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The aim of this paper is to review the classical limit of Quantum Mechanics and to precise
the well known threat of chaos (and fundamental graininess) to the correspondence prin-
ciple. We will introduce a formalism for this classical limit that allows us to find the sur-
faces defined by the constants of the motion in phase space. Then in the integrable case we
will find the classical trajectories, and in the non-integrable one the fact that regular initial
cells become ‘‘amoeboid-like’’. This deformations and their consequences can be consid-
ered as a threat to the correspondence principle unless we take into account the character-
istic timescales of quantum chaos. Essentially we present an analysis of the problem
similar to the one of Omnès (1994,1999), but with a simpler mathematical structure.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

It seems that Einstein was the first one to realize that
chaos was a threat to quantum mechanics [1] in a paper
that was ignored by forty years [2]. A panoramic view of
the this incompatibility of the classical chaos and quantum
concepts (up to 1994) can be found in [1] and a recent
review in [3]. Our first contribution to the subject was
the introduction of a theory of the classical limit for closed
quantum systems with Hamiltonian with continuous spec-
trum based in destructive interference (that we have called
the ‘‘Self Induced Decoherence’’ – SID – and where we have
used the Riemann–Lebesgue theorem [4]) and later we
found a class of quantum chaotic systems (that may not
contain all cases but certainly it contains the relevant ones)
with chaotic classical limit [5,6]. With this idea in mind we
study quantum chaos in papers [5–7] and extended the
notions of non-integrable, ergodic and mixing quantum
systems in paper [8]. These works were inspired in the
landmark paper of Bellot and Earman [9]. The aim of this
remarkable paper is precisely to show ‘‘how chaos puts
some pressure on the correspondence principle (CP)’’ and
the author says that there is not a ‘‘quick and convincing
argument for the conclusion that the CP fails’’. Another
important source of inspiration for us was the two books
of Roland Omnès [10,11], precisely the characterization
of quantum chaos as the evolution of a square cell to a dis-
torted ‘‘amoeboid’’ cell (see Fig. 6(B)). In this paper we will
essentially follow this idea, with simpler mathematical
methods, and we will try to precise the origin of the elon-
gated, distorted and final amoeboid cells which, in fact, we
consider the main threat to the CP. It should be noted that
the standard approach of the graininess has already been
pointed out both in classical discretized systems and in
quantum mechanics by looking at the Kolmogorov–Sinai
entropy and its quantum variants [12–16]. In these cases,
there is no threat to the correspondence principle, but only
the emergence of a typical time-scale over (logarithmic in
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�h�1) that signals the non-commutativity of the limit t !1
and �h! 0. This fact is not really taken as a threat to the
correspondence principle. However, we will see that the
amoeboid-like behavior involves a ‘‘coarse-grained distri-
bution function’’, i.e. a point-test-distribution function
averaged on rectangular rigid boxes of the phase space
(see Section 5). This coarse-grain is used to get rid the com-
plicated structure of the phase space which becomes more
and more ‘‘scarred’’ as the relaxation proceeds (see [17, p.
7]). Moreover, for the case of a two dimensional phase
space we will show a connection between the characteris-
tic timescales of the quantum chaos and an adimensional
parameter X which measures the degree of the deforma-
tion of the cells as the system evolves.

The paper is organized as follows. Section 2: we intro-
duce the mathematical structures we will use. In the next
sections we will see that the classical limit can be obtained
using three weapons: decoherence, Wigner transformation
and the limit �h

S ! 0. Section 3: we review the decoherence
alla SID for non-integrable quantum systems. Section 4: we
obtain the classical statistical limit, using Wigner transfor-
mation and the limit �h

S ! 0, and the classical surfaces
defined by the constant of the motion in phase space. Sec-
tion 5: deals the graininess of quantum mechanics. We find
the classical trajectories for the integrable system and esti-
mate the threat to the CP, in the non-integrable case. We
show that, up to this point the threat to the CP can be sup-
pressed if we take into account the characteristic time-
scales of quantum chaos. Moreover, we analyze how the
fundamental graininess improves the statistical classical
limit of Section 4. Section 6: we present our conclusions.
2. Mathematical background

In this section we will review, following Refs. [5,6], the
main mathematical concepts we will use in these papers.

2.1. Weak limit

Our presentation is based on the algebraic formalism of
quantum mechanics [18,19]. Let us consider an algebra A
of operators, whose self-adjoint elements O ¼ Oy are the
observables belonging to the space O. The states q are lin-
ear functionals belonging to the dual space O0, but they
must satisfy the usual conditions: self-adjointness, positiv-
ity and normalization and therefore the state q belongs to
a convex S. If A is a C⁄-algebra, it can be represented by a
Hilbert space (GNS theorem see [19]). IfA is a nuclear alge-
bra, it can be represented by a rigged Hilbert space, as
proved by a generalization of the GNS theorem [20,21].
In this case, the van Hove states with a singular diagonal
can be properly defined (see [22]; for a rigorous presenta-
tion of the formalism, see also [23]).

If we write the action of the functional q on the space O
as ðqjOÞ, then we can say that:

� The evolution Utq ¼ qðtÞ has a Weak-limit if, for any
O 2 O and any q 2 S, there is a unique q� 2 S such that
1 In fact, P is a projector since P2 ¼
P

jk jOjÞðqjjOkÞðqkj ¼
P

jk jOjÞP
lim
t!1
ðqðtÞjOÞ ¼ ðq�jOÞ; 8O 2 O ð1Þ
We will symbolize this limit as
djkðqkj
W � lim
t!1

qðtÞ ¼ q� ð2Þ
� A particular useful weak limit can be obtained using the
Riemann–Lebesgue theorem. The idea of destructive
interference is embodied in this theorem, according to
which, if f ðmÞ 2 L1, then
lim
t!1

Z b

a
f ðmÞ e�imt dm ¼ 0 ð3Þ
If we can express the action of a functional qðtÞ 2 S on the
operator O 2 O as
ðqðtÞjOÞ ¼
Z b

a
AdðmÞ þ f ðmÞ½ � e�imt dm ð4Þ
with f ðmÞ 2 L1, then
lim
t!1
ðqðtÞjOÞ ¼ lim

t!1

Z b

a
AdðmÞ þ f ðmÞ½ � e�imt dm

¼ A ¼ ðq�jOÞ; 8O 2 O ð5Þ
We will call this result ‘‘Weak Riemann–Lebesgue limit’’.

2.2. Generalized projections

As it is well known, in order to describe an irreversible
process in terms of an unitary evolution it is necessary to
break the underlying unitary evolution. The usual tool to
do this is to introduce a coarse graining, that restricts the
information of the system. But generically any information
restriction can be obtained using a projection, which
retains the ‘‘relevant’’ information and discards the ‘‘irrel-
evant’’ one of the considered system.

In fact, in its traditional form, the action of a projection
is to eliminate some components of the state vector corre-
sponding to the finest description (see [42]) to obtain a
coarse grained one. If this idea is generalized, any restric-
tion of information can be conceived as the result of a con-
venient projection. In fact, we can define a projector P
belonging to the space O�O0 such that

P $
X

j

jOjÞðqjj ð6Þ

where (qjj 2 O
0 satisfies ðqjjOkÞ ¼ djk where jOkÞ�O.1 There-

fore, the action of P on q 2 O0 involves a projection leading
to a state qP such that

qP $ qP ¼
X

j

ðqjOjÞðqjj ð7Þ

where in qP only contains the information that we can
obtain from the observables jOkÞ�O.

2.3. Weyl–Wigner–Moyal mapping

Let C ¼M2ðNþ1Þ � R2ðNþ1Þ be the phase space.The func-
tions over C will be called f ð/Þ, where / symbolizes
the coordinates of C;/ ¼ ðq1; . . . ; qNþ1; p1

q ; . . . ; pNþ1
q Þ. If we
¼ jjOjÞðqjj ¼ P.
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consider the operators bf;bg ; . . . 2 bA and the candidates to be
the corresponding distribution functions f ð/Þ; gð/Þ; . . . : 2
A, where bA is the quantum algebra of operators and A is
the classical algebra of distribution functions, the Wigner
transformation reads (see [43–45])

symbbf $ f ð/Þ ¼
Z
hqþ Djbf jq� Die2ipD

�h dNþ1D ð8Þ

We can also introduce the star product (see [46]),

symbðbf bgÞ ¼ symbbf � symb bg ¼ ðf � gÞð/Þ

¼ f ð/Þ exp � i�h
2
@
 

axab @
!

b

� �
gð/Þ ð9Þ

and the Moyal bracket,that is, the symbol corresponding to
the quantum commutator

ff ; ggmb ¼
1
i�h
ðf � g � g � f Þ ¼ symb

1
i�h
½f ; g�

� �
ð10Þ

It can be proved that (see [43])

ðf � gÞð/Þ ¼ f ð/Þgð/Þ þ 0ð�hÞ; ff ; ggmb

¼ ff ; ggpb þ 0ð�h2Þ ð11Þ

To define the inverse symb�1, we will use the symmetrical
orWeyl ordering prescription, namely,

symb�1½qið/Þ; pjð/Þ� $ 1
2
bqibpj þ bpjbqi
� �

ð12Þ

Therefore, by means of the transformations symb and
symb�1, we have defined an isomorphism between the
quantum algebra bA and the ‘‘classical-like’’ algebra Aq,

symb�1
: Aq ! bA; symb : bA ! Aq ð13Þ

The mapping so defined is the Weyl–Wigner–Moyal
symbol.2

The Wigner transformation for states is

qð/Þ ¼ symb bq ¼ ð2p�hÞ�ðNþ1Þ symbðfor operatorsÞ bq ð14Þ

As it is well known, an important property of the Wigner
transformation is that:

hbOibq ¼ ðbqjbOÞ ¼ ðsymb bq j symb bOÞ
¼
Z

d/2ðNþ1Þqð/ÞOð/Þ ð15Þ

This means that the definition of bq 2 cA0 as a functional onbA is equivalent to the definition of symbq 2 A0q as a func-
tional on Aq.
3. Decoherence in non-integrable systems

3.1. Local CSCO

This subsection is a short version of the corresponding
subsection of paper [5].
2 When �h! 0, we have Aq ! A, where A is the classical algebra of
observables over phase space.
a. In [5] we have proved that, when the quantum sys-
tem is endowed with a CSCO of N þ 1 observables
containing bH, that defines an eigenbasis in terms of
which the state of the system can be expressed,
the corresponding classical system is integrable. In
fact, if the CSCO is fbH; bG1; . . . ; bGN , the Moyal brackets
of its elements are
fGIð/Þ;GJð/Þgmb ¼ symb
1
i�h
½bGI; bGJ�

� �
¼ 0 ð16Þ
where I; J ¼ 0;1; . . . ;N; bG0 ¼ bH, and / 2 M � R2ðNþ1Þ.
Then, when �h! 0, from Eq. (11) we know that
fGIð/Þ;GJð/Þgpb ¼ 0 ð17Þ
Thus, since Hð/Þ ¼ G0ð/Þ, the set fGIð/Þg is a com-
plete set of N þ 1 constants of motion in involution,
globally defined all over M; as a consequence, the
system is integrable.

b. We have also proved (see [5]) that, when the CSCO
has Aþ 1 < N þ 1 observables, a local CSCO
fbH; bG1; . . . ; bGA; bOiðAþ1Þ; . . . ; bOiNg can be defined for a
maximal domain D/i

around any point
/i 2 C � R2ðNþ1Þ, where C is the phase space of the
system. In this case the system is non-integrable.

In order to prove this assertion, we have to recall the
Carathèodory–Jacobi theorem (see [47], Theorem 16.29)
according to which, when a system with N þ 1 degrees of
freedom has Aþ 1 global constants of motion in involution
fG0ð/Þ;G1ð/Þ; . . . ;GAð/Þg, then N � A local constants of
motion in involution fAiðAþ1Þð/Þ; . . . ;AiNð/Þg can be defined
in a maximal domain D/i

around /i, for any
/i 2 C � R2ðNþ1Þ (see also Section 3.2 below).

Let us consider the particular case of a classical system
with N þ 1 degrees of freedom, and whose only global con-
stant of motion (for simplicity) is the Hamiltonian Hð/Þ.
The Carathèodory–Jacobi theorem states that, in this case,
the system has N local constants of motion AiIð/Þ, with
I ¼ 0; . . . ;N, in the maximal domain D/i

around /i, for
any /i 2 C.

If we want to translate these phase space functions into
the quantum language, we have to apply the transforma-
tion symb�1; this can be done in the case of the Hamilto-
nian, bH ¼ symb�1Hð/Þ, but not in the case of the AiIð/Þ
because they are defined in a maximal domain D/i

� C
and the Weyl–Wigner–Moyal mapping can only be applied
on phase space functions defined on the whole phase space
C. To solve this problem, we can introduce a positive par-
tition of the identity (see [48]),

1 ¼ Ið/Þ ¼
X

i

Iið/Þ ð18Þ

where each Iið/Þ is the characteristic or index function

Iið/Þ ¼
1 if / 2 D/i

0 if / R D/i

(
ð19Þ

and D/i
� D/i

;D/i
\D/j

¼ ;;
S

iD/i
¼ C. Then we can define

the functions OiIð/Þ as

OiIð/Þ ¼ AiIð/Þ Iið/Þ ð20Þ
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Now the OiIð/Þ are defined for all / 2 C; so, we can obtain
the corresponding quantum operators as

bOiI ¼ symb�1OiIð/Þ ð21Þ

Since the original functions AiIð/Þ are local constants of
motion in the maximal domain D/i

, they make zero the
corresponding Poisson brackets, with H, in such a domain
and, a fortiori, in the non-maximal domain D/i

� D/i
. This

means that the OiIð/Þ makes zero the corresponding Pois-
son brackets in the whole space C. In fact, for / 2 D/i

,
because OiIð/Þ ¼ AiIð/Þ, and trivially for / R D/i

. We also
know that, in the macroscopic limit �h! 0, the Poisson
brackets can be identified with the Moyal brackets, that
is, the phase space counterpart of the quantum commuta-
tor (see Eq. (11)).3 Therefore, we can guarantee that all the
observables of the set bH; bOiI

n o
commute with each other:bH; bOiI

h i
¼ 0; bOiI; bOiJ

h i
¼ 0 ð22Þ

for I; J ¼ 1 to N and in all the D/i
. As a consequence, we will

say that the set bH; bOi1; . . . ; bOiN

n o
is the local CSCO of N þ 1

observables corresponding to the domain D/i
� C. If bH has

a continuous spectrum 0 6 x <1, and the bOiI a discrete
one (just for simplicity) a generic observable bO can be
decomposed as

bO ¼ X
imiI m0

iI

Z 1

0
dx

Z 1

0
dx0 eOimiI m0

iI
ðx;x0Þ jx;miIihx0;m0iIj

ð23Þ

where the jx;miIi ¼ jx;mi1; . . . ;miNi are the eigenvectors
of the local CSCO bH; bOiI

n o
corresponding to D/i

. Since it
can be proved that (see [5]), for i – j,

hx;miI jx;mjIi ¼ 0 ð24Þ

the decomposition of Eq. (23) is orthonormal, and it gener-
alizes the usual eigen-decomposition of the integrable case
to the non-integrable case. Therefore, any bOiI correspond-
ing to the domain D/i

commutes with any bOjI correspond-
ing to the domain D/j

with i – j,4

bOiI; bOjJ

h i
¼ dij dIJ ð25Þ
3.2. Continuity and differentiability.

In paper [8], we have used a ‘‘bump’’ smooth function
Bið/Þ, in each domain D/i

surrounded by a frontier zone
F/i

, such that Dið/Þ [ F/i
� Dið/Þ, and we have defined a

new partition of the identity (compare with (18)),

1 ¼ Ið/Þ ¼
X

i

Bið/Þ ð26Þ
3 Even if these reasoning is only valid in the limit �h! 0 it is enough for
our purposes since essentially we are trying to find classical limit.

4 In this paper we have slightly changed the notation of paper [5],
because we consider that the present notation is more explicit than the
one.of that paper.
where each Bið/ÞP 0 satisfies (compare with (19))

Bið/Þ ¼
1 if / 2 D/i

�½0;1� if / R F/i

0 if / R D/i
[ F/i

8><>: ð27Þ

and F/i
� F ¼

S
iF/i

is the union of all the joining zones
(see Fig. 1(A)).5 Then if we change the definition
OiIð/Þ ¼ AiIð/Þ Iið/) (compare (20)) by

OiIð/Þ ¼ AiIð/ÞBið/Þ

we would have smooth connections between F through
the functions OiIð/Þ.6 Namely to work with continuos and
differential functions force us to introduce continuity zones
F and functions Bið/Þ in the frontier of the domains D/i

(Fig. 1(A)). Then we can use Cr � functions (and eventually
C1 � functionsÞ in the whole treatment (see [8]Þ. For simplic-
ity, up to now, we have not considered these F� zones, nev-
ertheless we will be forced to use them in Section 6
(Fig. 6(A)).

Another kind of joining zones are used in the decompo-
sition, in small square boxes, of a ‘‘cell’’ [10], i.e. the small
boxes distributed in the ‘‘boundary of C’’ in figure 6.1 of the
quoted book (see also between Eqs. (6.6) and (6.79) of this
book). This figure corresponds to our Fig. 1(B). But, as the
D/i

are neither boxes nor cells (that will be introduce in
Section 5), F and the ‘‘boundary of C’’ are completely dif-
ferent concepts.

3.3. Decoherence

Let us consider a quantum system with a globally

defined Hamiltonian bH. In order to complete the CSCO,
we can add constants of the motion locally defined as in
the previous subsection. Thus, we have the CSCObH; bOiI

n o
, with I ¼ 1 to N and i corresponding to all the nec-

essary domains D/i
obtained from the partition of the

phase space C.

a. In paper [5] we have considered the case with con-
tinuous and discrete spectrum for bH and for thebOiI . For the sake of simplicity in this paper we will
only consider the continuous spectrum 0 6 x <1
for bH and discrete spectra miI 2 N for the bOiI. Then
in the eigenbasis of bH , the elements of any local
CSCO can be expressed as (see Eq. 23)
5 Mo
fundam
will defi

6 In s
zones in
cases, t
limit (s
bH ¼X
imiI

Z 1

0
x jx;miIihx;miIjdx ð28Þ

bOiJ ¼
X
imiI

Z 1

0
miI jx;miIihx;miIjdx ð29Þ
reover, as we will discuss in Section 5, quantum phase space has a
ental graininess. Then the width of F must be of the order that we
ne in that section, i.e. it must contain a box of the size DxDp ¼ 1

2 �h.
ome cases it can be shown that the discontinuities in the boundary
troduces a 0ð�h2Þ, which vanishes when �h! 0 and, therefore, in this

he Moyal brackets can be replaced with Poisson brackets in such a
ee [8]).



Fig. 1. (A) The domains and the frontier. DxDp ¼ 1
2 �h. (B) A cell decomposed in small square boxes.
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where miI is a shorthand for mi1; . . . ;miN , and
P

imiI
is

a shorthand forP
i

P
mi1

. . .
P

imiN
.

With this notation,
7 In p
physica
bH jx;miIi ¼ x jx;miIi; bOiI jx;miIi
¼ miI jx;miIi ð30Þ
where the set of vectors jx;miIif g, with I ¼ 1 to N
and i corresponding to all the domain D/i

, is an
orthonormal basis (see Eq. (24)), i.e.:
hx;miIjx0;m0iIi ¼ dðx�x0ÞdmiI m0
iI

ð31Þ
b. Also in the orthonormal basis jx;miIif g, a generic
observable reads (see Eq. 23)
bO ¼ X

imiI m0
iI

Z 1

0
dx
Z 1

0
dx0 eOimiI m0

iI
ðx;x0Þ jx;miIihx0;m0iIj

ð32Þ

where eOimiI m0

iI
ðx;x0Þ is a generic kernel or distribution

in x;x0. As in paper [5], we will restrict the set of
observables (i.e. we make a projection like those of
Section 2.2 namely a generalized coarse-graining)
by only considering the van Hove observables (see
[22]) such that7
eOimiI m0

iI
ðx;x0Þ ¼ OimiI m0

iI
ðxÞdðx�x0Þ þ OimiI m0

iI
ðx;x0Þ
ð33Þ
The first term in the r.h.s. of Eq. (33) is the singular term and
the second one is the regular term since the OimiI m0

iI
ðx;x0Þ are

‘‘regular’’, i.e. L2, functions of the variablex-x0. Then we will
call bO the subspace of observable, of our algebra bA, with
these characteristics. Moreover we can define a projector
P, as those of Section 2.2, that projects on bO: This projection
will be our generalized coarse graining.
Therefore, the observables will read
bO ¼ X
imiI m0

iI

Z 1

0
dxOimiI m0

iI
ðxÞjx;miIihx;m0iIj

þ
X

imiI m0
iI

Z 1

0
dx
Z 1

0
dx0OimiI m0

iI
ðx;x0Þ jx;miIihx0;m0iIj

ð34Þ
apers [7] we have shown that this choice does not diminish the
l generality of the model.
Since the observables are the self-adjoint operators
of the algebra, bOy ¼ bO, they belong to a spacebO �bA whose basis fjx;miI;m0iIÞ; jx;x0;miI;m0iIÞg is
defined as
jx;miI;m0iIÞ $ jx;miIihx;m0iIj;

jx;x0;miI;m0iIÞ $ jx;miIihx0;m0iIj ð35Þ
c. The states belong to a convex set included in the
dual of the space bO; bq 2 bS � cO0 . The basis of cO0 is
fðx;miI;m0iIj; ðx;x0;miI;m0iIjg, whose elements are
defined as functionals by the equations
ðx;miI ;m0iI jg;niI ;n0iIÞ $ dðx�gÞdmiI niI
dm0

iI
n0

iI

ðx;x0;miI ;m0iI jg;g0;niI;n0iIÞ $ dðx�gÞdðx0 � g0ÞdmiI niI
dm0

iI
n0

iI

ðx;miI ;m0iI jg;g0;niI ;n0iIÞ $ 0

ð36Þ
and the remaining ð� j�Þ are zero. Then, a generic
state reads
bq ¼ X
imiI m0

iI

Z 1

0
dxqimiI m0

iI
ðxÞðx;miI;m0iIj

þ
X

imiI m0
iI

Z 1

0
dx

Z 1

0
dx0qimiI m0

iI
ðx;x0Þ ðx;x0;miI;m0iIj

ð37Þ
where the functions qimiI m0
iI
ðx;x0Þ are ‘‘regular’’, i.e.

L2 functions of the variable x- x0. We also require
that bqy ¼ bq, i.e.,
qimiI m0
iI
ðx;x0Þ ¼ qim0iI miI

ðx0;xÞ ð38Þ
and that the qimiI miI
ðx;xÞ $ qimiI

ðxÞ would be real
and non-negative, satisfying the total probability
condition,
qimiI
ðxÞP 0; trbq ¼ ðbqjbIÞ ¼X

imiI

Z 1

0
dxqimiI

ðxÞ ¼ 1

ð39Þ
where bI ¼PimiI

R1
0 dxjx;miIihx;miIj is the identity

operator in bO.
d. On the basis of these characterizations, the expecta-

tion value of any observable bO 2 bO in the statebqðtÞ 2 bS can be computed as
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hbOibqðtÞ ¼ ðbqðtÞjbOÞ ¼ X
imiI m0

iI

Z 1

0
dxqimiI m0

iI
ðxÞOimiI m0

iI
ðxÞ

þ
X

imiI m0
iI

Z 1

0
dx

Z 1

0
dx0qimiI m0

iI
ðx;x0Þ eiðx�x0 Þt=�h

	 OimiI m0
iI
ðx;x0Þ ð40Þ

The requirement of ‘‘regularity’’, in variables x�x0, for
the involved functions, i.e. OimiI m0

iI
ðx;x0Þ 2 L2 and

qimiI m0
iI
ðx;x0Þ 2 L2,. As a consequence of Schwartz inequal-

ity, it means that qimiI m0
iI
ðx;x0ÞOimiI m0

iI
ðx;x0Þ 2 L1 in the

variable m ¼ x�x0, a property that we will use below.
Now, for reasons that will be clear further on, it is con-

venient to choose a new basis {jx; piIÞg that diagonalize the
m-variables of q (of Eq. (38)), for the case x ¼ x0, through
a unitary matrix U, which performs the transformation

qimiI m0
iI
ðxÞ ! qipiI p0

iI
ðxÞdpiI p0

iI
$ qipiI

ðxÞ ð41Þ

Such transformation defines the new orthonormal basis
jx; piIif g, where piI is a shorthand for pi1; . . . ; piN , and

piI 2 N. This basis corresponds to a new local CSCObH; bPiI

n o
. Therefore, in each D/i

we can deduce, from Eqs.

(40) and (41), that the basis jx; piIif g corresponds to the
basis of observables. i.e. fjx; piIÞ; jx;x0; piI; p

0
iIÞg, defined

as in Eq. (35) but with the indices p instead of m, and also
to the corresponding basis for the states is
fðx; piIj; ðx;x0; piI; p

0
iIjg.

Then when the observables bPiI have discrete spectra, in
the new basis the van Hove observables of our algebra bA
will read

bO ¼X
ipiI

Z 1

0
dxOipiI

ðxÞ jx;piIÞ

þ
X
ipiI p0

iI

Z 1

0
dx

Z 1

0
dx0OipiI p0

iI
ðx;x0Þ jx;x0;piI;p

0
iIÞ ð42Þ

where the first term of the r.h.s is the singular part and the
second terms the regular part of bO. The states, in turn, will
have the following form

bq ¼X
ipiI

Z 1

0
dxqipiI

ðxÞ ðx; piIj

þ
X
ipiI p0

iI

Z 1

0
dx

Z 1

0
dx0qipiI p0

iI
ðx;x0Þ ðx;x0;piI;p

0
iIj ð43Þ

where, again, the first term of the r.h.s. is the singular part
and the second one is the regular part of bq.

From the last two equations we have

ð dqðtÞjbOÞ ¼X
ipiI

Z 1

0
dxqipiI

ðxÞOipiI
ðxÞ

þ
X
ipiI p0

iI

Z 1

0
dx

Z 1

0
dx0qipiI p0

iI
ðx;x0Þ eiðx�x0 Þt=�h

OipiI p0
iI
ðx;x0Þ

Then we can make the Riemann–Lebesgue limit to
ðbqjbOÞ since from the Schwartz inequality OipiI p0

iI
ðx;x0qipiI p0
iI
ðx;x0Þ in L1 in m ¼ðx�x0Þ, the regular part

vanishes and only the singular part remains:

W � lim
t!1

bqðtÞ ¼X
ipiI

Z 1

0
dxqipiI

ðxÞ ðx; piIj ¼ bq� ð44Þ

and we have decoherence in all the variables ðx; piIÞ .
Here we have considered the case of observables bPiI

with discrete spectra; the case of bPiI with continuos spectra
is very similar (see [5]).

3.4. Comment

A comment is in order: Usually decoherence is studied
in the case of open system surrounded by an environment,
up to the point that some people believe that decoherence
takes place in open systems. But also several authors have
introduced, for different reasons, decoherence formalisms
for closed system [24–33]. Related with the method used
in this paper two important examples are given:

1. In paper [34], where a system that decoheres at high
energy at the Hamiltonian basis is studied.

2. In paper [35], where complexity produces decoherence
in a closed triangular box (in what we could call a
Sinai–Young model).
Also we have developed our own theory for decoher-
ence of closed systems, SID (see [36–39]). In paper
[40] we show how our formalism explains the decoher-
ence of the Sinai–Young model above. Recently it has
been shown that also the gravitational field produces
decoherence in the Hamiltonian basis [41].

4. The classical statistical limit

In order to obtain the classical statistical limit, it is nec-
essary to compute the Wigner transformation of observ-
ables and states. For simplicity and symmetry we will
consider all the variables ðx; piIÞ continuous in this section.
If we do this substitution, Eq. (43), reads

bqðtÞ ¼X
i

Z
piI

dpN
iI

Z 1

0
dxqiðx; piIÞ ðx;piIjþ ð45Þ

X
i

Z
piI

dpN
iI

Z
p0

iI

dp0NiI

Z 1

0
dx

	
Z 1

0
dx0qiðx;x0;piI;p0iIÞ eiðx�x0 Þt=�h ðx;x0; piI; p

0
iIj ð46Þ

Therefore, Eq. (44) can be written as

W � lim
t!1

bqðtÞ ¼ bq�
¼
X

i

Z
piI

dpN
iI

Z 1

0
dxqiðx;piIÞ ðx;piIj ð47Þ

where bq� is simply the singular component of bqðtÞ, where
the regular part has vanished as a consequence of the Rie-
mann–Lebesgue theorem.

Now, the task is to find the classical distribution q�ð/Þ
resulting from the Wigner transformation of bq� in the limit
�h! 0,
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q�ð/Þ ¼ symb bq� ð48Þ

where

q�ð/Þ ¼ symb bq�
¼
X

i

Z
piI

dpN
iI

Z 1

0
dxqiðx;piIÞ symb ðx; piI j ð49Þ

So, the problem is reduced to compute symb ðx; piI j.
As it is well known, in its traditional form the Wigner

transformation yields the correct expectation value of any
observable in a given state when we are dealing with regu-
lar functions (see Eq. (15)). In previous papers [5,49] we
have extended the Wigner transformation to singular func-
tions in order to use it in functions like ðx; piI j. Here we will
briefly resume the results of these papers in two steps: first,
we will consider the transformation of observables and,
second, we will study the transformation of states.

4.1. Transformation of observables

As we have seen (see Eq. (42)), our van Hove observ-
ables bO 2 bO have a singular part, i.e. bOS, and a regular part,
i.e. cO:R. We will direct our attention to the singular opera-
tors bOS, since the regular operators bOR ‘‘disappear’’ from
the expectation values after decoherence, as explained in
Section 2.3. bOS reads:

bOS ¼
X

i

Z
piI

dpN
iI

Z 1

0
dxOiðx; piIÞ jx; piIÞ ð50Þ

Then, the Wigner transformation of bOS can be computed as

OSð/Þ ¼ symb bOS ð51Þ

where

OSð/Þ ¼ symb bOS

¼
X

i

Z
piI

dpN
iI

Z 1

0
dxOiðx;piIÞ symb jx;piIÞ ð52Þ

Now if we consider that the functions Oiðx; piIÞ are polyno-
mials of functions of a certain space where the polynomials
are dense it can be probed thatbOS ¼

X
i

O/i
ðbH; bPiIÞ ¼

X
i

dOS/i

where dOS/i
¼ OS/i

ðbH; bPiIÞ, and where symbdOS/i
¼

symbOS/i
ðbH; bPiIÞ ¼ OS/i

ðHð/Þ; PiIð/ÞÞ þ Oð�h2Þ. Then if OS/i

ðHð/Þ; PiIð/ÞÞ ¼ dðx�x0ÞdNðpiI � p0iIÞ we have (see paper
[8] for details) that the function symb jx; piIÞ in the limit
�h
S ! 0, is

symb jx;piIÞ ¼ dðHð/Þ �xÞdNðPiIð/Þ � piIÞ ð53Þ

where Hð/Þ ¼ symbbH and PiIð/Þ ¼ symbcPiI

4.2. Transformation of states

As in papers [5,49], in order to compute the symb
ðx; piIj, we will define the Wigner transformation of the
singular operator bqS ¼ bq� on the base of the only reason-
able requirement that such a transformation would lead
to the correct expectation value of any observable. Then
we must postulate that it is (see Eq. 15),

ðsymb bqS j symb bOSÞ $ ðbqS j bOSÞ ð54Þ

These equations must also hold in the particular case in
which bOS ¼ jx0; p0iIÞ; bqS ¼ ðx; piIj, for some D/i

(see Eq.
(24)) i.e.:

ðsymbðx;piIj j symb jx0;p0iIÞÞ ¼ ðx; piI jx0;p0iIÞ ð55Þ

and all the remaining cross terms are zero for any domain
D/j

, with j – i. But from Eq. (53) we know how to compute
symb jx0; p0iIÞ. Moreover, from the definition of the cobasis
(see Eq. (36)) we know that

ðx; piI jx0;p0iIÞ ¼ dðx�x0ÞdNðpiI � p0iIÞ ð56Þ

Therefore in the limit �h
S ! 0 we have,

ðsymbðx;piIj j dðHð/Þ �x0ÞdNðPiIð/Þ � p0iIÞÞ
¼ dðx�x0ÞdNðpiI � p0iIÞ ð57Þ

Then in paper [5] we have proved that (always in the �h
S ! 0

limit)

symbðx;piIj ¼
dðHð/Þ �xÞdNðPiIð/Þ � piIÞ

CiðH; PiIÞ
ð58Þ

where CiðH; PiIÞ is the configuration volume of the region
CH;PiI

\ D/i
, being CH;PiI

� C the hypersurface defined by
H ¼ const. and PiI ¼ const. In this way we have obtained
the symb of jx; piIÞ and ðx; piIj so the classical statistical
limit is completed.

4.3. Convergence in phase space

Finally, we can introduce the results of Eq. (58) into Eq.
(49), in order to obtain the classical distribution qð/Þ:

q�ð/Þ ¼ qSð/Þ ¼
X

i

Z
piI

dpN
iI

Z 1

0
dx

qiðx;piIÞ
CiðH; PiIÞ

	 dðHð/Þ �xÞdNðPiIð/Þ � piIÞ ð59Þ

As a consequence, the Wigner transformation of the limits
of Eq. (44) can be written as

W � lim
t!1

qð/; tÞ ¼ qSð/Þ ¼ q�ð/Þ ¼

X
i

Z
piI

dpN
iI

Z 1

0
dx

qiðx;piIÞ
CiðH; PiIÞ

dðHð/Þ �xÞdNðPiIð/Þ � piIÞ

ð60Þ

Remember that all this is only valid in a domain D/ defined
in Eq. (19) and that it would completely change if we
change to another domain through a continuity zone F
of Section 3.2.

Then we have obtained a convincing classical limit of
the states, that decomposed as in Eq. (60), it turns out to
be sums of states peaked in the classical hypersurfaces of
constant energy, Hð/Þ ¼ x, and where also the other con-
stants of motions are constant, PiIð/Þ ¼ piI. This is an
important step forward, to have obtained these classical
surfaces as a limit of the quantum mechanics formalism.
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Up to here chaos has not produced any problem to the CP,
even if the system is not integrable. The real problems will
begin in the next section.
5. Graininess

This section is devoted to a brief review of the graini-
ness in quantum mechanics and some of its approaches.
First we start with the standard approach from the view-
point of the Kolmogorov–Sinai entropy and its quantum
variants. Then we introduce our alternative approach using
cells of the phase space that are deformed as the system
evolves and where are all physical magnitudes are
coarse-grained on domains of minimal size in the sense
of the Indetermination Principle.
8 Where S denotes the action.
5.1. The standard approach

The two properties of classical mechanics necessary for
chaos to occur are a continuous spectrum and a continuous
phase space [17]. On the other hand, the most quantum
systems which present chaotic features in its classical limit
have discrete spectrum. In addition, the Correspondence
Principle CP implies the transition from quantum to classi-
cal mechanics for all phenomena including the chaos.
However, by the Indetermination Principle in quantum
mechanics we have a discretized, and therefore non-con-
tinuous, phase space divided in elementary cells of finite
size DxDp P �h (per freedom). Then the natural question
that arises is: How can we provide a quantum formalism
consistent with the Indetermination principle and the CP
to explain the emergence of chaos in the classical limit?

This is where the treatment of the graininess arises as a
possible answer to the problem. The graininess has several
approaches that try to solve the problem without being a
threat to the CP. The ‘‘natural’’ possibility of accomplishing
this could be the quantization of chaotic systems, but due
the compactness of its phase space the quantization yields
discrete energy spectrum. Then the situation does not
seem so simple at first glance and one must look for other
indicators that somehow capture the main properties
related to the continuous spectrum of chaotic systems.
The Kolmogorov–Sinai entropy [50] (KS-entropy) is per-
haps the most significant and robust indicator, both in the-
ory and applications. Roughly speaking, one reason why
this is so is due one can model the behavior of classical
chaotic systems of continuous spectrum from classical dis-
cretized models such that the KS-entropies of the continu-
ous system and of the discrete ones tend to coincide for a
certain appropriate range. We recall that the KS-entropy
assigns measures to bunches of trajectories and computes
the Shannon-entropy per time-step of the ensemble of
bunches in the limit of infinitely many time-steps and
the Pesin theorem [51] links the KS-entropy with the
Lyapunov coefficients. For a quantum description of the
chaotic systems, we would need a quantum extension of
the KS-entropy. There are several non-commutative candi-
dates [52–56] and the presence of a finite time interval
where these KS-extensions yield the KS-entropy is
considered as the main peculiarity of quantum chaos
[17]. Therefore the issue of graininess is intimately related
to quantum chaos timescales and must necessarily be
compatible with the restriction to these. Three time scales
characterizing the classically chaotic quantum motion are
distinguished: The relaxation time scale, the random time
scale and the logarithmic breaking time. Only for regular
classical limits classical and quantum mechanics are
expected to overlap over times t such that

t K tR / �h�a for some a > 0 ð61Þ

where tR is the relaxation time scale which determines the
so-called semi-classical regime, i.e. the time scale where
the phenomena like the exponential localization and the
relaxation can occur. Moreover the discrete spectrum can-
not be solved if t K tR (see p. 12 of [17]). The breaking time
scale (random time scale) s is much shorter than tR and is
related to a stronger chaotic property, the exponential
instability. Basically, s determines the time interval where
the wave-packet motion is as random as the classical tra-
jectory and the time for the spreading of the packet is given
by

s 
 ln
q
h
/ � log �h ð62Þ

where q is the quasiclassical parameter which is of the
order of the characteristic value of the action value (see
p. 14 of [17]). The importance of the logarithmic breaking
time s is that this indicates the typical scaling for a joint
time-classical limit suited to classically chaotic quantum
systems. We should mention that some authors, see [17],
consider that s is a satisfactory resolution between of the
apparent contradiction between the CP and the quantum
transient (finite-time) given by tr and the evidence that
time and classical limits do not commute. That is,

lim
jtj!1

lim
q!1

– lim
q!1

lim
jtj!1

ð63Þ

where the first order leads to classical chaos and the sec-
ond one represents a quantum behavior with no chaos at
all (see p. 17 of [17]).

Then if we define8 q ¼ S
�h we could claim that the classical

statistical limit of the Section 4 (i.e. t !1; �h
S ! 0) is quite

similar to the double limit of the right hand of Eq. (63). In
Section 5.4 we will discuss this situation taking into account
the graininess and the quantum chaos timescales. In the
next two sections we introduce our graininess approach
considering phase space cells as the starting point.

5.2. Our approach: fundamental graininess with cells

In this section we describe our approach of the graini-
ness. As we mentioned in the introduction the key is to
average a point-test-distribution function on minimal rect-
angular boxes of the phase space. The motivation of this
approach lies in the fact that we can obtain a classical limit
(and its limitations) searching the trajectories of the rect-
angular boxes (and later of the cells) we will consider as
‘‘points’’, integrating the Heisenberg equation, and then
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studying the deformations of the cells under the motion
(as in [10]).

In Section 4.3 we have found the hypersurfaces where
the classical trajectories lay. Now we want to find the clas-
sical motions in these trajectories. Thus we need to define
the notion of ‘‘a point that moves’’. But in quantum mechan-
ics there is not such a thing. In fact it is well known that the
commutation relations and its consequence, the indeter-
mination principle, establishes a fundamental graininess
in the ‘‘quantum phase space’’. Precisely if we call bJ andbH two generic conjugated operators (e. g. in our case bJ will
be the constants of the motion bH; bPiI and bH the corre-
sponding configuration operators) we have

½ bH;bJ � ¼ i�hbI ð64Þ

and therefore

DHDJ P
�h
2

ð65Þ

where, from now on, DH and DJ are defined as the variances
of some typical state bq the one with the smallest dimen-
sions we can ‘‘determinate’’ (in the sense of Ballentine
chapter 8 [59]) in our experiment. With different choices
for this bq we will obtain different ratios DH=DJ but the
qualitative results will be the same. Then we will consider
that the rectangular box DHDJ of volume �h (or the polyhe-
dral box of volume �hðnþ1Þ in the many dimensions case) will
be the smallest volume that we can determinate with our
measurement apparatus, precisely:

volDHDJ ¼ �h ðor eventually N0�hÞ

for a phase space of two dimensions or

vol
Y

DH

Y
DJ ¼ �hðnþ1Þ ðor eventually N0�hðnþ1ÞÞ

for a phase space of 2ðnþ 1Þ dimensions, where N0 is not a
very large natural number (cf. [10]). This is the new feature
of the ‘‘quantum phase space’’: its graininess and this fact
will be the origin of the threat to the CP.9

In Omnès book [10] the cells produced by the funda-
mental graininess are described in the (x; pÞ coordinates,
using a mathematical theory, the microlocal analysis,
based in the work [60]. In our formalism we will change
these (; pÞ for the (J;HÞ coordinates where J are the con-
stants of the motion and H the corresponding configura-
tion variables and where the commutation relations (64)
and their consequence the indetermination principle (65)
will play the main role.

To see how the fundamental graininess works let us
consider a closed simply connected set of a two dimen-
sional phase space that we will call a cell CT , with its con-
tinuous boundary B, (Fig. 1(B), or Fig. 6.1 of [10]). The
coordinates (J;HÞ and a lattice of rectangular boxes DHDJ

(eventually 2ðnþ 1Þ polyhedral boxes) define the two
domains related with CT : R, set of boxes that intersect B,
and C, the set of the interior rectangular boxes of the cell
CT . Volume is well defined in phase space of any dimension
while (hyper) surfaces are not defined, so in order to com-
9 Fundamental graininess appears in many other disguises (see [57,58],
etc.)
pare the size of the frontier with the size of the interior we
can define the adimensional parameter

X ¼ volR
volC

It is quite clear that X� 1 corresponds to a bulky cell
while X� 1 corresponds to an elongated and maybe
deformed cell. It is also almost evident that if we want that
a cell would somehow represent a real point it is necessary
that X < 1, because if X > 1 the volume of the interior C is
smaller than the volume of the ‘‘frontier’’ R, where we do
not know for certain if its points belong or not to CT since
B � R. Thus in the case X� 1 we completely lose the
notion of real point and the description of the classical tra-
jectories, as the motion of CT , becomes impossible.

Analogously Omnès defines semiclassical projectors for
each cell and shows that if X is very large the definition of
these projectors lose all its meaning and the classicality is
lost, namely he obtains a similar conclusion.

In the next section we will consider the cells and their
evolution in several cases and we will estimate their corre-
sponding X. From now, in all cases where the quasiclassical
parameter q ¼ S

�h is finite it should be noted that we mean
‘‘a threat to the CP’’ to the outside time range of validity
of our graininess approach according to the CP and should
not be necessarily associated with the emergence of the
non-commutative two limits given by Eq. (63). Further-
more, since the timescales considered in our graininess
approach will be finite then there is no way that any of
the two limits of Eq. (63) appear. All this will be discussed
in the next section.

5.3. The classical trajectories

Up to this point we have obtained the classical distribu-
tion q�ð/Þ ¼ qSð/Þ to which the system converges in phase
space. This distribution defines hypersurfaces
Hð/Þ ¼ x; PiIð/Þ ¼ piI corresponding to the constant of the
motion i.e. our the ‘‘momentum’’ variables. But such a dis-
tribution does not define the trajectories of ‘‘points’’ on
those hypersurfaces, i.e., it does not fix definite values for
the ‘‘configuration’’ variables (the variables canonically
conjugated to Hð/Þ and PiIð/Þ). This is reasonable to the
extent that definite trajectories would violate the uncer-
tainty principle. In fact we know that, if bH and bPiI have def-
inite values, then the values of the observables that do
non-commute with them will be completely undefined.

As in Section 5.2, let us call, bJ the ‘‘momentum’’ vari-
ables bH and bPiI (constants of the motion), and bH the corre-
sponding conjugated ‘‘configuration’’ variables, all of them
defined in the domain D/i

. The equations of motion, in the
Heisenberg picture, read

dbJ
dt
¼ i

�h
½bH;bJ� d bH

dt
¼ i

�h
½bH; bH� ð66Þ

where as ½bH;bJ� ¼ 0

dbJ
dt
¼ 0

d bH
dt
¼ i

�h
½bH; bH� ð67Þ

Within the domain D/ we know that if we can consider thebH as a function (or a convergent sum) of the bJ , i.e.:



Fig. 2. Evolution of a cell with constant velocity.

10 The rectangular moving cell defined after Eq. (69) will be the only
rectangular objects that moves in this paper.
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bH ¼ FðbJÞ ¼X
n

an
bJn ð68Þ

and since ½ bH;bJ� ¼ i�hbI we have ½ bH;bJn� ¼ in�hbJ ðn�1Þ so

½bH; bH� ¼ dbH
dbJ

where bH and bJ are constant in time, so calling bV ð0Þ ¼ dbH
dbJ ,

which is another constant in time, we havebJðtÞ ¼ bJð0Þ; bHðtÞ ¼ bHð0Þ þ bV ð0Þt
Then we can make the Wigner transformation from these
equations and, since this transformation is linear, we have

Jð/; tÞ ¼ Jð/;0Þ;Hð/; tÞ ¼ Hð/;0Þ þ Vð/;0Þt ð69Þ

We will use this equation to follow the motion of the boxes
and the cells in the phase space:

Let us first consider a rectangular (eventually 2ðnþ 1Þ
polyhedral)moving box of size DHDJ with DHDJ 
 �h (even-
tually �hðnþ1Þ), that we will symbolize by a small square in
Figs. 2–4 (and just by a point in the Figs. 6(A) and 6.B)
and let us also consider the typical point-test-distribution
function symbbq ¼ qð/Þ ¼ qðj; hÞ, (see under Eq. (65), also
from now on / ¼ ðj; hÞ) with support contained in DHDJ ,
then let us define the mean values

jðtÞ ¼
Z

DHDJ

Jðj;h; tÞqðj;hÞdjdh;hðtÞ ¼
Z

DHDJ

Hðj;h; tÞqðj;hÞdjdh;

vðtÞ ¼
Z

DHDJ

Vðj; h; tÞqðj; hÞdjdh; ð70Þ

where the qðj; hÞ is not a function of the time since we are
in the Heisenberg picture and

Jðj; h; tÞ ¼ symb bJðtÞ
Hðj; h; tÞ ¼ symb bHðtÞ
Vðj; h; tÞ ¼ symb bV ð0Þ ð71Þ

Now using Eq. (69) we have

jð/; tÞ ¼ jð/;0Þ; hð/; tÞ ¼ hð/;0Þ þ vð/;0Þt ð72Þ

so our minimal rectangular box moves along a classical tra-
jectory of our system.

Now our rectangular boxes are so small that we can not
even consider their possible deformation. Precisely the
Indetermination Principle makes this deformation merely
hypothetical. Thus, from now on, we will consider that
the rectangular boxes are not in motion (and therefore they
can not be deformed by motion) and that they are the most
elementary theoretical fixed notion of a point at ðj; hÞ.10 In
this way we have obtained the classical trajectories of theo-
retical points (i.e. Eq. (72)) and we would have completed
our quantum to classical limit (apparently CP is safe up to
now).

But remember that the real physical points are not
these rectangular boxes but the cells with X < 1 that we
must also consider, because real measurement devices
cannot see the elementary rectangular boxes but bigger
cells of dimensions far bigger than the Planck ones. In
the next examples we will see what happens with these
cells that we will consider as real points: the cells can be
deformed by the motion (while the rectangular boxes
always remain rigid). We will show the interplay of these
theoretical points (boxes) and physical real points (cells)
in some examples bellow:

1. Then, as a first example, let us consider a two dimen-
sional space within a domain D/ (much larger than
the cell that we will define below) and let as also con-
sider the system of coordinates ðJ;HÞ and the corre-
sponding trajectories when the Hamiltonian is a linear
function, bH ¼ a0

bI þ a1
bJ , Then bV ¼ a1

bI so
Jð/; tÞ ¼ Jð/;0Þ;Hð/; tÞ ¼ Hð/;0Þ þ a1It
and, with the same reasoning as above the trajectories
of the boxes (theoretical points) are
jðtÞ ¼ jð0Þ; hðtÞ ¼ hð0Þ þ a1t ð73Þ
Namely we obtain the Fig. 2 and we have a uniform trans-
lation motion with constant velocity v½jð0Þ� along all the
trajectories. Let us then consider two parallel lines with
constant velocities v ½j1� ¼ v ½j2�, thus the difference of
velocities is
vðj1Þ � vðj2Þ ¼ 0 ð74Þ
Then if we consider an initial rectangular cell the motion
will not deform the cell. Since there is no deformation of
the cell X is rigid, thus if X < 1 in the initial cell X will



Fig. 3. Evolution of the cell with linear velocity.

Fig. 4. Evolution of the cell with non linear velocity.
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be < 1 in any transferred cell. Therefore, in this trivial case
the cell will represent a physical real point moving accord-
ing to Eq. (73). Thus in this case we have completed our
classical limit and the CP is safe.

2. As a further example let us consider the same two dimen-
sional space within a D/ and let as consider the system of
coordinates ðJ;HÞ and the corresponding trajectories
when bH ¼ a0

bI þ a1
bJ þ a2

bJ2. Then bV ¼ a1
bI þ a2

bJ so
Jð/; tÞ ¼ Jð/;0Þ;Hð/; tÞ ¼ Hð/; 0Þ þ ½a1I þ 2a2Jð/;0Þ�t
and, with the same reasoning as above
jðtÞ ¼ jð0Þ; hðtÞ ¼ hð0Þ þ ½a1 þ 2a2jð0Þ�t
Namely we obtain the Fig. 3 and we have a uniform motion
with constant velocity v ½jð0Þ� ¼ a1 þ 2a2jð0Þ along straight
lines parallel to the axis h. That is,
hðtÞ ¼ hð0Þ þ v½jð0Þ�t
Let us then consider two parallel lines with constant veloc-
ities vðj1Þ – vðj2Þ, thus the difference of velocities is
vðj1Þ � vðj2Þ ¼ 2a2ðj1 � j2Þ ¼ v ð75Þ
Let J;H be the dimension of the initial cell and DJ;DH the
dimension of the fix rectangular boxes. Then the length
of the basis is constant and so volC also is constant. Then
if we consider an initial rectangular box the motion will
deform this cell in a parallelogram, where the height con-
tinue to be J and the base will now be Hþ Dh, i.e. there is
‘‘elongation’’ Dh (see Fig. 3), precisely
Dh ¼ vt
Let us compute the evolution of X in this case: the number
of new boxes that appears at time t will be
n ¼ 2
Dh
DH
¼ 2

vt
DH

ð76Þ
Now
X ¼ volR
volC

¼ volRþ DvolR
volC

¼ volRþ nDJDH

volC
ð77Þ
so
DX ¼ nDJDH

volC
¼ n�h

volC
¼ 2

v
DH

�h
volC

t

¼ 2
Dh
DH

�h
volC

> 0 ð78Þ
Then:
a. The increment DX is proportional to the time t.
b. It is also proportional to the product of the ratio of

the elongation Dh measured in units of DH.
c. Finally it is proportional to �h

volC so in the macroscopic
limit �h

volC ! 0 we have DX! 0 and the threat to CP
disappears.

But the most important conclusion is that, in a generic
case, even if �h

volC would be small but if it is far from the limit
�h

volC ! 0, after enough time we will have X� 1. Then the
cell ceases to be a good model for a point and it surely is
the beginning of threat to the CP. This happens even if
the system is integrable, namely, D/ ¼ C the phase space,
and the Hamiltonian bH ¼ a0

bI þ a1
bJ þ a2

bJ2, e. g., simply bebH ¼ 1
2m
bP2, namely the one of a free particle. So fundamen-

tal graininess alone (with no chaos) can be a threat to the
CP, in the case �h

volC > 0.



Fig. 5. Evolution of the cell with periodical velocity.
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3. In the most general case the Hamiltonian isbH ¼ a0
bI þ a1

bJ þ a2
bJ2 þ a3

bJ3 þ . . . and Eq. (74) becomes
11 In i
would h
appear
qualitat
vðj1Þ�vðj2Þ¼2a2ðj1� j2Þþ3a3ðj2
1� j2

2Þþ . . . ð79Þ
as described in Fig. 4 where there are not vertical
deformations but there are strong horizontal ones.
Then for Hamiltonians with power bigger than 2 the
threat of chaos begins.
In fact, let us consider the case
bH ¼X1
n¼0

AnðbJÞein
bJ
DJ
then
vðjÞ ¼
X1
n¼0

A0nðjÞ þ
in
DJ

AnðjÞ
� �

e
in j

DJ ¼
X1
n¼0

BnðjÞe
in j

DJ
and
hðj; tÞ ¼ hðj;0Þ þ vðjÞt ¼ hðj;0Þ þ t
X1
n¼0

BnðjÞe
in j

DJ
Then the elongation will be
Dh ¼ t
X1
n¼0

BnðjÞe
in j

DJ
Let us consider the simple case BmðjÞ ¼ const – 0 and all
other BnðjÞ ¼ 0 (Fig. 5), then
Dh ¼ tBme
j

DJ so ReðDhÞ ¼ tBm cos m
j
DJ

 !
and the wave longitude of the oscillation of the vertical
boundary curves is k ¼ DJ

m and we can have k� DJ if
m� 1. Then we have
DX ¼ DvolR
volC

¼ 2
JDh
JH
¼ 2

Bm

H
t

So when t !1 then DX!1, and we have a real threat to
the CP with no redemption in the classical limit. And this
can happen even in a not chaotic case since we can have
D/ ¼ C.11
f the cases 1, 2, and 3 we would take the bH as the free variable we
ave bJ ¼ F�1ðbHÞ, and, in the corresponding figures, H ¼ const. would
in the vertical axis, and t, in the horizontal one, with the same
ive results.
4. But things get really worst if, instead of one D/, we con-
sider two D/1 and D/2 and their joining zone F , as in
Fig. 6(A). Precisely let us suppose that in D/1 we have
two parallel motions and only a parallelogram deforma-
tion as in point 2, and we use the (h; jÞ coordinate of D/1 .
But neither in F nor in D/2 the just quoted coordinate j
is a constant of the motion, so in D/2 the motion
becomes completely deformed as shown in the
Fig. 6(A). Then if the motion goes through several join-
ing zones F it is clear that the initial regular cell will
become the amoeboid object of Fig. 6(B), where of
course X� 1. Remember that, for the sake of simplic-
ity, the points of all these Fig. 6(A) and (B) have a vol-
ume �h(or really �hðnþ1Þ in the general case). Then when,
as a consequence of chaos, the volume of the complex
details of the amoeboid figure becomes of the order of
�h(or �hðnþ1Þ in the general case) the classical limit repre-
senting the notion the original cell becomes meaning-
less as a result of chaos. Moreover in this case we
could speculate that the square box becomes strongly
deformed. But this kind of reasonings are forbidden by
the Indetermination Principle and because in our treat-
ment square boxes are considered rigid.
Another way to see that there is a real problem is to
consider that the classical motion of the center of the
initial cell (where the probabilities to find the particle
are different from zero) as the real classical motion of
a classical particle. Then in the chaotic case it may hap-
pen that at time t, the cell would get the amoeboid
shape of Fig. 6(B). Now the center of the original cell
turns out to be outside of the amoeboid figure. Then
this center is in a zone of zero probability and cannot
represent the motion of a real point-like classical parti-
cle anymore.
So chaos and fundamental graininess are a real threat to
the classical limit of quantum mechanics and so for its
interpretation.
Example (The Henon–Heiles system and the high energy
problem). In the case of Henon–Heiles classical system
[61, p. 121] with Hamiltonian

H ¼ 1
2
ðp2

x þ p2
y þ x2 þ y2Þ þ x2y� 1

2
y3

We can observe that:



Fig. 6. (A) A square cell scattered by a frontier. (B) A square cell becomes an ameoboidal cell.
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a. The Hamiltonian is non integrable so in the whole
phase space we will find something like Fig. 6(A).

b. For energies E ¼ 1
12 (figure 44a of [61]) the tori are

practically unbroken, as in case 3 above. But in large
D/ and in a physical case most likely volD/ � �h2 and
CP could be far from having practical problems with
chaos at least for short periods of time. These D/

become smaller for E ¼ 1
8 (figure 44b of [61]) and

probably very tiny for E ¼ 1
6 (figure 44c of [61]) so

in such cases we may have serious problems with
chaos (i.e. those of case 4) since for real high energy
we could have volD/  �h2. We can obtain these con-
clusions because our method allows us to evaluate
the volD/ on the surface defined by the constant of
motion (tori) from the Poincaré sections.

So we conclude that when the D/ in phase space are of the
order of �h CP has real problems. But also we see that for
high energy there is not a generic well defined ‘‘high
energy limit’’. The threat of chaos to the CP is thus
explained. Moreover this example introduces the threat
of chaos to the high energy limit. In the next section we
analyze how the threat of the chaos to the CP can be sup-
pressed taken into account the relationship between our
graininess approach and the characteristic timescales of
quantum chaos.

5.4. Timescales and graininess

As we mentioned in Section 5.1 the graininess must be
compatible with the quantum chaos timescales within
which the typical phenomena as the statistical relaxation,
the exponential localization and more generally, the insta-
bility of motion can occur. These timescales are an attempt
to reconcile the discrete spectrum with the CP where the
distinction between the discrete and continuous spectrum
becomes relevant only for large times t !1, see p. 9 of
[17].

In this section, from our graininess approach we study
the relations that can be obtained for the quantum chaos
timescales. In Section 5.3 we have seen that the condition
X < 1 represents the allowed range where the notion of
real point and the description of the classical trajectories
become possible. The main idea is that X� 1 (bulky cell)
implies a temporal range of validity of the fundamental
graininess which can be identified with some of the char-
acteristic timescales of quantum chaos. As in the first
example of Section 5.3, let us consider a two dimensional
space within a domain D/ and the conjugated coordinates
ðJ;HÞ with a Hamiltonian

bH ¼X1
n¼0

an
bJn ð80Þ

In such case the difference of velocities is (see Eq. (79))

v ¼ vðj1Þ � vðj2Þ ¼
X1
n¼1

nan
bJ ðn�1Þ

¼ 2a2ðj1 � j2Þ þ 3a3ðj2
1 � j2

2Þ þ . . . ð81Þ

On the other hand the evolution of X can be given in terms
of the number of new boxes n ¼ nðtÞ that appear at time t
(see Eqs. 77 and (78))

DX ¼ nðtÞDJDH

volC
¼ nðtÞ�h

volC
ð82Þ

We initially assume we have a bulky cell, i.e. X� 1. In
order to obtain the characteristic timescales we only need
to consider two cases: 1) Linear velocity and 2) nonlinear
velocity. Let X0 the value of X at time t. Then by Eq. (77)
we have

X0 ¼ Xþ DX ð83Þ

Since X� 1 if we impose that X0 ¼ Xþ DXK 1, i.e. the
allowed range of the graininess, then this condition
becomes into

DXK 1 ð84Þ

That is,

nðtÞ�h
volC

K 1 ð85Þ

Let us see that Eq. (85) contains the different timescales
according to the form of the Hamiltonian of Eq. (80). When
the velocity is linear we have an ¼ 0 for all n P 3 in the
Hamiltonian given by Eq. (80). In such case we can replace
Eq. (76) in Eq. (85) to obtain
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2
v
DH

�h
volC

t K 1 ð86Þ

Now since v;DH and volC are fixed, from Eq. (86) we have

t K DH

2v volC
� �

�h�1 ¼ tR / �h�1 ð87Þ

Therefore we have obtained the relaxation timescale

tR ¼ DH
2v volC
� �

�h�1 for the case of a HamiltonianbH ¼ a0
bI þ a1

bJ þ a2
bJ2 which is consistent with the so-called

‘‘semiclassical regime’’ of the regular classical limits (with
no chaos). In other words, for two dimensional systems our
approach of the graininess plus the condition DXK 1
implies a temporal range of validity of the graininess given

by the relaxation timescale tR ¼ DH
2v volC
� �

�h�1 for the qua-
dratic Hamiltonian case and viceversa. Moreover, from
these arguments and Section 5.3 it follows that there is
threat to the CP only for times t > tR which are outside of
the range of validity of the fundamental graininess.

Let us see what happens in the other case, i.e. when the
Hamiltonian is bH ¼P1

n¼0an
bJn with an – 0 for some n P 3.

As we mentioned in the Example 3 of the Section 5.3 there
are only strong horizontal deformations of the cells (see
Figs. 4 and 5). This case includes the exponential instability
where the wave-packet motion is as random as the classi-
cal trajectory and the packet is exponentially spreading
with a classical rate h (see p. 14 of [17]). So we can reason-
ably assume,12 hypothetically, that the number of new
boxes n ¼ nðtÞ that appear at time t is proportional to
expðthÞ as the packet spreads, i.e.

n ¼ nðtÞ / e
t
h ð88Þ

Then if we replace Eq. (88) in (85) we have

e
t
�h�h

volC
K 1 ð89Þ

Now applying logarithm to both sides of Eq. (89) we obtain

t
h
þ log

�h
volC

� �
K 0 ð90Þ

That is,

t K � h log
�h

volC

� �
¼ s / � log �h ð91Þ

The time scale s ¼ �h logð �h
volCÞ corresponds to the logarith-

mic breaking time where classical and quantum mechanics
agree for quantum systems with a chaotic classical behav-
ior. In this case fundamental graininess is a real threat to
CP as t > s. Given that s < tR then we see that the nonlin-
ear velocity case (i.e. an – 0 for some n P 3) restricts the
time range more than the linear velocity case (with no
chaos). Therefore we conclude that the chaos increases
the threat to the CP.

5.5. Classical statistical limit and graininess

We conclude with a brief discussion about the classical
statistical limit of the Section 4 and its relation with the
12 Here we are considering that the exponential spreading implies an
exponential elongation of the cell as it evolves, see Fig. 4.
non-commutative double limit of Eq. (63). According to
Eq. (47) the classical statistical limit requires the asymp-
totic limit t !1 and the limit �h

S ! 0 (see Eq. (58)) plus
the ‘‘graininess compatibility relation’’ (see Eq. (84) or
(85)) to guarantee that there is no threat to the CP. How-
ever, we have seen that the graininess compatibility rela-
tion leads to the different timescales of quantum chaos.
Therefore, following the research line of [17] p. 18 we
should be take the two limits simultaneously but keeping
the ratio t

tRðqÞ
or t

sðqÞ fixed where q is the quasiclassical
parameter given by q ¼ volC

�h .13 From Eqs. (87) and (91) we
have

tRðqÞ ¼
DH

2v

� �
q�1 ð92Þ

and

sðqÞ ¼ �h log q ð93Þ

In other words, if we take into account the graininess we
must to rewrite the classical statistical limit of Eq. (60)
according to

W � lim
t;q!1; t K tRðqÞ or sðqÞ

qð/; tÞ ¼ qSð/Þ ¼ q�ð/Þ ¼ ð94Þ

X
i

Z
piI

dpN
iI

Z 1

0
dx

qiðx;piIÞ
CiðH; PiIÞ

dðHð/Þ �xÞdNðPiIð/Þ � piIÞ

ð95Þ

In this manner the classical statistical limit is always com-
patible with the graininess and the CP is safe in all cases,
regular and chaotic. On the other hand if we only take
the limit t; q!1 then we fall into the ambiguity of the
non-commutative double limit given by Eq.(63) which, as
we have seen in the Sections 5.3 and 5.4, represents a
threat to the CP for times that are outside of the time range
of the graininess, i.e. when t > tRðqÞ or t > s.

6. Conclusions

In this paper we have:

1. Presented a new formalism to study the classical limit
of quantum mechanics.

2. Showed that somehow fundamental graininess alone is
a threat to the CP unless the timescales of quantum
chaos are taken into account (Section 5.4).

3. Demonstrated how chaos increases this threat.
4. Proved that these threats which compromise the high

energy limit of quantum mechanics can be suppressed
if we identify the bulky cell condition X� 1 with the
quantum chaos timescales (Section 5.4).

5. Found a non trivial connection between the characteris-
tic timescales of quantum chaos and the fundamental
graininess that allowed us to redefine a statistical clas-
sical limit that is compatible with the CP and the funda-
mental graininess (Section 5.5).
13 We assume the action S proportional to volC which is the volume of a
given initial cell.



Table 1
Fundamental graininess, statistical classical limit, and their relationships.a

Statistical classical limit (only) Fundamental graininess (only) Fundamental graininess + Statistical classical limit

limq!1limt!1 (quantum behavior
with no chaos at all)

Undefined classical limit limt;q!1; t K tRðqÞ or sðqÞ (double limit taken simultaneously,
chaotic quantum motion)

Infinite relaxation time tR ¼ 1 Finite relaxation time tRðqÞ ¼ DH
2v

� 	
q�1 (two

dimensional phase space)

Finite relaxation time tRðqÞ ¼ DH
2v

� 	
q�1 (two dimensional

phase space)
Undefined timescales Defined quantum chaos timescales tRðqÞ and

sðqÞ (two dimensional phase space)
Defined quantum chaos timescales tRðqÞ and sðqÞ (two
dimensional phase space)

Threat to the CP No threat to the CP No threat to the CP
q�ð/Þ ¼ limq!1limt!1qð/; tÞ non

compatible weak limit with the CP
Undefined weak limit q�ð/Þ ¼ limt;q!1; t K tRðqÞ or sðqÞqð/; tÞ compatible weak

limit with the fundamental graininess and the CP

a By ‘‘undefined’’ we mean the absence of this element within the formalism.

14 Here we use that DJ1 . . . DJDDH1 . . . DHD 
 �hD which represents a small
square in a 2D-dimensional phase space.
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We conclude that to avoid the threat of chaos and fun-
damental graininess to the CP is necessary to take into
account the characteristic timescales of quantum chaos.
As we mentioned before, these timescales are an alterna-
tive solution to the ambiguity of the non commutative
double limit

lim
t!1

lim
q!1

– lim
q!1

lim
t!1

ð96Þ

where q is the quasiclassical parameter (see p. 17 of
[17]). More precisely, the mathematical need to take the
limit t !1 in the statistical classical limit (see Section 4)
and in asymptotic theories (e.g. ergodic theory) imply a
simultaneously and conditional double limit that solves
the apparent contradiction between the CP and the quan-
tum transient pseudochaos (see p. 18 of [17]). In our fun-
damental graininess approach this contradiction emerged
in a geometrical way studying the domains of definition
of the constants of the motion (in the considered non-inte-
grable system), the corresponding broken tori at different
energies and the behavior of the cells for different Hamil-
tonians (as in case 1,2, and 3 of Section 5.3). In Section 5.5
considering an initial bulky cell X� 1, the compatibility
condition DXK 1 and taking into account the statistical
classical limit of Section 4 we translated these finite time
intervals of ‘‘quantum pseudochaos’’ to a classical limit
that is compatible with the CP and the general structure
of classically chaotic quantum motion (see Fig. 5 of [17]).
In this sense we conclude that the fundamental graininess
plus the statistical classical limit provide a new formalism
to study the classical limit that is compatible with the CP
and the quantum chaos timescales. In the next table we
summarize these results.

From the Table 1 we can see how the fundamental
graininess and the statistical classical limit complement
their indefinite sectors (rows) to give rise to a better clas-
sical limit that is compatible with the fundamental graini-
ness and where the CP is safe (third column). Also, it
should be noted that at least for the quadratic Hamiltonian
case bH ¼ a0

bI þ a1
bJ þ a2

bJ2 (linear velocity, see example 2 of
Section 5.3), the results of the 1 can be generalized for an
phase space of any finite dimension. Consider that the
dimension of the phase space is 2D. Let DJ1; . . . ;DJD;

DH1; . . . ;DHD be the size of the fix rectangular boxes. Then
following the arguments of the Example 2 of Section 5.3
we have an ‘‘elongation’’ at time t
Dh1Dh2 . . . DhD ¼ vt ð97Þ

where v ¼ 2a2ðj1 � j2Þ ¼ vðj1Þ � vðj2Þ, see Eq. (75). In this
case we have ‘‘elongations’’ in each of the D directions,
i.e. for each direction j with j ¼ 1; . . . ;D we have a stretch
like Fig. 3. Therefore, the increment DX at time t will be14

DX ¼ n
DJ1 . . . DJDDH1 . . . DHD

volC
¼ n

�hD

volC
ð98Þ

where n ¼ nðDÞ is the number of new boxes that appears at
time t which depends on the dimension D of the phase
space. Moreover, as in the Example 2 of Section 5.3. since
the velocity is linear then n is proportional to the time t.
Then we have

n ¼ aðD;DJ1; . . . ;DJD;DH1; . . . ;DHDÞt for some a

2 R ð99Þ

Now, by replacing Eq. (99) in Eq. (98) and assuming the
graininess condition DXK 1 (see Eq. (84)) we obtain

DX ¼ at
�hD

volC
K 1 ) t K a�1volC

� �
�h�D ¼ tR / �h�D

ð100Þ

which is the relaxation timescale tR for the case of a qua-
dratic Hamiltonian with a phase space of dimension 2D.

Finally, taking into account the fundamental graininess
and based in these results we could go on with the follow-
ing speculation: In the classical level, the KAM theorem
was the solution of the problem of the scarcity of chaos
in the solar system, since the tori were broken but not
badly broken. In the same way we could consider that
the study of the size of the D/i

, for different levels of
energy, could also explain the behavior of chaotic quantum
systems and may be the scarcity of chaos in these systems.
I.e. it may be that, many cases, the D/i

would be large
enough to endow these systems with a quasi-integral cha-
otic behavior Along these lines we will continue our
research.
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