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SPECIAL GUEST EDITOR SECTION

This report reviews recent literature on the 
application of multivariate calibration techniques 
to both first- and second-order data, aimed at the 
analytical determination of analytes of interest 
or sample properties in a variety of industrial, 
pharmaceutical, food, and environmental samples, 
including examples of process control. The most 
used data processing tools are briefly described, 
with emphasis on the advantages that can be 
obtained by applying specific combinations of 
multivariate data and algorithms. The main focus is 
on works devoted to first-order data (i.e., spectra, 
chromatograms, etc.) combined with partial 
least-squares regression, which has become the 
standard for this type of analytical research. A brief 
discussion on recent work on second-order data and 
algorithms is also included, as this field is rapidly 
growing, although at present it does not show, the 
general applicability of the first-order counterparts.

Classical analytical calibration is based on fully selective 
instrumental signals (1). Any foreign component 
producing a signal under the same experimental 

conditions as the analyte constitutes an interference and leads 
to bias in its determination (2). The presence of interferences 
calls for the use of complementary techniques, such as sample 
pretreatment or cleanup, to remove the interferences before 
analyte determination; masking the interference effect, leaving 
the analyte signal as the only measured one; or physical 
separation of the analyte and the use of chromatography, 
capillary electrophoresis, etc.

There are instances where these approaches would not work 
for a variety of reasons, such as cost, time, or simply because 
none of them can free the analyte from the interference. In these 
cases, a valid alternative is the measurement and processing 
of multiple signals, some of which are only partially selective 
regarding the analyte of interest. The whole subject started when 
near-IR (NIR) spectroscopy was applied to the determination of 
components of intact materials, such as protein in seeds (3). NIR 
spectra are composed of the superposition of many different 
signals arising from the several constituents (most of them 
possibly unknown) of the sample. The subsequent development 
of multivariate techniques for processing these data led to the 

outburst of myriad of algorithms, starting the discipline of 
chemometrics in the 1960s (4).

To place classical and multivariate calibration in a broader 
scenario, a consistent nomenclature of different data types is 
required. One possibility is to employ the concept of “order,” 
widely used in analytical chemistry (5, 6). The order is a 
tensorial property of the data measured for a single sample; 
scalars are zeroth-order tensors; thus, univariate calibration is 
also known as zeroth-order. If spectra (or other unidimensional 
vectors/sample) are measured, the calibration becomes first-
order. Increasing the number of data dimensions/sample leads 
to correspondingly complex data structures, which give rise to 
second- and higher-order multivariate calibration. An alternative 
nomenclature is based on the number of ways, which is the 
number of modes of a data array for a group of samples (7). In 
this context, univariate calibration is based on one-way data, 
first-order calibration on two-way data, etc. In what follows, 
the concept of order is used, because it is more familiar to 
analytical chemists and linked to the expression “second-order 
advantage,” popular in the analytical community (8). Figure 1 
pictorially shows the relationship among data orders.

First-order multivariate calibration is mainly dominated by 
partial least-squares (PLS) regression, a technique developed 
around 1970 by Hermann Wold and coworkers, particularly 
his son Svandte Wold (4). PLS suitably combines two 
characteristics, which makes it appealing for NIR analysis 
of complex materials: an inverse calibration phase, in which 
concentration information is regressed onto signals rather than 
signals onto concentrations, and dimensionality reduction, 
a technique that adequately compresses a data matrix of size 
samples × hundreds (or thousands) of variables (wavelengths) 
into a much smaller matrix of size samples × a small number 
of so-called latent variables. The latter number is close to the 
number of chemically responsive components in the spectral 
region of interest.

Today PLS is the most applied first-order multivariate 
calibration method, with the exception of nonlinear analytical 
systems, for which algorithms such as artificial neural networks 
or support vector machines appear to be preferable (9). 
Concerning the analyzed data, they include not only spectra, i.e., 
NIR, mid-IR (MIR), UV-Vis absorption, and luminescence, but 
other type of vectorial signals as well, such as chromatograms, 
electrochemical data (voltammograms), and responses 
associated with arrays of sensors (electronic tongues or noses) 
or sensometric parameters.

First-order multivariate calibration demands preparing 
a sufficiently representative set of calibration samples. All 
chemical components expected to be found in future test 
samples should be present in the calibration set, leading in 
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certain cases to the collection of a large number of training 
samples. The latter problem may be greatly alleviated if second- 
or higher-order signals can be measured/sample (5, 6) because 
in this case the relevant algorithms are able to separate the 
contribution of the interferences from that of the analyte. This 
property is known as second-order advantage (8) and permits 
the building of considerably simpler calibration sets, sometimes 
simply composed of a handful of pure analyte samples.

Progress in the application of first- and second-order 
multivariate calibration that has taken place in recent years is 
reviewed here, with emphasis on experimental analytical work.

First-Order Multivariate Calibration Algorithms

The first step in the multivariate processing of first-order 
data is to build a reference data set with the recorded signals 
for as many samples as required to span the chemical variability 
expected in future samples, and the reference values of the 
analyte concentrations or properties of samples (10). The 
various algorithms are designed to correlate the recorded 
signals with the concentrations, so that a model is produced that 
can then be applied to signals for an unknown sample in order 
to predict its analyte content or property value.

Collection of spectra (or other vectorial signals) leads to the 
building of a calibration matrix of signals. Usually this matrix 
has many more signal values than samples, since instruments 
deliver measurements at a large number of sensors, and 
signals may be correlated, because some samples may have 
similar composition. This poses some challenges to first-order 
calibration algorithms, with the result than some of them are of 
limited applicability and have been surpassed with the advent of 
more powerful tools.

The simplest first-order algorithm is classical least-squares 
(CLS), which resorts to two basic chemical laws: the direct 
proportionality between signal and concentration, and the 
additivity of signals of the sample components. CLS belongs to 
a group of methods known as direct because they are based on 
the assumption that signals are proportional to concentrations. 
To be able to apply CLS, however, one needs to know all  
the components in the calibration set of samples and their 

concentrations, something that is not possible for complex or 
natural samples and seriously limits its applicability (10).

Inverse methods are preferable to overcome this problem 
because by assuming that concentration is linearly related to 
signal, they are able to build a calibration model, ignoring the 
concentrations of most sample components except for a handful 
of analytes of interest, or even a single one. Figure 2 illustrates 
a group of NIR spectra collected for a set of seeds, intended 
to calibrate for the determination of fat, humidity, protein, and 
starch. Only inverse methods can be applied for this purpose.

The simplest version of this type of algorithms is inverse 
least-squares (10), which, however, has a major drawback: 
it requires having fewer sensors than samples. This calls for 
complex procedures for sensor selection, with the result that 
important information has to be removed from the calibration 
signals.

Two popular algorithms for processing full-sensor first-order 
data using inverse calibration are principal component regression 
(PCR) and PLS (10, 11). The first step in these methodologies 
is to decompose the calibration data matrix in the so-called 
latent variables: loadings and scores. They are called “latent” 
(meaning occult), as opposed as “explicit,” which are the raw 
instrumental variables. The decomposition is accomplished 
using an algorithm whose aim is obtaining loadings and scores 
representing as much as possible the spectral variance in the 
calibration matrix (PCR), and at the same time, the maximal 
correlation between signals and the concentrations of an analyte 
of interest in each of the calibration samples (PLS; 10). The 
latter characteristic has made PLS the de facto standard for first-
order multivariate calibration. One should note that there are 
two PLS versions: PLS-1, which focuses on a single analyte at 
a time and seems to be the preferred variant because the model 
is optimized towards a given analyte; and PLS-2, which allows 
one to calibrate for several analytes simultaneously, but is used 
less often (4).

The raw data matrix is sometimes subjected to a mathematical 
pretreatment procedure to remove spectral variations due 
to artifacts or physical phenomena but not sample chemical 
composition (11). This is particularly important in NIR 
spectroscopy analysis of solid or semisolid materials, where 
dispersion phenomena may be unrelated to the measured property. 
Good accounts on the subject can be found in the literature (11). 
In the case of chromatographic data, the application of PLS 
requires that the elution profiles of different samples are first 
aligned or synchronized, because this phenomenon is not 
related to the chemical composition of samples. Otherwise, 
the method will not work or an unnecessary number of latent 
variables will be needed to compensate for shifts, broadenings, 
and peak shape changes among chromatograms.

As explained above, PLS is a linear regression method. It may 
cope with slight deviations of linearity in the signal-concentration 
relationship by including additional latent variables. However, 
it cannot be applied to strongly nonlinear problems, where 
one must resort to truly nonlinear algorithms, such as artificial 
neural networks, support vector machines, radial basis function 
networks (9), or nonlinear PLS versions (12).

Second-Order Multivariate Calibration Algorithms

It is not the purpose of the present work to discuss the many 
available second-order algorithms, although a brief account will 

Figure 1. Pictorial representation of different data types, 
from zeroth- to second-order, for a single sample and a set 
of samples, giving rise to various analytical orders.
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be given. One group of methods comprises the so-called trilinear 
algorithms, which require the data to fulfill the condition of 
trilinearity. This basically implies that the constituent signals 
are proportional to concentrations, and their profiles along both 
instrumental modes are unique and equal for all samples (13).

The most popular trilinear algorithm is parallel factor 
analysis (PARAFAC; 14), which has become the algorithm 
of choice due to its efficiency, robustness, ability to process 
multiple samples, and availability of constraints to be applied 
during the modeling phase, which aids in reaching physically 
interpretable results (14). PARAFAC achieves the second-order 
advantage, often leading to uniquely defined models in which 
the contribution of the potential interferences and the analytes 
to the total signal are adequately decomposed.

When component profiles change from sample to sample 
(e.g., chromatograms), PARAFAC cannot be applied, and 
nontrilinear algorithms are needed, with the most popular 
alternative being multivariate curve resolution-alternating least-
squares (MCR-ALS; 15). In the so-called extended mode (16), 
the latter operates by decomposing an augmented data matrix 
created from the set of signals. Decomposition is achieved 
through ALS under a series of sensible constraints, which 
provide physical interpretability to the final solution and limit 
their possible number. MCR-ALS needs initial estimates of 
component profiles, which can be efficiently computed using 
several methods (17, 18).

Figure 3 shows the difference between PARAFAC, which 
builds a three-way data structure with the individual data 
matrixes and assumes a trilinear model for decomposition, and 
MCR-ALS, which constructs an augmented data matrix in a 
given direction and assumes a bilinear model for decomposition.

For additional analytical systems deviating from the trilinear 
model, latent-variable regression methods may be useful, such 
as unfolded and multidimensional PLS (U-PLS and N-PLS, 
respectively; 19, 20). Here the achievement of the second-
order advantage is a post-calibration activity, a procedure called 
residual bilinearization (RBL), which separates the portion of 
the signal explained by calibration from the contribution of 

the interferences. The result is the flexible U-PLS/RBL and 
N-PLS/RBL methods (21, 22).

Table 1 provides a summary of second-order algorithms, 
and Figure 4 shows a three-dimensional plot of an excitation-
emission fluorescence matrix for a sample of an antibiotic. The 
latter can be quantitated in human urine even in the presence of 
a fluorescent background from the biological matrix, illustrating 
the achievement of the second-order advantage.

Software for Multivariate Calibration

A variety of free software is available on the internet from 
a large number of sources. One example is the Multivariate 
Calibration 1 (MVC1, www.iquir-conicet/decargas/mvcl.rar) 
toolbox (23), which employs a useful MATLAB graphical 
user interface for making data loading and manipulation easy 
without knowledge of MATLAB programming.

For second-order calibration, the most-used software is 
freely available as MATLAB codes, including useful graphical 
interfaces, as shown in Table 2 (24–26). Almost no commercial 
software exists, which indicates that second-order analysis is 
still in its infancy regarding its popularity among analytical 
chemists.

First-Order Multivariate Calibration Examples

The number of literature references available for review is 
too large to be thoroughly reviewed here. We have thus selected 
a representative number of references published in recent years, 
with emphasis on covering several different research areas. In 
the cited papers, PLS has been applied for data processing, in 
many cases along with other first-order multivariate variants for 
comparison, including nonlinear techniques, such as artificial 
neural networks. Our view is that PLS is the de facto standard 
for these analyses, and that only in cases of strong nonlinearities 
is it justified to move to alternative methodologies.

Food Analysis

Probably because of historic reasons, spectroscopy/
multivariate calibration has been widely used for food analysis, 
with NIR/PLS-based calibrations already established in official 
documents (27). Hence, this area of application occupies a 
prominent place in the present review.

NIR spectroscopy is ubiquitous in the analysis of dairy 
products. Coupled to spectral pretreatment and PLS or other 
chemometric models, it was used to measure fat, protein, and 
carbohydrate in milk powder samples (28), fat, protein, lactose, 
urea, and somatic cell count in milk (29), and fat, dry matter, 
protein, and fat/dry matter contents in cheeses (30).

Beverages can be conveniently analyzed by IR spectroscopy/
PLS. In wines and related samples, MIR/PLS was used to 
determine tartaric, malic, lactic, succinic, citric, and acetic 
acids (31), and several anthocyanins (32). NIR spectroscopy/
PLS allowed the measurement of haloanisoles and halophenols, 
responsible for musty taint defects in barrel-aged red wines 
(600 wines of different aging time and from four different 
geographic zones), with reference values obtained by 
GC/MS (33), and calcium, potassium, magnesium, phosphorus, 
sodium, sulfur, iron, boron, and manganese (34). In the case 
of juices, glucose, fructose, and sucrose were determined in 

Figure 2. A set of NIR spectra collected for 100 samples 
of sunflower seeds, which can be used to build a first-
order multivariate model for the determination of fat, 
humidity, protein, and starch. None of the wavelengths is 
specific for performing any of these determinations, but the 
multivariate model is able to provide a suitable answer.
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bayberry juice by NIR spectroscopy/PLS (35). The sensorial 
attributes acidity, bitterness, flavor, cleanliness, body, and 
overall quality of coffees were assessed by NIR spectroscopy/
PLS (36).

Food adulteration has been the subject of several papers. 
Olive oils possibly adulterated with different vegetable oils 
were analyzed using NIR spectroscopy/PLS (37, 38). Soya bean 
products, widely used in the animal feed industry as a protein- 
based feed ingredient, were checked for adulteration with 
melamine using NIR spectroscopy/PLS to detect the latter in 
dehulled soya, soya hulls, and toasted soya (39). The fraudulent 
addition of barley to roasted and ground coffee samples was 
identified and quantitated (40). Added sugar, total soluble 
solids, and real juice content in fresh and commercial mango 
juice were measured by MIR spectroscopy/PLS to predict the 
adulteration of mango juice by added sugar (41).

Interesting developments involve an NIR spectroscopy/
PLS study of microbial contamination. Microbial spoilage was 
detected on Atlantic salmon (Salmo salar) by a PLS model 
that predicts the number of bacteria that would be present after 
9 days of storage (42). Also, aflatoxin B1 was measured in red 
chili powder (43) and the fungal toxins fumonisin B1 and B2 in 
corn meal (44).

Comparatively less-used are PLS-processed Raman and 
UV-Vis spectral data. Some Raman examples that deserve to 
be cited are the determination of fat in liquid homogenized 
milk (45), furazoline and malachite green in fish samples (using 
the surface-enhanced Raman mode; 46), sulfonamide residues 
in muscle-building foods (47), and glucose in sport drinks 
by visible micro-Raman spectroscopy/PLS (48). Based on 
UV-Vis spectroscopy data, the following determinations were 
reported: caramel in spirits (cachaca, whiskies, and brandies) 
aged in oak casks (49); cobalt and nickel in water, food, and 

geological certified reference materials after ionic liquid-based 
dispersive liquid–liquid microextraction and complexation with 
1-(2-pyridylazo)-2-naphthol (50); two herbicides (atrazine and 
cyanazine) in rice, mealie, soybean, pear, apple, cauliflower, 
and cabbage after reaction with p-aminoacetophenone (51); 
the dyes Allura Red, Sunset Yellow, and tartrazine in powdered 
soft drinks (52); and monosodium glutamate, guanosine-5′-
monophosphate, and inosine-5′-monophosphate in stock cube 
samples without any previous extraction step using stopped 
flow injection analysis (FIA; 53).

Kinetic UV-Vis spectroscopic data, i.e., time profiles at a 
single wavelength, have been used, via PLS calibration, for 
food analysis. The dyes Amaranth, Ponceau 4R, Sunset Yellow, 
tartrazine, and Brilliant Blue were determined in fruit juices, tea, 
and jellies by oxidation with iron(III) acid solution, followed 
by reaction of the generated iron(II) with hexacyanoferrate(III) 
to yield Prussian blue. Several algorithms besides PLS were 
used, including nonlinear methods (54). Acesulfame-K, sodium 
cyclamate, and saccharin sodium were measured in artificial 
sweeteners relying on the kinetic differences in the analyte 
oxidations by KMnO4 (55).

Electrochemical data processed with PLS usually correspond 
to promising devices, such as electronic tongues, which are 
arrays of partially selective electrodes based on voltammetric or 
other techniques. They provided determination of polyphenols 
in wine (56), and theaflavins and thearubigins in black tea (57), 
in both cases including data pretreatment and comparison 
with nonlinear methods. Similar systems were proposed for 
measuring chloride, nitrite, and nitrate in minced meat (58) and 
fructose and glucose in soft drinks, in the latter case using a 
potentiometric electronic tongue containing 36 lipo/polymeric 
membranes (59).

Chromatographic data showing partial peak resolution is being 
gradually incorporated into multivariate calibration protocols. 
PLS usually allows coping with coeluting chromatograms, 
successfully predicting individual analyte concentrations or 
sample properties. For example, beer sensorial parameters, such 
as bitterness and grain taste, were predicted from unresolved 
GC/MS data (60), and pine nuts and Pecorino in Pesto Genovese 
by headspace sorptive extraction and GC/MS data (61). The 
content of olive oil in blends was assessed from GC/MS (62) 
and HPLC (63) profiles of triacylglycerol, and from GC–flame 
ionization detection profiles of fatty acids methyl esters (64). 
Protein HPLC profiles with UV-Vis detection were used to 
control the types of milk used in the elaboration of dairy products 
and to detect adulterations in milk mixtures and cheeses (65).

Miscellaneous techniques include visible light scattering 
for measuring fat and total protein in milk (66), impedance 
spectroscopy for salt content in minced meats, cured hams, and 
pork loins (67); time domain reflectometry for water content 
in extra virgin olive oils (68); differential scanning calorimetry 
for fatty acid composition (palmitic, stearic, oleic, and linoleic 
acids, saturated, mono- and polyunsaturated, oleic/linoleic 
and unsaturated/saturated ratios) in vegetable oils (69); NMR 
spectroscopy for organic acids (acetic, citric, lactic, malic, 
pyruvic, and succinic) in beer (70); fluorescence spectroscopy 
for riboflavin and the aromatic amino acids tryptophan, 
tyrosine, and phenylalanine in beer (71); and matrix-assisted 
laser desorption ionization-time of flight-MS for quantitation of 
bacterial spoilage in milk and pork meat (72).

Figure 3. Schematic representation of the main second-
order algorithms. From a set of data matrixes (in this 
case, chromatographic elution time-spectral matrixes), 
PARAFAC builds a three-way array, which is decomposed 
into spectral and elution profiles of individual sample 
components (elution profiles are assumed to be identical 
in all samples if the trilinear model holds). MCR-ALS, on 
the other hand, builds an augmented data matrix, which is 
decomposed into spectral and augmented elution profiles 
of sample components using a bilinear model. The latter 
better reflects the variability of chromatograms from 
sample to sample.
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Pharmaceutical and Biomedical Analyses

Of particular interest to the pharmaceutical industry is the 
combination of multivariate calibration to NIR, MIR, and 
Raman spectroscopies, because they allow for the nondestructive 
analysis of intact pharmaceutical forms (73–75). This includes 
the determination of both active pharmaceutical ingredients and 
excipients, which can be performed remotely through optical 
fibers. The results are often comparable to those obtained by 
official HPLC methods, and are being incorporated into official 
protocols (76).

As examples, hydrochlorothiazide was determined 
in powdered pharmaceutical samples (77); chondroitin, 
glucosamine, and methyl sulfonyl methane in tablets (78); 
amoxicillin in powdered drugs (79) and oral suspensions (80); 
ranitidine during the manufacturing process (in granulates 
and cores) and in the final step (in coated tablets) (81); 
azithromycin in tablets (82); and particle size distribution in 
paracetamol powders (83), all using the successful combination 
NIR spectroscopy/PLS. Glucose, fructose, and maltose were 
measured in depilatory formulations without any sample 
pretreatment, based on MIR spectroscopy/PLS, with results 
similar to HPLC with online IR detection (84). Attenuated 
total reflectance-Fourier transformed MIR and Raman spectra 
allowed detection of the presence of acetaminophen in over-the-
counter pharmaceutical formulations (85).

Raman spectroscopy is also suitable for QC assays and to 
identify polymorphic forms or monitor phase changes in 
pharmaceutical products. Coupled to PLS, it allowed in situ 
anhydrate concentration measurements during the crystallization 
and phase transition processes of citric acid in water (86).

A recently introduced technique for nondestructive 
characterization of pharmaceutical materials is the collection 
of hyperspectral data; NIR or Raman spectra are collected for 
many different pixels in the surface of a solid, and a chemical 
image is produced, reflecting the component distribution using 
PLS. The model can be built on the average spectrum of the 
images (first-order data), and can be used to predict bulk 
concentrations in unknown images (from new image average 
spectra) or concentrations at a pixel level (from new individual 
pixel spectra), which provides chemical distribution maps. 
This helped to quantitate piroxicam polymorphs (87) and 
carbamazepine by NIR spectroscopy-CI (88) and to evaluate 

atorvastatin calcium formulations by Raman spectroscopy-
CI (89).

Additional pharmaceutically relevant data have been 
processed by PLS, such as thermogravimetric profiles for the 
resolution of paracetamol and codeine phosphate (90) and 
TLC-densitometric data for atenolol, chlorthalidone, and 
their degradation products (91). For completeness, we include 
the PCR/PLS processing of UV-Vis data for simultaneous 
determinations in multicomponent pharmaceutical forms after 
dissolution, such as mixtures of ambroxol and doxycycline (92); 
aspirin, paracetamol, caffeine, and chlorphenamine (93); 
paracetamol, ibuprofen, and caffeine (94); two 
antiparkinsonians (95); paracetamol, propiphenazone, caffeine, 
and thiamine (96); diprophylline, guaiphenesin, methylparaben, 
and propylparaben or clobutinol, orciprenaline, saccharin 
sodium, and sodium benzoate (97); chlorpheniramine maleate 
and phenylpropanolamine hydrochloride with ibuprofen and 
caffeine or propyphenazone (98); and dienogest and estradiol 
valerate in sugar-coated tablets (99).

For some pharmaceutical mixtures of simple composition, the 
basic CLS algorithm was shown to be useful, as in the UV-Vis 
spectroscopic study of binary, ternary, and quaternary mixtures 
of the water-soluble vitamins thiamine, pyridoxine, riboflavin, 
and cyanocobalamin (100), and in the determination of 
ezetimibe and simvastatin in bulk powder, laboratory-prepared 
mixtures, and a combined dosage form (101). The results were 
compared with those provided by PCR and PLS.

In the biomedical field, NIR spectroscopy data have been 
applied for direct in situ analysis in complex biological systems. 
In this context, the noninvasive glucose monitoring in blood 
using NIR or MIR spectroscopy with PLS is perhaps the single 
most important contribution of the combination of spectroscopy 
and chemometrics to biomedical analysis because of its impact 
in the monitoring of diabetic patients (102–104). Despite the 
efforts devoted to this project in recent decades, however, the 
final aim appears to be elusive (105).

Following earlier ideas on the application of IR spectroscopy 
combined with multivariate techniques for the rapid screening 
of clinically relevant parameters in human blood (106), there 
has been a recent revival of the subject. Promising research 
works are the determination of albumin, immunoglobulin, 
total globulin, and albumin/globulin by MIR spectroscopy/
PLS (107), glucose, glucose-6-phosphate, and pyruvate by NIR 
spectroscopy/PLS (108), and glucose, human serum albumin, 

Table 1. Description of usual algorithms used for processing second-order data

Algorithm Brief description

PARAFAC Assumes a trilinear model for the data array built with a set of second-order signals, i.e., an element (i,j,k) is the sum of 
contributions of the form (ai×bj×ck), where ai is the relative concentration of a component in the ith. sample, and bj, and ck 

are the values of the instrumental profiles at the jth., kth. channel in each data mode. Values of ai are employed for analyte 
quantitation using a pseudo-univariate calibration graph.

MCR-ALS Places I data matrixes (size J × K) on top of each other along one of the data modes, and assumes that the augmented 
matrix follows a bilinear model, i.e., a matrix element (m,k) is the sum of contributions of the form (am × bk), where am  

describes the profile for each sample in the augmented mode, and bk in the common mode (m runs from 1 to I × J). For 
analyte quantitation, areas under each sample profile in the augmented mode are computed and used to build a pseudo-

univariate calibration graph.

PLS/RBL After calibrating a PLS model, the interference signals in the test sample are assumed to follow a bilinear model, i.e., an 
element (j,k) of the interference matrix is the sum of contributions of the form (yj × zk), where yj, and zk are abstract loadings 
in each mode. Analyte scores are produced by modeling the residuals of the fit of the test sample data array to the bilinear 
model, hence the name residual bilinearization. In U-PLS, data arrays are unfolded into vectors; in N-PLS, the original data 

structure is maintained. 
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and g-globulin by NIR spectroscopy/PLS (109). The results may 
find applications in the rapid screening of clinical parameters of 
blood samples in the microliter range.

NIR spectroscopy/PLS has also enabled the determination 
of triglycerides and high-density lipoprotein in rat 
plasma (110), and fish sperm DNA in solution after adsorption 
preconcentration (111). Dispersive NIR Raman spectroscopy 
has been applied for diagnosing toxoplasmosis by quantitating 
anti-Toxoplasma gondii antibodies in blood sera from domestic 
cats, with results comparable to ELISA (112).

Industrial and Miscellaneous Applications

There are many examples of multivariate calibration 
with impact on industrial fields. The driving force has been 
replacement of classical analytical methodologies by techniques 
capable of producing reliable results in a short time, with simple 
equipment, and amenable to automation. A nice example is 
the estimation of the octane number in fuels, a measure of the 
resistance to autoignition in internal combustion engines. The 
most common type of octane rating is the Research Octane 
Number (RON), determined by running the fuel in a test engine 
with a variable compression ratio under controlled conditions 
and comparing the results with those for mixtures of iso-octane 
(RON = 100) and n-heptane (RON = 0). NIR spectroscopy/PLS 
allows for an accurate measurement of octane number in a much 
simpler and faster way than with the engine method (113).

Other relevant fuel properties can be adequately measured 
using the PLS-assisted analysis of the following indicated 
data: (a) in diesels, flash point and cetane number (114) and 
quality parameters (115) by NIR spectroscopy, residual oil by 
fluorescence (116), ethanol, and specific gravity by distillation 
curves (117), and vegetable oils and fats adulterants by LC with 
UV-Vis detection (118); (b) in biodiesels, methyl ester content by 
NIR spectroscopy (119), density, kinematic viscosity, methanol, 
and water content by MIR spectroscopy (120), and adulteration 
with vegetable oil by NIR and MIR spectroscopies (121); 
(c) in gasolines, blending control by NIR spectroscopy (122), 
adulteration with diesel oil, kerosene, turpentine spirit, or 
thinner by MIR spectroscopy (123); and pyrolytic diene values 

by UV-Vis spectroscopy (124); (d) fatty acid methyl ester in 
jet fuel by MS (125); (e) constituents of heavy fuel oil by 1H 
NMR spectroscopy (126); and (f) adulteration of ethanol fuel 
with methanol by MIR spectroscopy (127).

Additional determinations of industrial relevance are the total 
acid number (128), quality (129), and sulfur content (130) of crude 
oil, glucose and ethanol in bioethanol (131), butene in ethylene/
propylene/1-butene terpolymers (132) by MIR spectroscopy, 
saturates, aromatics, resins, and asphaltenes in crude oil by 
fluorescence spectroscopy (133), nickel and chromium in 
steel by laser UV spectroscopy (134), and 11 pesticides in 
agrochemical formulations by a NIR spectroscopy/PLS-based 
QC with results comparable to HPLC (135). In a typical real-
time NIR spectroscopy/PLS application, the natural antimalarial 
artemisinin was determined in dried leaves of Artemisia 
annua L. using a hand-held device (136).

Some environmentally related analytical determinations 
conducted with the aid of PLS are the determination of the 
pesticide mixtures parathion-methyl, chlorpyrifos-methyl and 
vinclozolin, parathion-ethyl, chlorpyrifos and triadimefon, and 
endosulfan sulfate and carbophenothion by GC (137); Fe(III), 
Al(III), and Zr(IV) in water samples by kinetic-potentiometric 
data (138); monitoring of trace elements in estuarine sediments 
by NIR/MIR (139) and X-ray fluorescence spectroscopy (140) 
and in water samples by UV-Vis spectroscopy (141); carbamate 
pesticides in waters by UV-Vis data using FIA (142, 143); 
anions in water using a voltammetric electronic tongue (144) 
and UV-Vis data (145); phenol derivatives in air by fluorescence 
spectroscopy (146); and the pesticides aminocarb and carbaryl 
in vegetables and waters by kinetic-spectroscopic data 
based on their differential oxidation rates with potassium 
ferricyanide (147).

Process Control

Industrial process control is a relevant field for pharmaceutical 
and other industrial applications. The classical approach to 
handling process control through univariate-control charting 
techniques, such as the Shewart approach, suffers from several 
drawbacks. In the presence of complex relationships and 
correlations among process variables, the simple graphical 
methods cannot be used as performance indicators based on 
independent assumptions. To overcome these problems, PLS 
has been proposed to optimize the quality of products made in 
process industries with a large number of process and quality 
variables (148).

Specifically in the pharmaceutical industry, process analytical 
technology (PAT) was proposed by the U.S. Food and Drug 
Administration to develop more technically and scientifically 
rigorous production processes (149). NIR spectroscopy is 
one of the most useful spectroscopic techniques for applying 
the PAT concepts to analysis of pharmaceutical products, 
because of its ability to measure a number of physical and 
chemical properties of samples, and its suitability for online and 
inline measurements. Some of the better known uses of NIR 
spectroscopy in the production of solid pharmaceutical forms 
include chemical raw material identification, blend uniformity 
assessment, granulation monitoring, roller compaction 
monitoring, drying end-point determination, and coating end-
point and uniformity determinations.

As examples, we mention development of a fast and reliable 

Figure 4. Three-dimensional surface showing the 
fluorescence emission intensity of a urinary antibiotic as 
a function of emission and excitation wavelengths. From 
these second-order data, it is possible to quantitate the 
concentration of the antibiotic in a biological fluid, such as 
urine, even in the presence of uncalibrated interferences 
(for example, the urine background constituents or 
other pharmaceuticals). The vertical scale is in arbitrary 
fluorescence intensity units.
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QC system by building different quantitative calibrations 
of a pharmaceutical key quality parameters, which allowed 
derivation of a general classification model capturing the 
overall product grade (150), and development of fast and 
noninvasive quantitative methods for real-time prediction of 
critical quality attributes of pharmaceutical granulates (active 
principle content, pH, moisture, flowability, angle of repose, 
and particle size; 151).

Second-Order Multivariate Calibration Examples

This field has been dominated in the past by matrix data, 
such as chromatography with spectral detection and excitation-
emission fluorescence matrix (EEFM) spectroscopy. EEFMs 
have a number of advantages: (a) they can be easily measured 
in most modern spectrofluorometers, and with the advent of 
fast-scanning monochromators or multiwavelength charge-
coupling detectors they can be recorded in a very short time; (b) 
fluorescence signals are highly selective and sensitive, allowing 
low LODs to be reached for the analytes of interest; and (c) 
the specific data structure of an EEFM is very simple because 
excitation and emission spectra for each sample component do 
not vary from sample to sample. This latter aspect is important 
when compared with other second-order signals, for which at 
least one of the component profiles suffers important changes 
for different experimental runs, such as chromatograms, pH 
gradients, or kinetic profiles. Recent applications in this field 
involve the development of luminescent signals on solid 
surfaces, either in a batch mode or as a detecting system for 
FIA, for example, nylon membranes in batch mode (152–154), 
molecularly imprinted polymers (155), C18 particles (156), and 
nylon powder (157, 158) as sensing phases for FIA systems. For 
recent reviews on the subject, see refs. 5, 6, and 159.

Second-order data can also be produced by connecting two 
instruments, each of which provides a data mode to the finally 
collected data. This is called hyphenation and has given rise 
to a large number of second-order data methods. For example, 
if chromatography is followed by UV-Vis detection with a 
diode array device, a fast-scanning spectrofluorometer or a 
mass spectrometer, then second-order data are obtained in 
which one data mode is the elution direction and the second 
is the spectral direction. These data pose some challenges to 
data processing algorithms, mainly because the elution profiles 
are not constant from run to run. This demands two alternative 

solutions: correcting for the temporal changes by synchronizing 
the chromatograms (160–162), or applying a calibration 
methodology that is able to model the elution profile changes, 
such as MCR-ALS (163).

Second-order LC with diode array detector has been profusely 
used to analyze complex samples of different origins, mostly 
in the presence of unexpected interferences, i.e., achieving the 
second-order advantage. Some recent examples from the prolific 
research group of Hunan University, China, are the following 
determinations: 11 antihypertensives in isocratic mode in only 
10 min (164); 12 quinolones in honey (165); atrazine, ametryn, 
and prometryne in soil, river sediment, and wastewater (166); 
and levodopa, carbidopa, and methyldopa in human plasma 
samples (167).

When spectrofluorometric detection is used in 
chromatographic analysis, lower LODs are possible, as 
in the following determinations using MCR-ALS as the 
processing algorithm: 10 polycyclic aromatic hydrocarbons 
in waters (168), and the marker pteridins neopterin, biopterin, 
pterin, xanthopterin, and isoxanthopterin in urine samples (169). 
When determining eight fluoroquinolones in urine by HPLC 
coupled to fast scanning fluorescence detection, on the other 
hand, PARAFAC was used after isocratic chromatographic 
development (170). In all of these cases, the second-order 
advantage had to be exploited because the test samples 
contained unexpected interferences.

Two-dimensional GC-GC and FID constitutes an additional 
possibility for second-order data generation, as reported 
for the quantitative analysis of essential oils in perfume 
using MCR-ALS (171), and for gasoline analyses using 
N-PLS (172, 173).

Conclusions

Multivariate calibration is a powerful tool available to 
the analytical chemist. It allows determination of a variety 
of analytes or properties in a wide range of sample types, 
from pharmaceuticals to foodstuff, and from fuels to natural 
waters. The processed data are mainly of spectroscopic origin, 
although other techniques, such as chromatography, MS, and 
electrochemistry, are gradually being incorporated. It is likely 
that the present trend will continue in the future, as instrumental 
advances add new dimensions to the data and chemometricians 
uncover new algorithmic data processing techniques.
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