 3, is character-
ized by the identities:

k+1 k-+1
VIVAXT) =V vz~ 1, (a®)
i=1 j=1
o 2, (52)
(pa? )" & (n+ 1)a?, (Yp)
or every integer p =2, ...,n — 1 such that p is not a divisor of n.
Y g

Proof. The subvariety of MV-algebras generated by S,, is characterized by
equations (J,) and (v,,). Then S¥, satisfies (4,,) and (vnp) [9]. From Theo-
k is a subalgebra of [0, 1]"

rem 4.13 and taking into account that Sy,

that SE also satisfies (o).

Let A be a subdirectly irreducible algebra that satisfies (a*), (6,), and
(Ynp)- Then VA is an MV-chain that satisfies (,,) and (ynp). So VA is
isomorphic to S,, for some m such that m divides n. In addition, from Corol-
lary 4.6, we have that A is isomorphic to a subalgebra of S¥ . This implies
that A € V(Sk). O

, we conclude

Since 82, is a subalgebra of SF if and only if m divides n and s < k, we
have the following relation between the varieties MMVE .

Lemma 5.5. Let n, m, k, and s be positive integer numbers. Then we have

MMV C MMVE if and only if m divides n and s < k.

5.2. Subvarieties generated by non-simple algebras. Let us recall the
following theorem, which is a consequence of Theorems 5.8 and 5.10 of the
monograph [10].

Theorem 5.6. [10] If V is an MV-chain of rank n, then V. € ISPy a1 (Sp w)-

Proposition 5.7. If V is an MV-chain of rank n, then the MMV-algebra V*
belongs to ISPy (SE ) for each positive integer k.
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Proof. Let k be a positive integer and let V be an MV-chain of rank n. Then
there is an MV-algebra W € SPuy ) (Sh,.) such that V is isomorphic to W,
and there exist a set I, an ultrafilter U of the boolean algebra of subsets of I,
and an injective MV-homomorphism h: W — [];c; Sn./U. Let us observe
that [[,c; Sn.w/U is totally ordered since the property of being totally ordered
is preserved under ultraproducts.

From Proposition 4.9, we know that ((IT;c; Sn,w/U)k ;Va) is an MMV-
algebra where the operator V, is defined by Va {(a})ic1/U, ..., (af)ic1/U) =
(¢,...,c) and ¢ = A§:1<ag>iej/U. In a natural way, the MV-monomorphism
h induces an MMV-monomorphism h: (W V5) — ((T];c; SnM/U)k ;Va) de-
fined by h({w1,...,wg)) = (A(wy), ..., h(wg)).

Let us prove that ((IT;; Smw/U)k ; V) is isomorphic to ([,c; Sk ,/U;V).
Let )

0: (11 Snw/U) — I1ShL/U
icl iel
be defined by ¢ (((al)icr/U,...,{(a¥)icr/U)) = (a},...,al)icr/U. 1t is clear
that ¢ is an MV-epimorphism. Let us see now that ¢ is an injective MMV-
homomorphism. Indeed,

Vallal)ier/U,.... (af)ier/U) = ( A ((a])ie1/U), ...,

Jj=1 J

aicr/UY = (it /U, - .., {ciier /U,

1

E

(<ag>iEI/U)>

>

>

k .
= (A aiier/U,...¢

where ¢; = /\?=1 al. Then
o((ci)ier/Us ... (ci)ier/U) = (¢i ..., ci)ier/U = (Valaf, ..., af))ier /U
=V(<a},...,af>ieI/U) :V(d) (<<ail>iej/U,...,(af}ieI/U»).

Let us suppose that (a},...,a¥);c;/U = (1,...,1);er/U. Then we have that

{fiel:{a},...,aF)=(,....,1)} €eU. Thus,{i€l:al=---=aF=1}€U.
Since for all j, {i € I :al =--- =aF =1} C {i € I : ¢/ = 1}, we have that
{iel:al =1} € U. Then (al)ie;/U = (1)ie1/U, for all j. In consequence,
¢ is injective. Hence, V¥ € ISPy(S) ). O

As a consequence of Proposition 5.7 and Corollary 4.6, we have the following
theorem.

Theorem 5.8. If A € MMYV is a subdirectly irreducible algebra such that
width(A) = k and VA is an MV-chain of rank n, then A € ISPy(SE ). In
particular, A € V(Sk ).

Let us denote by MMVZVW the subvariety of MMV-algebras that satisfy
the identities (), (p,), and (y,,), for each integer p = 2,...,n — 1 that does
not divide n. Let us prove that ./\/lMthw is equal to the subvariety generated
by SF .
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Lemma 5.9. Let n and k be positive integers; then V(S ) = ./\/l./\/lVfW.

Proof. The identities (p,,) and (7,,) characterize the variety of MV-algebras
generated by S,, . Then SE  satisfies (p,) and (y,p) [9]. In addition, from

n,w

Proposition 4.10, we know that S¥ € Vayup ([0, 1]k). Thus, from Theo-

n,w

rem 4.13, we have that S} , satisfies (o). It follows that V(S}, ) C MMV’ZM.
Let A be a subdirectly irreducible algebra that satisfies (p,) and (,,), for
each integer 1 < p < n such that p is not a divisor of n, and satisfies (o*). From

Theorem 5.8, we have that A € V(SF ). Then MMVQM CV(Sk ). O

k

n,w

Since S7, , and S;, are subalgebras of S

m,w

if and only if m divides n and
s < k, we have the following inclusion relation.

Lemma 5.10. Let n, m, k, and s be positive integers.
(1) MMV; C MMVZM if and only if m divides n and s < k.
(2) MMV;, , C MMVZM if and only if m divides n and s < k.

Let A be a subdirectly irreducible MMV-algebra that satisfies (a*) and
such that VA is a non-simple MV-chain of rank n. From Corollary 4.6, we
know that A is a subalgebra of the MMV-algebra (YA)*. From now on, we
identify A with this subalgebra. We also have that A/ Rad(A) is a subalgebra
of (VA)*/Rad((VA)*) = (YA/Rad(VA))*. So A/Rad(A) is embeddable into
Sk. Consequently, A/Rad(A) is isomorphic to 8% where s < k.

Let us note that B(SF) is isomorphic to 2¥. Indeed, f € B(SF) if and
only if f(i) € {0,1} for all 4 € {1,...,k}. It is well known that there is a
correspondence between the family of all subalgebras of 2F and the partitions
of the set of coatoms of 2¥. In addition, the partitions of this set are in a
natural correspondence with the partitions of the set {1,...,k}. Then we
have a one-to-one onto correspondence between the set of subalgebras of 2*
and the set of all partitions of {1,...,k}. Let P = {Py, P,..., Ps} be the
partition of {1,...,k} determined by a subalgebra B, = 2 of B(S¥). Then
the elements f of the subalgebra By are f € S such that f(r) € {0,1} for
all r € {1,...,k}, and such that f(i) = f(j) ifti,j € P, for all t € {1,...,s}.
Let us observe also that each coatom f7, for j € {1,...,s}, of B, is obtained
by the meet of the coatoms of B(SF) corresponding to the element P; in the
partition P. So f7 satisfies that f7(i) = 1 if i ¢ P;, and f7(i) =0 if i € P;.

Lemma 5.11. Let A be a subdirectly irreducible MMV-algebra that satisfies
(a*) and such that VA is a non-simple MV-chain of rank n. Then A/Rad(A)
is isomorphic to St if and only if B(A) is isomorphic to 2°.

Proof. Let us observe that A/Rad(A) is isomorphic to S with s < k. Then
B(A/Rad(A)) is isomorphic to 2°. Since {1} = B(A)NRad(A), we have that
k: A — A/Rad(A) is the natural epimorphism and x[g(4) : B(A) — B(S;)
is one to one. Moreover, k[g(a) is onto. Indeed, let b € B(S;,), so there is
¢ € A such that x(c) = b. From Corollary 4.6, we know that A is isomorphic
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to a subalgebra of (YA)*. Since rank(VA) = n, we have that 2¢" ! is boolean.
Then #(2¢") = 2(k(c))"*! = 20"+ = b. Thus, k|4 is onto. O

Proposition 5.12. If A is a subdirectly irreducible MM V-algebra that satisfies
(), VA is a non-simple MV-chain of rank n, and A/Rad(A) is isomorphic
to Sk, then V(A) =V(Sk ) = MMV} .

Proof. If A/Rad(A) is isomorphic to S¥, then from Lemma 5.11, we know
that B(A) is isomorphic to 2F. Then A is isomorphic to (VA)*. By Rut-
ledge’s representation, A is isomorphic as MMV-algebra to ((YA)¥,V,). So
from Proposition 4.10, we conclude that V(A) = V((VA)*) = V(SE ). O

Now we analyze the case in which A/Rad(A) is isomorphic to a proper
subalgebra of S¥. For this, we introduce the identity

s+1
N V@t v 2zt — \/ V(22 ) (82)
1<i<j<s+1
Proposition 5.13. Let A € MMV be a subdirectly irreducible algebra that
satisfies that rank(VA) = n and width(A) = k. Then the identity (33) holds
in A if and only if B(A) is isomorphic to a subalgebra of 2%.

Proof. Let us suppose that (32) holds in A and B(A) is isomorphic to 2! with
s < t. Let {aj,...,as41} be a subset of the set of coatoms of B(A) with
s+ 1 pairwise different elements. Then A o, ;< 4 V(27 v Qa?“) =1and
\/;i} V(Za?“) = 0. This contradicts (3%).

Let A be such that B(A) is isomorphic to a subalgebra of 2°. Then the set
of coatoms of B(A) has at most s elements. Suppose that (53) does not hold
in A. Then there exist s + 1 elements {2a)™" : i € {1,...,5+1}} in B(A)
such that A\, o V(2a7t v Qa;-”rl) 1 and \/SJrl (Qa?“) = 0. This
means that 2a7" \/Za?+1 =1fori# j,and 2a™" # 1 for all i. So B(A) has
at least s + 1 coatoms, and this is a contradiction. ([

Definition 5.14. Let A € MMV with rank(VA) = n and width(A) = k.
We define the boolean width of A, denoted by bwidth(A), as the least integer
s such that (82) holds in A.

From Corollary 4.8, the boolean width of an MMV-algebra of finite width
A exists and it is less than or equal to the width of A. Moreover, from
Proposition 5.13, we have that if the boolean width of A is equal to s, then
B(A) is isomorphic to 2°.

Let us denote by (VA)®! the MMV-subalgebra of (VA)* generated by
V(A*) U Rad(AF). Observe that (VA)¥! is the largest subalgebra of (VA)*
that satisfies the identity (4}). In particular, SF:! is the MMV-subalgebra of
Sk ., generated by the constant elements V(S} ) and Rad(SF ).

Let us suppose now that bwidth(A) = 1. In the following, we prove that

V(A) = V(SkL). For that purpose, we need some more results.
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Lemma 5.15. If A € ISPy(B) and an identity of type 7(x1,...,2,) = 1
holds in A, then there exists a subalgebra S of B such that A € ISPy(S) and
T~ 1 holds in S.

Proof. Let A € ISPy(B). This means that A is isomorphic to a subalgebra
of an ultraproduct [[,.; B/U. We identify A with this subalgebra. Let S
the subalgebra of B generated by all the elements a(i), for each a € A and
{i} € U. Then S satisfies 7 ~ 1. Let 5 € [[,.; S/U be defined by the class of

o(0) = {a(i) if {i} € U,
1 if{i}eU

As 5 = @, we have that A is isomorphic to a subalgebra of an ultraproduct
[I;c; S/U where S is a subalgebra of B that satisfies the identity 7 ~ 1. [0

As a consequence of Lemma 5.15 and Theorem 5.8, if bwidth(A) = 1, then
A € ISPy(S) where S is a subalgebra of S¥  such that bwidth(S) = 1.

n,w

Lemma 5.16. If S is a subalgebra of SE  such that bwidth(S) = 1, then S

n,w

is a subalgebra of Sﬁ’,iw
From the last lemma and Lemma 5.15, we have the following.

Corollary 5.17. Let A be a subdirectly irreducible MMV-algebra such that
rank(VA) = n, width(A) = k and bwidth(A) = 1. Then A € ISPy(SEL).
In particular, A € V(SEL).

Proposition 5.18. Let A be a subdirectly irreducible MMV-algebra such that
rank(VA) = n, width(A) = k, and bwidth(A) = 1. Then there exists a
subalgebra B of A such that B is isomorphic to (VB)¥! and rank(VB) = n.

Proof. If A is a subdirectly irreducible MMV-algebra such that rank(VA) = n,
width(A) = k, and bwidth(A) = 1, then A is isomorphic to a subalgebra of
(YA)*!. We proceed by induction on k. If & = 1, then A is a chain, and
the proposition is obvious in this case. Let us suppose that if D is isomorphic
to a subalgebra of (VD)*!, then there exists a subalgebra E of D such that
E is isomorphic to (VE)®!. Let us consider A, which is isomorphic to a
subalgebra of (VA)*1:! and the subalgebra B; of (VA)**1!, where Bj; =
{x € (VAR : x(i) = x(j)} for i # j. Note that width(Bj;) = k. Let us
consider the subalgebra of A given by B;; = A N B};. Then V(B;;) = VA
and B;; is embedabble into (VA)®!. By the induction assumption, there
exists a subalgebra C;; of B;; such that C;; is isomorphic to (VC;;)®! and
also rank(C;;) = n and V(C;;) is a subalgebra of VA. Let us consider the
subalgebra C = [, ,; V(C;;) of VA with rank(C) = n. Let us prove that
(CF+L1y, ) is a subalgebra of A. First note that C**1:! is a subalgebra of
(VA)R+LL Let x € CFULIf y(i) = x(j) for i # j, then x € Cj;. Thus,
X € A. Let us suppose that x (i) # x(j) for all ¢ # j. Then we can assume
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that x(1) < x(2) <--- < x(k+1). Consider

) (1)’X(3)37X(k+1)> € CmBlQ g A7
X2 = <X(1)7X(2)7X(2)’ te ’X(k + 1)> € Cﬂng g A.

Then x1 V x2 = x € A. O

Theorem 5.19. Let A be a subdirectly irreducible MMV-algebra such that
rank(VA) = n, width(A) = k, and bwidth(A) = 1. Then V(A) = V(SEL).

Proof. From Proposition 5.18, there exists a subalgebra B of A such that B is
isomorphic to (VB)*!. Observe that B satisfies (3}). Then V(SE1) = V(B) C
V(A). Finally, from Corollary 5.17, we have the desired result. O

Theorem 5.20. If n = 1 or n = 2, then the identities (B), (a*) and (p,)
characterize the subvariety generated by Skl If n >3, then (8}), (a¥), (pn),
and

_1\n+1
(pe?~1)"" &= (n+ 1)a?, (Ynp)

for each natural number 1 < p < n such that p does not divide n, characterize
the subvariety generated by Sﬁ:}u

Finally, let us suppose that 1 < bwidth(A) = s < k. Then, as before,
there is a partition P = {Py,..., Ps} of the set {1,...,k} associated to the
subalgebra B(A) = 2%, We will prove that the subvariety generated by A
depends on the rank of VA, its width, its boolean width, and the partition P
associated to B(A).

Let b; be the coatom determined by the element P; of P; denote the set
{a € A:b; <a} by [b;). From Lemma 3.2, we know that we can define a
structure of MMV-algebra in [b;). As a consequence, if A is a subdirectly
irreducible algebra such that rank(VA) = n, width(A) = k, bwidth(A) = s
and b; is a coatom of B(A), then [b;) is an MMV-algebra. We denote by
p; the cardinal of each P; € P associated to B(A). Then the MMV-algebra
([bi); ¥p,;) has width p;, rank(Vy,[b;)) = n, and is indecomposable. Then [b;)
is isomorphic to a subalgebra of (VA)Pi:1. Moreover, the identity

pitl pitl
V(V AXT) = V Ve (a??)
i=1 j=1
where X = {x1,...,2p, 41} and X; = X — {z,}, holds in ([b;); Vs,).
As MV-algebras, A is isomorphic to a subalgebra of (VA)P1:1x. .. x (VA)Ps1,
In addition, (A;V) is isomorphic to a subalgebra of ((VA)¥FP:V,) where we
denote by (VA)*F the algebra (VA)P:! x .- x (VA)Ps:! for short.

Lemma 5.21. Let A be a subdirectly irreducible algebra such that rank(VA) =
n, width(A) = k, and bwidth(A) = s with s > 1. Let P = {Py,..., Ps} be the
partition of {1,...,k} associated to B(A), where the cardinal of each subset
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P, € P is denoted by p;. Let (f&F) be the identity

(e o)n( (e va )

1<i<j<s
A (/\(VQx;}ﬂ PN 0)) A (/\(HQx?H o 1)>)
i=1 i=1
(VN G0 )~
oeP({1,...,s}) i=1 o (i)

where the operation < is defined by © — y = (v —y) A (y — z), P({1,...,s}
is the set of all permutations of the set {1,...,s}, and

ol (7Y, L)
0)
is an abbreviation of
Po(i)t1 Po(i)t1
Q)
g VAZ) =V Va6 =
Po( y+1 Po(i)t+1
n+1 o(i) n+1
\/ ANz veril) = (v vars),
j=1
where Z = {279 ., Z(: 1t and Zo = Z—{z 7OV Then (f*P) holds in A.

Proof. Let aq,...,as be elements of A. Note that

((/S\ 247+ o) A ( A(@arttveaith) o 1))

i=1 i#j
/\(i_/\l(v2a?+l o 0)> A (/_\(32(1;”'1 o 1)) —1

if and only if the set {2a7, ..., 2a7t1} is exactly the set of coatoms of B(A).
In addition, if the last set is not the set of coatoms then

S

( A 2451 ) A (/\((2ay+1 V247t o 1))

i=1 i
A2 < 0) A (A @26 < 1) =0
i=1 i=1
We know there is a permutation o’ of {1,..., s} such that {2a"+1 1<i<s}

is the set of coatoms associated to P. Moreover, <[2a0?11)) Vo, nt1 ) satisfies
o’ (i)
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that for all 4,
/ / Por (i) +1 Por(i)t+1 ,
Wty e ) oy (VAT =V Vg 57
o’ (1) r=1 =1
Por(iyt1 Por (i)t

= (V( \/ /\Z;) v QaZE.l)) — \/ (Vz?/(i) \/QQZ,JEZ.l)) =1.
r=1

Jj=1

Do’ (4 "4 (i :
Then we have that A]_; ay’ (n)+1 (27 @ ., ZZGEL?)H) = 1 and, in consequence,
a ) i
o' (i)

S

Po (i) o (i) o () .
\/ ( aV2an+1 (Zl st Zpo(i)+1) =1.
ceP({1,...,s}) =1 o (i)

Hence, the identity (f*F) holds in A. O

Let P = {Py,..., P} be a given partition of the set {1,...,k}. Let us
consider the MMV-subalgebra

SZ’E ={acSk  :a(i)/Rad(S,.) = a(j)/Rad(S,.) if i,5 € P; for some t}.

n,w

Observe that Va(SE ) = VA(SEE). Indeed, VA(SEE) C VA(SE ) and if
b e Va(SE ), we know that b is constant. So it is clear that b € V5(SET).

For each ¢ € {1,...,s}, let p; = |P;| be the cardinal of P, € P and b; the
coatom of S}F determined by P; € P. Defining in the set A; = [b;) N SEE =
{a € SPF by < a} the operator —,x := -z V b;, we know that A; =
(Ay;®,—w,,b;) is an MV-algebra. Then the MV-reduct of S¥P is isomorphic

n,w
to the MV-algebra A; x---x A;. Indeed, the operator 1 : S’flfj — A X XA
defined by ¢(a) = (a V by,...,a V bs) is an MV-isomorphism. In addition, A;
is isomorphic to Sﬁi;}, for each i¢. Thus the MV-reduct of Sﬁ’}: is isomorphic
to Sﬁl’;} X oo X Sﬁjgdl.

If the cardinal of P is 1, then the subalgebra SE-P is isomorphic to S&1,
and if it is equal to k, then Sﬁ:g = Sfl)w.

As a consequence of Lemma 3.2, we have that A, = [b;) N Sﬁ,w is an
MMV-algebra, and it is straightforward to see that A; is isomorphic to the
MMV-algebra Sf;u} From Lemma 5.21, we know also that (f*¥) holds in

kP
Sy

Proposition 5.22. Let A be a subdirectly irreducible algebra that satisfies
rank(VA) = n, width(A) = k, and bwidth(A) = s with s > 1. Let P =
{Py,..., P} be the partition of {1,...,k} associated to B(A) and let (f*F)
hold in A. Then V(SEE) C V(A).

Proof. We know that (A;V) is isomorphic to a subalgebra of ((VA)*F;Vv,).
Considering Proposition 5.18, it is straightforward to see that there exists a
subalgebra B of A isomorphic to (VB)*F, where rank(VB) = n, width(B) = k,
and bwidth(B) = s. Then V((VB)*F) = V(Sk-F) C V(A). O
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Let A be a subdirectly irreducible algebra that satisfies rank(VA) = n
width(A) = k, and bwidth(A) = s with s > 1. Let P = {Py,..., P;} be the
partition of {1,...,k} associated to B(A) and let (f*F) hold in A. From
Theorem 5.8, we know that A € ISPy(S} ), and from Lemma 5.15, we know
that A € ISPy(S) where S is a subalgebra of SF , that satisfies (f}F). In
the following, we prove that S is a subalgebra of Sﬁ:g. As a consequence of
this, we will have that V(A) C V(SEP).

Given two partitions

P={P:i=1,...,|P]} and Q={Q;:i=1,...,|P|=1Q|}

of the same set, we say that P is equivalent to Q, denoted P ~ Q, if there
exists a permutation o of the set {1,...,|P|} such that P; = Q) for all
i=1,...,|P

Lemma 5.23. If S is a subalgebra of Sk , that satisfies width(S) = £k,
bwidth(S) = s, and (f*F) holds in S for some partition P = {Py,..., P}
of the set {1,...,k}, then the partition Q associated to B(S) is equivalent
to P.

Proof. If S is a subalgebra of S¥ | such that width(S) = k and bwidth(S) = s
from Proposition 5.13, we have that the cardinal of Q = {Q;} is exactly s.
Let us denote |Q;| = ¢; and |P;| = p;, for all 7.

Let a; € S be such that

S

(A2 =o)n( A (et vae™) o))

i=1 1<i<j<s
S S
A A2 = 0)) A /\ (B2 o 1)) =1

We know that the set {2a]"'} is the set of coatoms of S. Since (f*¥) holds

in S, there exists o € P({1,...,s}) with A]_, @"(‘:H AL Zfz))ﬂ) 1.

a(z)
This means that the width of [a,(;)) in S is less than or equal to p,(;). But
the width of [a,(;)) is ¢;- Then ¢; < py(;) for all i. In addition, >, ¢ =

P Po(i) = k. Then py(;) = ¢; for all 4. Hence, Q is equivalent to P. a

Lemma 5.24. If S is a subalgebra of Sk , that satisfies width(S) = £k,
bwidth(S) = s, and (f*®) holds in S for some partition P = {Py,..., P}
of the set {1,...,k}, then S is isomorphic to a subalgebra of SfL’E

Proof. From Lemma 5.23, we have that the partition Q associated to B(S)
is equivalent to P. So there exists a permutation o € P({1,...,s}) such that
P; = Qu(i)- If by, for 1 <4 < s, are the coatoms of B(S), then [b,;)) are



94 C. R. Cimadamore and J. P. Diaz Varela Algebra Univers.

MMV-algebras by Lemma 3.2 and satisfy

Po(iyt1 Po(i)t1

vba(i)( V /\ZT_)_’ V ng(i)z;'("):
r=1 j=1

Po(i)t1 Po(i)t1 .
(V(V AZ) Vo) = V(270 V o) =1,
— j=1
where Z = {27 .., ZZSZ)H} and Z= = Z — {zZ"W}. Then [b,(;)) is isomor-

phic to a subalgebra of Sﬁfﬂ”l. Thus, S = [b, (1)) X - -+ X [by(s) is isomorphic

to a subalgebra of Sﬁfﬁ)’l X e X Sﬁfff)’l. In addition, V4 = V. Then S is

isomorphic to a subalgebra of Sf;f:. O

From Theorem 5.8, the above result, and Lemma 5.24, we have the following
corollary.

Corollary 5.25. If A is a subdirectly irreducible algebra with rank(VA) = n,
width(A) = k, bwidth(A) = s, and (f}F) holds in A, then A € ISPy(SkE).
In particular, V(A) C V(SEE).

From Corollary 5.25 and Proposition 5.22, we have the following theorem.

Theorem 5.26. Let A be a subdirectly irreducible MMV-algebra such that VA
is non-simple of rank n, width(A) = k, bwidth(A) = s, and such that (f*F)
holds in A. Then V(SEE) =V(A).

The next theorems, which are consequences of the above results, character-
ize by identities the subvarieties generated by Sﬁ:g.

Theorem 5.27. Let s be a integer such that s > 1. If n =1 orn = 2, then
(fEPY, (aF), (8%), and (p,) characterize the subvariety gemerated by SEP

n n,w?’

where P = {Py,..., P,}. If n >3, then (f*F), (o), (82), (pn), and
(p2"™)"" & (n+ 12, (np)

for each natural number 1 < p < n such that p does not divide n, characterize
the subvariety generated by Sfl:l:.

Let us see now the inclusion relation between the proper subvarieties of the
variety generated by Sf;yw.

Let P = {Py,..., P} and P’ = {P{,..., P.,} be two partitions of the set
{1,...,k}, and let us consider the subalgebras S; = SEF and Sy = Sﬁfj’
of Sﬁ,w associated to each partition. If S is a subalgebra of Ss, then P’ is a
refinement of P and B(S;) is a subalgebra of B(S3). Conversely, let us suppose
that B(S;) is a subalgebra of B(Sz). Then the partition P’ associated to B(S3)
is a subpartition of the partition P associated to B(S7). That is, each element
of P is a union of elements of P’, i.e., P’ is a refinement of P. Let a € S,’i:g

and let i, € P/ € P’. Since P’ is a refinement of P, then there is P, € P
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such that P/ C Pj,. Then a satisfies that a(i)/ Rad(S,.) = a(j)/Rad(Sy..).
That is, a € Sﬁ:f,. Then the following lemma follows.

Lemma 5.28. Let P ={P,,..., P} and P’ ={P{,..., P.,} be two partitions

of {1,...,k}. Let us consider the subalgebras Sﬁ’E and S’fL:E/ of wa associated
to each partition. Then S’fl*}; s a subalgebra of SfL’E/ if and only if P’ is a

refinement of P.

Corollary 5.29. Let P = {Py,..., P} and P' = {P],...,P.,} be two par-
titions of the set {1,...,k}. Then V(SEE) C V(Sflf)/) if and only if P is a
refinement of P.

Given two partitions P’ = {P/,..., P/} and P = {Py,..., P} of the set
{1,...,K'} and the set {1,...,k}, respectively, we say that P is less than or
equal to P/, and we denote P < P’, if there exists a subset of P’ that it is
equivalent to a refinement of P.

We know that S,, and S,, ., are subalgebras of S,, , if and only if m divides
n. As a consequence, the following lemma holds.

Lemma 5.30. (1) V(SLF)) C V(Sﬁ:g) if and only if m divides n, t <k, and
P<P.
(2) V(SE,) CV(SET) if and only if m divides n and t < |P|.

We know from Lemma 4.11 that a class {S¥ : i € I} generates V([0,1]%) if
and only if I is infinite.

Lemma 5.31. Let {SfL’E-‘ :n € N} be an infinite set of algebras such that the
cardinal of each partition P, is s. Then V({SkFs:n e N}) =V([0,1]).

Proof. Let us note that S5, , is a subalgebra of S}'F+ and V(S)E+) € V([0,1]°)
since SE-P+ satisfies the identity (a®). Then
V({S; :neN}) CV({SyE: :neN}) CV([0,1]).

But, from Lemma 4.11, we know that V({S% : n € N}) = V(]0,1]°), and from
this we have the lemma. O

6. Subvarieties of V([0,1]")

In this section, we describe the general forms of a non-trivial subvariety
contained in V([0, 1]). We also give the identity that characterizes each proper
subvariety.

In the following, {mi,...,m,} is a finite subset of N. If » = 0, then
{m1,...,m,} = 0 and similarly for the set {s1,...,sp}.



96 C. R. Cimadamore and J. P. Diaz Varela Algebra Univers.

Theorem 6.1. If V is a non-trivial subvariety of MMV-algebras such that
V C V([0,1]%), then V has one of the following forms:

(F1) V=V(Sl.,,...,Sk ) where r > 1 and t; < k for all i,

myo

(F2) V = V(St,,..., Sk SsePir S0y where v > 0, p > 1, t; < k
and s; < k for all i,
(F3) V = V(Sh ..., Sk SsPr . SwCr [0,1]%) where r > 0, p > 0,

t; <k and s; <k for alli, and k1 < k.

Proof. If V = V(]0,1]"), then V is of the form (F3) and we have nothing
to prove. Let V C V([0,1]%). Suppose first that for some ¢ < k, we have
that V([0,1]") € V. Then there exists k; = max{r : V([0,1]") € V}. If
V = V([0,1]*"), then V is of the form (F3). Suppose that V([0,1]*) C V.
Let I = {m:S% € V\V((0,1]")} and J = {n : S4F, € V\V([0,1]™)}. If
TuJ =0, then ¥V = V(][0, 1]]“)7 and this case has already been considered.
Then I UJ # (. From Lemma 4.11 and Lemma 5.31, we have that I and J
are finite subsets of N. If they were not, k1 would not be a maximal element
in the set {r : V([0,1]") C V}. Let W be the subvariety of V generated by

{0,y u{S,, :me I} U{SLE :ne J}.

Let us see that W = V. Let A € si(V) where si(V) is the family of subdirectly
irreducible members of V. In particular, width(A) < k.

Suppose that A is finite. Then A = S! | and since it is in V', we have that
t <ky orme . Then V(A)=V(S) CW.

If A is not finite and rank(VA) = n, then A € V(SLY) for some ¢ < ky or
n € J. Then V(A) CW.

Finally, if rank(YA) = w and width(A) = ¢, then V(A) = V([0,1]") with
t < ky. Thus, V(A) CW.

If V([0,1]") € V for any t, choosing the set T = {m : S! € V} and
J={n: Sf;f; € V} and reasoning as before, we have that V is of the form
(F1) or (F2). O

Let us recall that MMV is a congruence distributive variety. Then if
A B, ...,B; are subdirectly irreducible algebras in

{[0,1)" : k e N} U{S!, :m,t e NV U{S4E i m,t € N},

then by Jénsson’s theorems, we have A € V(B4,...,B;) =V(B1)V---VV(B))
if and only if A € V(B;) for some i. Taking Theorem 6.1 into account, we
have that if V is a non-trivial subvariety contained in V(]0, l]k), then V has
one of the following forms:

(F1) V =V;_, V(Sl) such that ¢; < k for each 1,

(F2) V = Vo V(SL,) vV Vi, V(S5Ti) such that t; < k and s; < k for
each 1,

(F3) V = \i_o V(St, )V V2 V(S5-Bi) v 1([0,1]*) such that ¢; < k and
s; < k for all 4, and k1 < k.
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In the following proposition we resume the inclusion properties between
subvariety of width less than or equal to k.
Proposition 6.2. Let V C V([0,1]").
(1) V([0,1]") €V if and only if V is of the form (F3) and t < k.
(2) V(Sﬁ;g) CV if and only if one of the following conditions is satisfied:
(2a) V is of the form (F2) and n divides some n; € {ny,...,ny}, t < s;,
and P’ < P,
(2b) V is of the form (F3) andt < k1, orn divides somen; € {n1,...,np},
t<s;, and P’ <P;.
(3) V(SE,)) CV if and only if one of the following conditions is satisfied:

(3a) m divides m; for some m; € {my,...,m,} and t <t,,
(3b) m divides n; for some n; € {ni1,...,n,} and t <'s;,
(30) t S kl-

We have already given identities that characterize each of the subvarieties
(V(St,) : t < k}U{V(SER) : t < k}u{V([0,1]") : t < k}. Now, we give
identities characterizing a proper subvariety of the variety generated by [0, l}k.

First note that every identity 7 =& 72 is equivalent to (11 —72)A(T2—71) ~ 1.
In addition, m (211, ..., %1n,) = 1, ..o, Dp(Tr1, ..., T, ) = 1 hold in V if and
only if m1 (211, ., T1ny ) A AN (Xp1, .o, Ty, ) & 1 holds in V. Therefore, we
can assume that each subvariety

Vie {V(S) t <kPu{v(siE) it <ku{v(0,1]") : t <k}
has one identity of the form Ay(z1,...,2,) ~ 1 that characterizes it.
Theorem 6.3. IfV =\/]_, V;, where

V€ {V(S,,)  t <kPULV(SEED) t <k} U{V([0,1]") : £ <k},

then the identity that characterizes V is

S

AV(ajllv . 71‘11'7,17']:217 .. ?x2n27x81a .. 7'7"8715) = \/ V()\Vl (xila .. axi’ﬂ/i)) ~ 17
i=1

where Ay, (%1, ..., %im,) ~ 1 characterizes the subvariety V; for each i =

1,...,s.

Proof. Let A be a subdirectly irreducible MMV-algebra. Suppose first that
A € si(V). Then A € si(V;) for some i = 1,...,5. So Ay, (Ti1, ..., Tin,) = 1
holds in A, and it follows that V (Ay,(zi1,...,%in,)) = 1 also holds in A.
Finally, \/;_; V (Av, (@i1, ..., %in,)) = 1 holds in A. Now let A ¢ si(V). Then
A ¢ si(V;) for all i. For each 4, we choose elements a;1, ..., a;,, € A such that
Ay, (@1, .o ain,) < 1. This leads to V (Ay, (@1, . ., Gin,)) < 1 for all 4. Since
VA is a chain, there is some t € {1,...,s} such that

\/V(Avi(ail,...,ami)) :V()\yt(aﬂ,...,ami)) <1
=1

So \Vi_, YAy, (zi1, -, @in,)) =~ 1 does not hold in A. O
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7. Subvarieties generated by algebras of infinite width

In this section, we prove that the variety generated by a functional MMV-
algebra [0, 1], for X infinite, is the variety generated by {[0,1]" : k € N}. As
a consequence, we give a finite set of generators for the subvarieties /C,, and
for V({SF : k € N}), which we denote by MMYV),,.

Theorem 7.1. If [0, l]X is a functional MMV-algebra such that X is infinite,
then V vy ([0,1]%) € Vaimy ({[0’ 1" ke N})-

Proof. Consider the MMV-algebra whose universe is the infinite product of
MMV-algebras ([0,1]"; V) indexed by the set I = {Y € Su(X) : |Y] is finite},
where Su(X) is the set of all subsets of X and |Y| indicates the cardinal of
the set Y. Let us define the MV-homomorphism ¢: [0,1]* — [Iye: [0, 1)
by ¢(a)y = (ar)key for a = {ap)rex € [0,1]%, and where ¢(a)y denotes the
Yth coordinate in the product.

Let us note first that for each a = (ax)rex € [0,1]%, Va(a) is the con-
stant X-tuple (A,cy ar)rex € [0,1]%. Let us observe also that V is defined
pointwise in [y .; [0, 1)". In particular, for cach a € [0,1]%, we have that
V(d(a)y) = (Arey ks - Apey ar) is a constant [Y|-tuple.

Let us consider now that monadic filter F"in []y ., [0, 1]" generated by all
elements of the form V(¢(a)) — ¢(Va(a)), a € [0,1]%. Let ¢ be the canonical

MMV-epimorphism ¢: [0,1]* — (Hyel [0, l]Y) /F. We claim that ¢ is one-
to-one. Suppose ¢(b) = (by)rex € F. Then there exist ay,--- ,a, € [0,1]¥

such that B
ka@( /\ ajr — /\ ajk)
j=1 " key kex
forall Y € I.

We denote A, cx a;jr by dj. For m € N, choose ajy,,; € [0, 1] such that d; <
ajk,,, < dj+ %, and consider the sets Y,,, = {k,; : j=1,...,n,7r=1,...,m}.
Then

> (A =) 2O (asm,, = di) = O (1~ asw,., +5)

j=1 "key j=1 j=1
- n
= ()1 (1=, +dj = (1=1) =1+ 2, (d; - az,,, ) =1~ =,
j=
for all Y,,. Then b, =1 for all k € X. O

The following result follows from Theorem 7.1 and the fact that [0, l]k is a
subalgebra of [0,1], for cach integer k.

Corollary 7.2. Let X be an infinite set. Then
V([0,1]%) = v({[0,1)" : k € N}).
In particular, V(SY) =V ({Sk : k € N}).
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Corollary 7.3. For each positive integer n, K,, = V({S},S5,...,SI'}).

Proof. Let m be a positive integer such that m < n. Then S satisfies (,).
Therefore, V({S},SY,...,SN}) € K,. Since S¥, is a subalgebra of S, for
each k, we have K,, = V({Sk : ke N,1<m <n}) C V({S},S5,...,SN}).
Finally, K, = V({S}, S}, ..., SN}). O

If A € MMV, is subdirectly irreducible, then A is isomorphic to a subal-
gebra of (SX;V,) for some non-empty set X [13]. From this and Corollary 7.2,
we have the following lemma.

Lemma 7.4. The subvariety MMV, is equal to V(SY).

Since SY is a subalgebra of S if and only if n divides m, and from
Lemma 7.4, we have the next result.

Corollary 7.5. Let n and m be positive integers. Then MMV, C MMV,
if and only if n divides m.
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