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Influence of temperature on optimum
viscoelastic absorbers in cubic
nonlinear systems
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Abstract

Recently, viscoelastic materials have been widely used for vibration control due to their efficacy and flexibility in real

engineering problems. Their use as constitutive parts of dynamic vibration absorbers requires the investigation of these

materials under different operating situations. In the optimal design of the absorbers, it is essential to know how the

dynamical properties of the viscoelastic materials change with temperature. In a previous work, the authors presented a

methodology to optimally design a linear viscoelastic dynamic vibration absorber to be attached to a cubic nonlinear

single-degree-of-freedom system, in a given temperature. In the present work, a study of how temperature variations

affect the optimal design of two viscoelastic absorbers, made of distinct materials (neoprene and butyl rubber), is

addressed. The mathematical formulation of the problem is based on the concept of generalized equivalent parameters

and the harmonic balance method is employed in the solution stage. A cubic nonlinearity in the primary system is

considered and the four parameter fractional derivative model of viscoelastic materials is used. Numerical simulations

are performed using a recursive equation, in order to find the new characteristics of the absorbers at different working

temperatures. The results show that the answer depends not only on the temperature and the material, but also on the

magnitude of the excitation load imposed to the system. For a low magnitude of the excitation load, it is verified that the

neoprene absorber is less affected by a temperature variation, in terms of its vibration control capabilities. On the other

hand, a large magnitude of the load can significantly affect the performance of both considered devices when the working

temperature is different from the design temperature.
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1. Introduction

Widely used in passive vibration control, dynamic
vibration absorbers are simple mechanical devices
that are used in many systems to reduce the amplitude
of vibrations. They work as ‘‘absorbing’’ secondary sys-
tems which are attached to another mechanical system,
called the primary system, with the purpose of reducing
vibration levels of the latter by introducing high mech-
anical impedance in a frequency region where the pri-
mary system needs it. In the past, these devices were
used to reduce the rolling motions of ships (Den
Hartog, 1956) and over time absorbers have proved
themselves extremely efficacious in mitigating vibra-
tions and sound radiation in many structures and
machines.

The general theory for the optimum design of absor-
ber systems, when applied to a generic linear structure

of any shape, to control each vibration mode, one by
one, in a wide frequency band (in equivalence to Den
Hartog’s theory) was derived by Espı́ndola and Silva
(1992). The theory is based on the concept of general-
ized equivalent mass and damping parameters for the
absorbers. With this concept, it is possible to write
down the equations of motion of the compound
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system (primary system plus absorbers) only in terms of
the generalized coordinates (degrees of freedom (d.f.))
previously chosen to describe the configuration space of
the primary system alone. This is carried out in spite of
the fact that the compound system has additional d.f.
introduced by the attached absorbers.

This theory has been developed and applied with
great success to the optimum design of a linear visco-
elastic absorber system, in a large frequency band,
where one or more vibration modes are present. This
optimal design is made in a simultaneous fashion, by
which one or more absorbers are used to control one or
more vibration modes, using nonlinear optimization
techniques in a modal subspace of the primary system
(Espı́ndola and Bavastri, 1995, 1997; Bavastri, 1997;
Bavastri et al., 1998; Espı́ndola et al., 2005a,c).

Viscoelastic dynamic vibration absorbers (VDVAs)
are usually easy to make and apply to a structure of any
size and shape. This is in part possible thanks to
modern technology of viscoelastic materials and can
be verified, for instance, in mitigating vibrations in
rotating machines (Doubrawa Filho et al., 2011) and
in a notch-type spring mechanism based on the traction
principle for tuning fiber Bragg gratings (Neves et al.,
2011). Accurate mathematical models are also to be
praised. The four parameter fractional derivative
model has been successfully employed to describe the
dynamic behavior of viscoelastic materials due to its
adequacy and its convenient formulation in the fre-
quency domain (Bagley and Torvik, 1979, 1983, 1986;
Torvik and Bagley, 1987; Pritz, 1996; Rossikhin and
Shitikova, 1998; Lopes, 1998; Espı́ndola et al., 2005b).

Nonlinear two-d.f. systems have attracted a lot of
attention in the past. The reader should refer to
Nayfeh and Mook (1979), Schmidt and Tondl (1986),
Worden and Tomlinson (2001) and Thomsen (2010) for
lists of various studied cases. Of particular concern is
the use of nonlinear oscillators as nonlinear dynamic
vibration absorbers (NDVAs) or nonlinear tuned mass
dampers. The contributions of Roberson (1952), Pipes
(1953), Soom and Lee (1983) and Nissen et al. (1985)
are highlighted. Their strategy to approach the problem
was to use approximation methods (Ritz or harmonic
balance) to obtain the steady-state solutions and then
optimize the NDVAs for vibration reduction purposes.
Recently, several works on optimal linear control for
strongly nonlinear systems has been proposed to dimin-
ish chaotic (Nozaki et al., 2013) or impact (Costa and
Balthazar, 2009) oscillations.

Several nonlinear phenomena can be found in sys-
tems of the above type, such as jumps, saturation and
types I and II intermittency, as well as periodic and
periodically and chaotically modulated motions
(Oueini et al., 2000). These nonlinear phenomena
depend on the parity character of the nonlinearity

and can be used differently for vibration control. For
instance, the application of the saturation phenomenon
(discovered in quadratic nonlinear systems by Nayfeh
in 1973) showed that vibrations could be suppressed in
a wide range of frequencies in nonlinearly coupled sys-
tems with two-to-one internal resonance (Ashour and
Nayfeh, 2003). For systems with cubic nonlinearities,
the papers of Rice (1986) and Shaw et al. (1989) pointed
out the possibility of a combination-type instability,
which is detrimental for vibration control due to the
appearance of quasi-periodic oscillations of large vibra-
tion amplitudes. Natsiavas (1992) further studied the
same phenomenon finding out that a proper selection
of the system parameters could avoid the quasi-periodic
solutions, which could have dangerous effects. A novel
type of nonlinear vibration absorber of finite extensi-
bility (odd type parity of nonlinearity) was proposed by
Febbo and Machado (2013), showing a better effective-
ness for a large nonlinearity in the primary system when
compared with a cubic nonlinear absorber. Also the use
of another type of nonlinear absorber, shock absorbers,
has been proven to be effective to improve comfort in
passenger vehicles (Silveira et al., 2014).

Targeted energy transfer (TET) in two-d.f. systems
comprising a linear primary system and a nonlinear
attachment has been carefully investigated in the field
of vibration control (Vakakis et al., 2008). It was
demonstrated that at certain ranges of parameters and
initial conditions, passive TET makes it possible for
vibration energy initially localized in the linear oscilla-
tor to get passively transferred to the attachment in an
almost irreversible way (Kerschen et al., 2006). Most of
these models consider a stiff cubic nonlinear spring and
a linear damper attached to the primary system, but
recently the use of nonlinear attachments with non-
polynomial characteristics has also been studied
(Gendelman, 2008). Tusset et al. (2013) applied active
and passive control to suppression of chaotic behavior
in a non-ideal portal frame structural system. The active
control consists of a nonlinear feedforward and feed-
back control, whereas the passive one was obtained by
means of a nonlinear energy sink. An overview of the
dynamical coupling between energy sources and struc-
tural response can be viewed in Balthazar et al. (2003).

Linear vibration absorbers have also been con-
sidered for vibration control of nonlinear primary sys-
tems. Among those, a two-d.f. system comprising a
weakly nonlinear primary system and a linear absorber
was presented by Ji and Zhang (2010) and Ji (2012),
with the aim of studying the effectiveness of the linear
absorber in suppressing resonance vibrations. With the
exception of their previous work (Bavastri et al., 2013),
the authors are not aware of other cases of the use of
linear viscoelastic absorbers to mitigate vibrations in
nonlinear systems.
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It is well-known that the dynamic properties of
viscoelastic materials change, in a more or less pro-
nounced way, when the temperature changes. In
Bavastri et al. (2013), a methodology was presented
for the optimal design of a dynamic viscoelastic absor-
ber acting in a cubic nonlinear system (Duffing type
oscillator) at a given temperature. The aim of the cur-
rent paper is to review the methodology proposed there
and to study the influence of temperature variations on
the optimal design.

This paper is organized as follows. In the next sec-
tion, a brief review on the characteristics of a VDVA
based on the four parameter fractional derivative
model and on the concept of generalized equivalent
parameters is made. Then, the full mathematical
model is presented along with a brief description of
the optimization strategy. After that, the numerical
results regarding the effectiveness of the proposed con-
trol strategy under temperature variations are supplied.
Two distinct viscoelastic materials are considered in the
investigation and also two different values of the mag-
nitude of the excitation load. Finally, concluding
remarks are offered.

2. Viscoelastic dynamic vibration

absorbers

Figure 1 shows a particular ordinary absorber (neutral-
izer). In between its rigid mass ma and its base lies a
viscoelastic spring which is a piece of viscoelastic mater-
ial, sometimes with some metal inserts. The base is used
to attach the absorber to the system to be controlled,
called herein the primary system.

This is in fact a single-d.f. VDVA. The stiffness con-
stant of the viscoelastic spring, in the frequency
domain, is given by (Espı́ndola and Silva, 1992)

ksð�,TÞ ¼ #Gcð�,TÞ ð1Þ

In equation (1), Gcð�,TÞ is the so-called complex
shear modulus of the viscoelastic material, which is
frequency, �, and temperature, T, dependent. Also in
equation (1), # is a geometric constant depending on

the shape of the viscoelastic spring and of its
metal inserts.

In terms of the four parameter fractional derivative
model for a viscoelastic material (Pritz, 1996), Gcð�,TÞ
may be expressed as

Gcð�,TÞ ¼
G0 þ G1ðib�Þ�

1þ ðib�Þ�
ð2Þ

where i ¼
ffiffiffiffiffiffiffi
�1
p

is the imaginary unit
or

Gcð�,TÞ ¼
G0 þ G1’0½i�TðTÞ��

�

1þ ’0½i�TðTÞ��
�

ð3Þ

where G0 and G1 are the low and upper asymptotes,
respectively, � is the fractional order of the derivative
appearing in the constitutive differential equation of the
viscoelastic material and b is the relaxation time con-
stant of the material.

The relaxation time is highly sensitive to temperature
and is usually expressed as b ¼ �TðTÞb0, where b0 is b
computed at the so-called reference absolute tempera-
ture T0 and �T Tð Þ is known as the shift factor. With
’0 ¼ b�0 , it is verified that equation (3) results from
equation (2). The shift factor can be computed by
�TðTÞ ¼ 10��1ðT�T0Þ=ð�2þT�T0Þ, where �1 and �2 are con-
stants to be determined experimentally. This empirical
expression, consistent with experience and known as
the William-Landel-Ferry (WLF) equation, can be
found in Ferry (1980).

It is also appropriate to write the complex shear
modulus in the form

Gcð�,TÞ ¼ Gð�,TÞ 1þ i�Gð�,TÞ½ � ð4Þ

where Gð�,TÞ is the real part of the complex shear
modulus, known as the dynamic shear modulus, and
�Gð�,TÞ is the corresponding loss factor. The loss
factor is the ratio of the imaginary part of the complex
shear modulus to its real part and measures the ability
of the material to convert energy of deformation
into heat.

Figure 1. A simple viscoelastic dynamic absorber.
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It is useful to write down explicitly the real part
of the complex shear modulus Gð�,TÞ and the loss
factor �Gð�,TÞ to stress their temperature dependence.
They are

Gð�,TÞ

¼
G0þðG0þG1Þ’0�TðTÞ

���cos ��2
� �
þG1’

2
0�T Tð Þ2��2�

1þ2’0½�TðTÞ��
�cos ��2

� �
þ’20�T Tð Þ2��2�

ð5Þ

and

�Gð�,TÞ

¼
ðG1 �G0Þ’0½�TðTÞ��

� sin ��2
� �

G0þ ðG0þG1Þ’0½�TðTÞ�
� cos ��2

� �
þG1’20�TðTÞ

2��2�

ð6Þ

where the temperature dependence is introduced by the
shift factor �T Tð Þ, via the WLF equation.

3. Equivalent generalized quantities
for an absorber

As shown in Espı́ndola and Silva (1992) and also seen
in Bavastri et al. (2013), an equivalent model of the
secondary system, obtained by its equivalent general-
ized parameters, can be found through the complex
rigidity on its base, kað�,TÞ. The secondary system,
as a simple absorber at a given constant temperature,
is dynamically depicted in Figure 2, in correspondence
with the previous view of Figure 1. It has a single
lump of mass ma connected to the primary structure
through a resilient device (‘‘spring’’) assumed as
having a viscoelastic nature. From equations (1) and
(4), it is observed that its complex stiffness ksð�,TÞ

for any given temperature, is supplied by (Espı́ndola
and Silva, 1992)

ksð�,TÞ ¼ #Gcð�,TÞ ¼ #Gð�,TÞ 1þ i�Gð�,TÞ½ � ð7Þ

In Figure 2, the base is assumed massless and Qð�Þ
and Fð�Þ stand, respectively, for the Fourier transform
of the base displacement, q(t), and the applied force,
f(t), at a certain temperature. This applied force results
from the interaction between the absorber and the
point of the primary structure where the absorber is
attached.

It can be verified that the primary structure ‘‘feels’’
the neutralizer at the attachment point, at the tempera-
ture of concern, as a dynamic stiffness given by

kað�,TÞ ¼
Fð�,TÞ

Qð�,TÞ
¼

ma�
2#Gcð�,TÞ

ma�2 � #Gcð�,TÞ
ð8Þ

In terms of equivalent quantities, the dynamic stiff-
ness given above can be rewritten as

kað�,TÞ ¼ ��2me �,Tð Þ þ i�ce �,Tð Þ ð9Þ

Then, by considering equations (7)–(9), the general-
ized equivalent parameters for the absorber can be
obtained as (Espı́ndola and Silva, 1992; Bavastri
et al., 2013)

ceð�,TÞ ¼ ma�a
rað�,TÞ�ð�,TÞ"3a

rað�,TÞ � "2a
� �2

þ rað�,TÞ�ð�,TÞÞð Þ
2

ð10Þ

and

með�,TÞ ¼ ma

rað�,TÞ rað�,TÞ 1þ �2ð�,TÞ
� �

� "2a
� �

rað�,TÞ � "2a
� �2

þ rað�,TÞ�ð�,TÞð Þ
2

ð11Þ

where "a ¼
�
�a

and ra ¼
Gð�,TÞ
Gð�a,TÞ

, both for any given
temperature.

As to the characteristic frequency (also called nat-
ural or anti-resonant frequency), �a, it is defined for a
simple absorber as the one which, in the absence of
damping, makes the denominator of equation 8 equal
to zero. That is,

�2
a ¼

#Gð�a,TÞ

ma
ð12Þ

where #G �a,Tð Þ is the stiffness of the viscoelastic spring
at the characteristic frequency �a and the temperature
T. It is noted that equation (12) is a transcendental

Figure 2. Scheme of a simple (one-degree-of-freedom)

absorber.
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equation for the characteristic frequency of the
absorber.

Observing equation (9), it can be said that, at any
given temperature T, the primary structure ‘‘sees’’ the
absorber at the point of attachment as a mass með�Þ
connected in series to a viscous dashpot of constant
ceð�Þ, the other end of which is connected to the
‘‘earth’’. Figure 3 shows this interpretation. These two
quantities are called generalized equivalent mass and
generalized equivalent viscous damping constant,
respectively, for a particular absorber.

The dynamics of the compound system (pri-
maryþ absorber) can thus be formulated in terms of
the original physical generalized coordinates alone (of
which Qð�Þ, in Figure 3, is representative), although
the new system now has additional d.f. (one for each
absorber, if more than one is present). This is the main
advantage of the concept of generalized equivalent par-
ameters as far as the absorbers are concerned. It is
important for the optimization design of the absorber

to work with the dynamic equivalent model shown
in Figure 3.

4. Mathematical formulation

The whole mechanical system to be modeled is equal to
the one analyzed in Bavastri et al. (2013) and can be
observed in Figure 4(a), while the corresponding
equivalent system, using the concept of equivalent gen-
eralized parameters, is presented in Figure 4(b). The
system to be controlled (hereafter the primary system)
is nonlinear with an odd-cubic type nonlinearity
(Duffing oscillator). Attached to it and acting as the
control system there is a linear VDVA. Using the
equivalent generalized parameters, the equation of
motion of the primary system is given by

½m1 þmeð�,TÞ� €x1 þ k1x1 þ k1NLx
3
1 þ ½c1 þ ceð�,TÞ� _x1

¼ f cosð�,TÞ ð13Þ

Figure 4. (a) Compound system under study; (b) Compound system with generalized equivalent parameters.

Figure 3. Equivalent systems.
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where m1 and með�,TÞ are, respectively, the mass of the
primary system and the equivalent mass of the neutral-
izer, which is given by equation (11) and includes both
the temperature and the frequency dependencies. The
parameters k1, k1NL and c1 denote, in their turn, the
linear and nonlinear values of stiffness (acting in paral-
lel) and the damping constant (considered of viscous
type) of the primary system. Lastly, there is ceð�,TÞ,
which is the equivalent damping of the neutralizer,
given by equation (10) and also includes the effects of
temperature and frequency.

In the following text, the authors will use the deriv-
ation given in Bavastri et al. (2013). For the sake of
brevity, that procedure will be presented herein in a
condensed form.

Dividing equation (13) by m1 and introducing the
parameters

!10 ¼

ffiffiffiffiffiffi
k1
m1

s
, � ¼

k1NL

m1
, �eð�,TÞ ¼

með�,TÞ

m1
,

� ¼
ma

m1
, f0 ¼

f

m1
, l1 ¼

c1
m1

, leð�,TÞ ¼
ceð�,TÞ

m1

the equation of motion turns out to be

½1þ �eð�,TÞ� €x1 þ !
2
10x1 þ �x

3
1 þ ½l1 þ leð�,TÞ� _x1

¼ f0 cosð�,TÞ ð14Þ

Assuming an approximate stationary solution of the
system as x1 tð Þ ¼ a cosð�,TÞ it is possible to obtain a
frequency response curve (FRC) by the harmonic
balance method (Nayfeh and Mook, 1979). This FRC
gives the vibration amplitude a bythe following
equation:

a2 !2
10 ��2½1þ �eð�,TÞ� þ �

3

4
a2

� �2

þ l1 þ leð�,TÞ½ �
2�2a2 ¼ f20 ð15Þ

5. Optimization strategy

The optimal parameters of the VDVA are achieved
using nonlinear optimization techniques. Denoting the
vibration amplitude of the primary system, a, for a
given constant temperature, as H(�), the objective
function is given by

fobjðxÞ : R
n! R ¼ kHð�, xÞ�1����2

k
F

ð16Þ

where k � � � kF represents the Frobenius norm, �1 and
�2 are the low and upper limits of the frequency band
of interest, respectively, and x is the design vector. The
aim here is to reduce as much as possible the amplitude

of the displacement of the primary system when the
optimal absorber is attached to it. That is, the proced-
ure seeks to find an x that corresponds to the smallest
value of a for the considered frequency range
(�1 � � � �2). It is stressed that, over the optimization
process, a certain temperature is chosen and it is kept
constant.

The design vector in this particular case is defined as

x ¼ �a ð17Þ

where �a is the characteristic (natural) frequency of the
absorber.

In this work, the Nelder-Mead method is used as the
nonlinear optimization technique. Inequality or equal-
ity constraints for the design vector are not employed.
Both the solution of the nonlinear problem, Hð�, xÞ,
and the nonlinear optimization technique were imple-
mented by the authors in the Matlab environment.

The optimal characteristic frequency, ��a, follows
from the optimization procedure. Then, with ma

equalto 0.15 m1 (Den Hartog’s theory), the geometric
factor of the VDVA, #, is calculated from equation
(12). Finally, to achieve the physical realization of the
VDVA, the procedure described in Espı́ndola et al.
(2009, 2010) should be followed.

6. Recursive method for a new
characteristic frequency

Conceptually, when a viscoelastic dynamic absorber is
designed in optimal form, it introduces high mechanical
impedance around its characteristic frequency in the
host (primary) system. Then, it can reduce the vibration
amplitude of the primary system to acceptable levels.

Depending on the operating region, the viscoelastic
material can be highly temperature and frequency
dependent. Thus, a small temperature variation implies
a high variation of the dynamic shear modulus which
can make the characteristic frequency of the absorber
change considerably. This situation can lead to a detun-
ing of the absorber, causing a non-optimum
performance.

When this detuning happens, the new characteristic
frequency in the new working temperature can be
found from equation (12) in a recursive form. This is
achieved by a numerical code whose input parameters
are the original characteristic frequency of the absorber
and the new working temperature. Given these param-
eters, a new value for the dynamic shear modulus can
be found (see equation (5)) and then, as the parameters
# and ma are fixed (once the absorber has already been
built), a new value for the characteristic frequency can
be computed from equation (12). This process is
repeated until convergence happens, that is, until the

6 Journal of Vibration and Control
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characteristic frequency and the dynamic shear modu-
lus, calculated at the same characteristic frequency,
agree. When this condition is attained, the final value
for the characteristic frequency of the absorber, at the
new working temperature, is achieved.

This modified characteristic frequency is employed
in the numerical simulation to show the influence of
the temperature on the quality of the passive control
performed by the viscoelastic dynamic absorber.

7. Numerical examples and discussion

This section encompasses the results corresponding to
the steady-state solutions of a nonlinear primary system
with two different VDVAs attached to it, one contain-
ing neoprene and the other butyl rubber. These steady-
state solutions were determined by equation (14).

To perform the stability analysis of the periodic
solutions, a variational approach was employed, as
can be observed, for instance, in Thomsen (2010),
Zhu et al. (2004) and Schmidt and Tondl (1986). This
consisted of obtaining linear perturbed equations from
the solutions of equation (13) and then judging the
eigenvalues of the determinant of the matrix coeffi-
cients. If the real part of all the eigenvalues is negative,
then the periodic solution is stable; otherwise, it is
unstable. If a real value changes sign, it is a saddle-
node bifurcation and can result in a jump of the solu-
tion. On the other hand, if there is a pair of complex
conjugate eigenvalues whose real part changes sign, a
Hopf bifurcation results and the system exhibits quasi-
periodic solutions. It must be pointed out that the con-
sidered two-d.f. nonlinear systems can exhibit, for
example, saddle-node bifurcations, Hopf bifurcations,
and chaos. The emergence of a Hopf bifurcation, which
frequently appears in two-d.f. nonlinear systems for a
certain selection of system parameters (see Natsiavas,
1992, Shaw et al., 1989, Gendelman, 2008, Vakakis
et al., 2008), can result in large vibration amplitudes,
due to the presence of stable quasi-periodic solutions.
Chaotic solutions in two-d.f. nonlinear systems are
observed in passive vibration control, as demonstrated
by Febbo and Machado (2013).

The current analysis is based on the study of the
behavior of the viscoelastic absorbers when the work-
ing temperature changes with respect to the design tem-
perature, which was arbitrarily selected as 303K. This
design temperature was the one employed to optimize
the viscoelastic absorbers, as explained previously. The
study also analyzes the influence of the magnitude of
the excitation load on the behavior of the compound
system for the distinct considered temperatures. The
frequency range was limited to approximately 6Hz to
24Hz, but other frequency ranges could be considered
following the same general procedure. The temperature

range was� 30K around the design temperature, that
is, it was from 273K to 333K.

As mentioned above, two types of viscoelastic mater-
ials were selected for carrying out this study: neoprene
and butyl rubber. They were chosen because they are
usually employed in vibration control devices and pre-
sent different behaviors under temperature variation.
These can be seen in the corresponding nomograms,
given in Figures 5 and 6, which display the dynamic
shear modulus and the corresponding loss factor as
functions of frequency and temperature. The nomo-
grams, as usual, also contain a horizontal axis for the
reduced frequency, which is the product between the
shift factor �TðTÞ and the frequency.

As is known for materials with thermorheologically
simple behavior, three different regions can be distin-
guished in the nomograms: type I, II and III regions
(Snowdon, 1968). Type I region is called the rubbery
region and is characterized by a near constant dynamic
shear modulus and a moderate loss factor. In type II
region, also known as the transition region, the max-
imum loss factor occurs and the dynamic shear modu-
lus changes most rapidly. Type III region is called the
glassy region and it is where the material becomes brit-
tle and the loss factor is fairly low (Nashif et al., 1985).
The material, in this region, is undesirable for vibration
control purposes.

From the information provided by Figure 5, it can
be observed that, at the design temperature and the
considered frequency range, the neoprene works in
the limit between type I and type II regions. Its dynamic
shear modulus is practically constant in this case and
the loss factor is relatively low. Thus, when the material
experiences a moderate temperature change, the
dynamic shear modulus keeps on approximately the
same value as the loss factor varies in a more significant
way. On the other hand, Figure 6 shows that, given the
same conditions, the butyl rubber has its dynamic shear
modulus strongly dependent on temperature and fre-
quency, with its loss factor close to its maximum
value. As mentioned before, this is typical of materials
in type II region.

Table 1 shows the physical parameters of the four
parameter fractional derivative models corresponding
to the two abovementioned viscoelastic materials. The
complementary parameters, which account for the vari-
ation of temperature according to the WLF equation,
are displayed in Table 2.

The other data employed in this study were:
m1¼ 1 kg; ma¼ 0.15 kg; !10 ¼ 73:01 rad=s; f10¼
11.62Hz; �¼ 5N/mkg; l1 ¼ 0:1Ns=mkg; �1 ¼

40:0 rad=s; f1¼ 6.37Hz; �2¼ 150.8 rad/s and f2¼
24Hz. As to the magnitude of the applied load, two
values were investigated: f0¼ 1000N/kg and
f0¼ 10000N/kg.
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Table 3 shows the characteristic frequencies of the
neoprene VDVA and the butyl rubber VDVA for dif-
ferent working temperatures around the design tem-
perature, which was used for the optimal design of
the absorbers. In this case, the nonlinear parameters
are � ¼ 5 and f0 ¼ 1000 for the sake of comparison

with the authors’ previous work (Bavastri et al.,
2013). As a distinguished feature, a much more pro-
nounced variation of the characteristic frequency can
be observed for the butyl rubber absorber than for the
neoprene absorber when the temperature changes.
Table 4 shows similar results considering � ¼ 5 and

Figure 6. The nomogram of butyl rubber.

Figure 5. The nomogram of neoprene.
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f0 ¼ 10000. Clear differences are also observed there,
given the detuning suffered by both absorbers, in a
similar way to that of Table 3.

Figure 7 shows the results of the optimization pro-
cess for the neoprene VDVA and the influence of tem-
perature in the optimization results. In this figure, the
values of � ¼ 5 and f0 ¼ 1000 were considered. For the
sake of clarity in the interpretation of the results,
the solid lines represent the stable solutions as the
dashed lines the unstable ones. Both the primary
system FRC and the compound system FRCs at differ-
ent temperatures are displayed.

It can be observed in Figure 7 that, as the character-
istic frequency of the neoprene VDVA changes with
temperature, that is, as detuning occurs, different
FRCs are generated. Generally speaking, detuning
would deteriorate the absorber performance as the
characteristic frequency would no longer be optimal.
This is verified in this particular case when the tempera-
ture rises, as the neoprene goes from the limit between
type II and type I regions to type I region (see Figure 5).
The dynamic shear modulus is still approximately con-
stant but the loss factor continuously decreases from its
value at the design temperature.

However, on the other hand, when the temperature
reduces, the dynamic characteristics of this material
‘‘walk’’ in the direction of type II region (see also
Figure 5), showing a significant increase in the loss
factor, and hence in the capability of dissipating vibra-
tion energy, along with a moderate increase in the
dynamic shear modulus. Then, the absorber perform-
ance progressively improves regarding the optimal case.
This makes it clear that the characteristic frequency is
strictly optimal at the design temperature, which, in its
turn, is not the most favorable for the considered visco-
elastic material.

However, all the compound system solutions remain
stable, despite the nonlinear character of the primary
system, which is remarkable. Moreover, there was not a
single case in which evidence of a Hopf bifurcation
resulting in quasiperiodic motions was observed. To
account for the evidence of chaos, a large number of
numerical simulations was performed, with several ini-
tial conditions, for all the considered cases and the
whole set of corresponding frequencies. At the end of
this procedure, no evidence of chaotic solutions was
obtained.

Figure 8 shows the results for the butyl rubber
VDVA, for the same cases depicted in Figure 7. As
the temperature rises, the absorber performance
increasingly deteriorates but the character of a two-
d.f. compound system can still be observed.
Nevertheless, for temperatures below the design tem-
perature, as the butyl rubber goes deeper in the transi-
tion (type II) region (see Figure 6), the system turns to

Table 3. Characteristic frequencies at different temperatures

with � ¼ 5 and f0 ¼ 1000.

Temperature

(K)

Characteristic frequencies of

the absorber (Hz)

Neoprene Butyl rubber

273 13.88 28.94

283 12.10 18.48

293 11.37 12.73

303* 10.99* 9.70*

313 10.78 7.85

323 10.65 6.74

333 10.56 6.05

*design temperature and optimal frequencies.

Table 4. Characteristic frequencies at different temperatures

with � ¼ 5 and f0 ¼ 10000.

Temperature

(K)

Characteristic frequencies of

the absorber (Hz)

Neoprene Butyl rubber

273 14.77 29.96

283 12.86 19.14

293 12.07 13.31

303* 11.67* 10.03*

313 11.44 8.11

323 11.29 6.95

333 11.20 6.21

*design temperature and optimal frequencies.

Table 2. Complementary parameters of neoprene and butyl

rubber.

Material type �1 �2 T(K) T0(K)

Neoprene 5.09 46.5 303 273

Butyl rubber 9.91 119 303 273

Table 1. Model parameters of neoprene and butyl rubber.

Material type G0(N/m2) G1(N/m2) � ’0 ¼ b
�
0

Neoprene 4.55e6 4.18e8 0.319 0.00274

Butyl rubber 1.76e5 2.41e8 0.424 0.00424
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behave as a damped single-d.f. system. This is due to
the combined changes in the dynamic shear modulus
and in the loss factor, which also cause the absorber to
be more and more ineffective.

As an extreme feature of these results, it is possible to
observe that a large reduction of temperature results in a
variation of the stability character of the solution (stable
to unstable), with the compound system approaching
the behavior of the primary system. However, only
instabilities of a saddle-node type have been observed.
The same procedure applied to the neoprene case was
employed in this case and no evidence of a Hopf bifur-
cation or even chaotic solutions was observed.

To investigate the effect of variation of the magni-
tude of the excitation load, the same calculations
employed to generate Figures 7 and 8 were performed
again, now keeping fixed the value of the nonlinear
parameter � (that is, � ¼ 5), but considering a different
(large) magnitude of the load f0 ¼ 10000. It is noted
that this new magnitude of the excitation load almost
trebled the value of the frequency at which the
jump occurs for the primary system in an upward
sweep (according to the numerical calculations,
f jp ¼ 70:52Hz, as in Figure 9(b), compared to
f jp ¼ 23:64Hz, as in Figure 7, with f0 ¼ 1000Þ.

The results regarding the neoprene absorber are
depicted in Figure 9(a) and (b). It can be seen immedi-
ately in those figures that the vibration amplitudes of
the compound system are larger than those noted in
Figure 7. Clearly, this is attributable to the larger mag-
nitude of the excitation load.

It should be also highlighted that the compound
system is now completely stable only at 283K and
293K. At all the other temperatures, the compound
system changed its behavior and the corresponding
solutions present instabilities (which occasionally may
not be perfectly clear in Figure 9(a)).This loss of stabil-
ity is due to the appearance of saddle-node bifurca-
tions, resulting in jumps in the solutions.

Another important feature can be observed in Figure
9(b), which is a zoomed out view of Figure 9(a), intro-
duced to highlight the frequency values of the jumps at
upward sweeps for the three largest temperatures
(313K, 323K and 333K). For these temperatures, the
results clearly show that even when the VDVA is not
capable of achieving a great vibration reduction, it still
shows some benefits when compared to the system
without the absorber, almost halving the jump fre-
quency in the worst case (T¼ 333K). The reduction
of jump frequencies in strong nonlinear systems is

Figure 7. H(�) of the primary and the compound systems with neoprene VDVA at different temperatures, with f0¼ 1000, and

�¼ 5.
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very important because it prevents the system having a
stable solution of very large amplitude over a long fre-
quency range.

From the stability analysis, it was also verified that
there was no evidence of quasi-periodic motions in the
considered frequency range or even chaotic solutions,
similar to the other cases of lower magnitude of the
excitation load, which is remarkable.

Figure 10 shows the influence of temperature
changes with regard to the butyl rubber absorber,
when considering f0 ¼ 10000. As previously remarked
on, the butyl rubber works in the type II region, where
the damping is high and the dynamic modulus
strongly depends on temperature. However, a decre-
ment in damping can be observed when the tem-
perature increases from the design temperature (see
Figure 6).

Analyzing the results for the different temperatures,
it is noted that the compound system shows no specific
evidences of nonlinear behavior at the design tempera-
ture of 303K only. At the other temperatures, distor-
tions around the peaks and instabilities can be clearly
seen. The instability at 273K, already noticed in
Figure 8, is now more pronounced. As for 323K and

333K, a particular remark should be made. It was
already pointed out that the large magnitude of the
excitation load made the peak amplitude of the primary
system to appear at f jp ¼ 70:52Hz (see Figure 9(b)).
Hence, the resonance peak is, for f0 ¼ 10000, far
apart from the resonance peak of Figure 8, implying
that the butyl rubber VDVA at 323K and 333K (with
resonant frequencies of f323 ¼ 6:95 Hz and f333 ¼ 6:21
Hz, as seen in Table 4) is extremely detuned. So, the
system ‘‘mimics’’ the response of a lightly damped
single-d.f. nonlinear system.

Similar to the previous case, of a neoprene VDVA,
no evidences of quasi-periodic motions or chaotic
motions were observed.

8. Higher harmonics in the solution

It is relevant to this study to know if the dynamic
response of the system, modeled by equation (13), has
only one harmonic in the solution, as assumed by equa-
tion (15). To this end, the authors numerically solved
equation (13) for a set of selected cases, with a standard
ordinary differential equation solver (using Matlab).
Obviously, the obtained solution is free of any

Figure 8. H(�) of the primary and the compound systems with butyl rubber VDVA at different temperatures, with f0¼ 1000, and

�¼ 5.
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Figure 9. (a) H(�) of the primary and compound systems with neoprene VDVA at different temperatures, with f0¼ 10000, and

�¼ 5. (b) Enlargement of (a) to see the jump frequencies for the compound system at T¼ 313 K, 323 K and 333 K, and for the primary

system.
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assumption. Figures 11(a)(b) and 12(a)(b) show the
results. For the sake of brevity, we have selected the
cases in which the nonlinearity is more significant.

In Figure 11 we have selected the case of a neoprene
VDVA with f0 ¼ 10000, � ¼ 5 and ¼ 333K. The driven
frequency was selected to be 27.06Hz. In Figure 11(a)
we show the time domain solution of the compound
system which corresponds to the high amplitude solu-
tion of the second upper arm of the FRC of Figure 9
(red color). Now, if we compute the spectrum, we can
see in Figure 11(b) that the first harmonic is at least 20
times larger than the third harmonic (that appears as a
consequence of the cubic nonlinearity), as its contribu-
tion is negligible in the total response.

Finally, we illustrate another emblematic case for
butyl rubber. We have also selected the case of
f0 ¼ 10000,� ¼ 5 and T ¼ 333K: This time the excita-
tion frequency was 18.27 Hz and the results are shown
in Figure 12.

In Figure 12(a) we show the time domain solution of
the compound system at 18.27Hz and its spectrum in
Figure 12(b). From the results it is possible again to see
the dominant contribution of the first harmonic.

The other cases that present high amplitude solu-
tions are: Neoprene at T ¼ 323, 313K and butyl
rubber at T ¼ 323, 313, 273K in the cases with
f0 ¼ 10000 and � ¼ 5: After a similar analysis of the
numerical solution for these cases (not shown here)
we obtained the same negligible contribution of the
harmonics different from the first.

Summarizing, we can rely in the assumption of
having only one harmonic in the solution and thus
equation (15) gives the correct FRC of the considered
system.

9. Conclusions

This work showed the influence of temperature on
viscoelastic absorbers, designed to optimally control a
cubic nonlinear single-d.f. system at the design tem-
perature of 303K. Two different real viscoelastic mater-
ials, which present interesting alternatives for vibration
control purposes, were employed: butyl rubber and
neoprene. The study was motivated due to the fact
that viscoelastic materials are strongly influenced by
temperature. This influence was also considered under

Figure 10. H(�) of the primary and compound systems with butyl rubber VDVA at different temperatures, with f0¼ 10000 and

�¼ 5.
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different external load amplitudes, or, equivalently, dif-
ferent non-linear behaviors.

The approach for modeling the compound system
was introduced by the authors in a previous work
and it was reviewed herein. It used the generalized
equivalent parameter concept for the VDVA, which

allowed the equations of motion of the compound
system to be described in terms of the primary system
coordinates only. The implementation of the optimiza-
tion procedure was presented along with the
mathematical formulation of the problem to obtain
the steady-state solution. Then, the optimum

Figure 11. (a) Time response of the compound system with neoprene VDVA at T¼ 333 K, with f0¼ 10000, �¼ 5 driven by a

frequency of 27.06 Hz. The high amplitude solution (solid line) corresponds to the second upper arm in Figure 9(b) and the low

amplitude solution (dotted line) is shown for comparison. (b) Spectrum of (a) high amplitude solution.
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parameters of the VDVA were recursively found for the
different considered temperatures, which varied� 30K
around the design temperature.

Generally speaking, the results showed that, when
the temperature varies, the performance of the absor-
bers also modify, which was expected. However, this is
not solely dependent on the temperature and the mater-
ial characteristics but also on the magnitude of the exci-
tation load imposed on the compound system.

For the neoprene VDVA and load magnitude
f0 ¼ 1000, the compound system behaved as a damped
linear two-d.f. system for the whole considered tempera-
ture range, presenting no severe detuning and keeping
stability. In the other case of f0 ¼ 10000, the compound
system remained stable only at 283Kand293K, showing
jumps in the solutions for all the other temperatures.

For the butyl rubber VDVA and f0 ¼ 1000, a severe
detuning was verified, deteriorating the performance of

Figure 12. (a) Time response of the compound system with Butyl rubber VDVA at T¼ 333 K, with f0¼ 10000, �¼ 5 driven by a

frequency of 18.27 Hz. The high amplitude solution (solid line) corresponds to the second upper arm in Figure 10 and the low

amplitude solution (dotted line) is shown for comparison. (b) Spectrum of (a).
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the absorber, especially at low temperatures, where the
compound system even lost its stability. For
f0 ¼ 10000, distortions around the peaks and jumps,
characteristics of nonlinear behavior, were observed
in the compound system for all the temperatures
except in the design temperature.

From the stability analysis, the salient result was
that no evidence of quasi-periodic motions due to
Hopf bifurcations occurred for all the considered
cases. Additionally, to account for the evidence of
chaos, a large number of numerical simulations was
performed, with several initial conditions, for all the
considered cases and the whole set of corresponding
frequencies. At the end of this procedure, no evidence
of chaotic solutions was obtained.

Taking into account all the previous remarks, it can
be concluded that, in terms of vibration control cap-
abilities, the neoprene VDVA is less affected by a tem-
perature variation than the butyl rubber VDVA, when
a low magnitude of the excitation load is considered.
On the other hand, a large load magnitude can signifi-
cantly affect the performance of both absorbers when
the working temperature is not the design temperature.
In this case, a hybrid (passive-active) absorber, contain-
ing a viscoelastic material and an adaptive part, could
be a convenient and interesting alternative.
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