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• We prove ordinary quantum mechanics has no contrary properties.
• Contrary properties in consistent histories are reviewed.
• We prove generalized contexts for quantum histories have no contrary properties.
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a b s t r a c t

In the consistent histories formulation of quantum theory it was
shown that it is possible to retrodict contrary properties. We show
that this problem do not appear in our formalism of generalized
contexts for quantum histories.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

In the consistent histories formulation of quantum theory [1–5], the probabilistic predictions and
retrodictions depend on the choice of a consistent set. It was shown that this freedom allows the for-
malism to retrodict two contrary properties [6]. This is not a problem for the defenders of the theory,
because each retrodiction is obtained in a different consistent sets of histories, i.e. in different descrip-
tions of the physical systemnot to be considered simultaneously [7,8]. However, this fact is considered
by some authors as a serious failure of the theory of consistent histories [6,9,10].
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We are going to analyze this problem with our formalism of generalized contexts [11,12], devel-
oped to deal with expressions involving properties at different times. This formalism is an alternative
to the theory of consistent histories, which has proved to be useful for the time dependent description
of the logic of quantum measurements [13], the decay processes [14] and the double slit experiment
with and without measurement instruments [12]. More recently, we have discussed the relation of
our formalism with the theory of consistent histories [15].

In Section 2 we show that there is no possibility for contrary inferences in ordinary quantum
mechanics. In Section 3 we discuss the retrodiction of contrary properties in the theory of consistent
histories. In Section 4 we show that there are no retrodiction of contrary properties in the formalism
of generalized contexts. Some applications of this formalism are discussed in Section 5 and the main
conclusions are given in Section 6.

2. Contrary properties in an ordinary quantum context

In quantum mechanics, a property p is represented by a projector Πp in the Hilbert space H , or
alternatively by the corresponding Hilbert subspace Vp = ΠpH . By definition [6], two quantum prop-
erties p and q are said to be contrary if they satisfy the order relation p ≤ q, which can also be expressed
in terms of the inclusion of the corresponding Hilbert subspaces in the form

ΠpH ⊆ (I − Πq)H . (1)

The inclusion of subspaces is equivalent to the following relation between the corresponding pro-
jectors (see [16, Section 1.3])

Πp(I − Πq) = (I − Πq)Πp = Πp,

from which we easily deduce that ΠpΠq = ΠqΠp = 0, that means the projectors Πp and Πq are
orthogonal.

As they also commute, p and q are compatible properties. The projectors Πp, Πq and Πp∨q =

I − Πp − Πq form a projective decomposition of the Hilbert space, i.e. they are orthogonal and their
sum is the identity operator. Therefore, the properties p, q and p ∨ q can be considered the atomic
properties generating a context of quantum properties with well defined probabilities [12].

For any state of the system represented by a state operator ρ, the probability of any property p′ in
the context is obtained with the Born rule, i.e. Prρ(p′) = Tr(ρΠp′). For the atomic properties p, q and
p ∨ q we obtain

Prρ(p) + Prρ(q) + Prρ(p ∨ q) = 1. (2)

From this equationwe easily deduce that if Prρ(p) = 1 then Prρ(q) = 0 and if Prρ(q) = 1, Prρ(p) = 0.
We conclude that in ordinary quantummechanics it is impossible for any state ρ that two contrary

properties p and q have probability equal to one. These results are the stochastic version of contrary
proposition in ordinary logic. This can be interpreted by saying that whenever the property p (q) is
true, the property q (p) is false. By the way, this result also justifies to have given the name contrary
to quantum properties p and q satisfying Eq. (1).

More generally, it is easy to see that if p and q are contrary properties, it is not possible to have a
state ρ and another property r for which

Prρ(p|r) = 1, Prρ(q|r) = 1. (3)

Taking into account that p, q and r should be represented by commuting projectors, so that the
conditional probabilities be well defined, we would have

Prρ(p|r) =
Tr(ρΠpΠr)

Tr(ρΠr)
= Tr(ρ∗Πp) = Prρ∗(p), Prρ(q|r) = Tr(ρ∗Πq) = Prρ∗(q),

where ρ∗
≡

ΠrρΠr
Tr(ΠrρΠr )

. Taking into account Eq. (2) with ρ = ρ∗ we conclude that there are no state ρ

and property r for which Eqs. (3) can be both valid.
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3. Contrary properties in the theory of consistent histories

In the theory of consistent histories n different contexts of properties at each time tj (j = 1, . . . , n),
satisfying a state dependent consistency condition, can be used to define a family of consistent histories,
i.e. a set of n times sequences of propertieswithwell defined probabilities [1–5]. According to this the-
ory, each possible family of consistent histories is an equally valid description of the quantum system.
In general it is not possible to include two different families in a single larger one. Different families of
this kind are complementary descriptions of the system, which the theory excludes to be considered
simultaneously.

Adrian Kent [6] proved that it is possible the retrodiction of contrary properties in different families
of consistent histories.

J.B. Hartle [7] developed an example of contrary inferences, which is also a special case of the ex-
ample 1 given by Adrian Kent [6]. A quantum system is in a state represented by the vector |Ψ ⟩ =
1

√
3
(|A⟩ + |B⟩ + |C⟩) at time t0, where |A⟩, |B⟩ and |C⟩ are three orthogonal and normalized vectors of

a three-dimensional Hilbert space. For simplicity, the Hamiltonian is chosen to be zero. The property
Φ , represented by the projector PΦ = |Φ⟩⟨Φ|, where |Φ⟩ =

1
√
3
(|A⟩ + |B⟩ − |C⟩), is considered at the

time t2 > t0.
For the system in the state |Ψ ⟩ at the initial time t0, and having the property Φ at the later time t2,

it is asked whether the system has the property A represented by PA = |A⟩⟨A| at an intermediate time
t1 (t0 < t1 < t2).

A suitable family of two-times consistent histories (i.e. a family of histories verifying consistency
conditions) is given by considering the properties generated by the projectors PA and PA = I − PA at
time t1 and by the projectors PΦ and PΦ = I − PΦ at time t2. Within this family of consistent histories
the following results are obtained

PrΨ (A, t1|Φ, t2) = 1, PrΨ (A, t1|Φ, t2) = 0, (4)

stating that the property Φ at time t2 implies the property A at the previous time t1 < t2.
Using a different family of consistent histories, including the properties generated by the projectors

PB = |B⟩⟨B| and PB = I−PB at time t1 and by the projectors PΦ and PΦ = I−PΦ at time t2, the following
results are obtained

PrΨ (B, t1|Φ, t2) = 1, PrΨ (B, t1|Φ, t2) = 0, (5)

giving the retrodiction of property B at time t1 conditional to property Φ at time t2 > t1.
From the point of view of the theory of consistent histories Eqs. (4) and (5) cannot be interpreted as

the retrodiction of two contrary propertiesA and B, because theywere obtained from twodifferent and
complementary descriptions, which cannot be included in a single consistent family [7,8]. However,
some authors have considered the results given in Eqs. (4) and (5) as a serious objection for the internal
consistency of the theory of consistent histories [6,9,10].

In the following section we will analyze this example from the point of view of our generalized
contexts formalism. We will also present a general proof of the absence of contrary inferences in this
formalism.

4. Contrary properties in the formalism of generalized contexts

In this section contrary quantumpropertieswill be considered from thepoint of viewof our formal-
ism of generalized contexts. We start with a brief description of the formalism, which was presented
in full details in our previous papers [11,12].

Quantum mechanics do not give a meaning to the joint probability distribution of observables
whose operators do not commute. It can only deal with a set of properties belonging to a context.

A context of properties Ci at time ti is obtained starting from a set of atomic properties pkii (ki ∈ σi)

represented by projectors Π
ki
i corresponding to a projective decomposition of the Hilbert space H ,
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i.e. verifying
ki∈σi

Π
ki
i = I, Π

ki
i Π

k′i
i = δkik′i

Π
ki
i . (6)

Any property p of the context Ci is represented by a sum of the projectors of the projective decompo-
sition,

Πp =


ki∈σp

Π
ki
i , σp ⊂ σi. (7)

The context Ci is an orthocomplemented distributive lattice, with the complement p of a property
p defined by Πp ≡ I − Πp and the order relation p ≤ p′ defined by ΠpH ⊆Πp′H .

A well defined probability (i.e. additive, non negative and normalized) is defined by the Born rule
Prti(p) ≡ Tr(ρtiΠp) on the context Ci. In Heisenberg representation, the probability of a property p at
time ti can be written in terms of the state at a reference time t0, i.e.

Prti(p) = Tr(ρt0Πp,0), Πp,0 ≡ U(t0, ti)ΠpU(ti, t0), U(ti, t0) = e−
i
} H(ti−t0). (8)

Taking into account Eqs. (7) and (8), the Heisenberg representation of the property p of the context
Ci at time ti is given by

Πp,0 =


ki∈σp

Π
ki
i,0, (9)

where the projectors Π
ki
i,0 = U(t0, ti)Π

ki
i U(ti, t0) represent the time translation of the atomic proper-

ties pkii from time ti to the time t0. The projectors Π
ki
i,0 also satisfy Eqs. (6).

The Heisenberg representation of the context Ci at time ti suggests a generalization of quantum
mechanics for including the joint probability of properties belonging to different contexts C1, . . . ,
Ci, . . . , Cn corresponding to n different times t1 < · · · < ti < · · · < tn.

By extending what is a common assumption in ordinary quantummechanics, we proposed to give
a meaning to the joint probability of properties at different times if they correspond to commuting
projectors in Heisenberg representation. This will be the case if the atomic properties generating each
of the n contexts are represented by projectors satisfying

[Π
ki
i,0, Π

kj
j,0] = 0, i, j = 1, . . . , n, ki ∈ σi, kj ∈ σj.

If these projectors commute the projectors Πk
0 ≡ Π

k1
1,0 . . . Π

ki
i,0 . . . Π

kn
n,0, with k = (k1, . . . , kn) and

ki ∈ σi, form a projective decomposition of the Hilbert space H , as they satisfy
k

Πk
0 = I, Πk

0 Πk′

0 = δkk′Πk
0 , k, k′

∈ σ1 × · · · × σn.

In our formalism we postulate that an expression of the form ‘‘property pk11 at time t1 and . . .and
pknn at time tn’’ is an atomic generalized property pk with the Heisenberg representation given by the
projector Πk

0 . A generalized context is defined by all the generalized properties p having a Heisenberg
representation given by an arbitrary sum of the projectors Πk

0 , i.e.

Πp =


k∈σp

Πk
0 ,

where σp is a subset of σ1 × · · · × σn. The generalized context is an orthocomplemented distributive
lattice, with the complement p of p defined by Πp = I −Πp, and the order relation p ≤ p′ defined by
the inclusion of the corresponding Hilbert subspaces (ΠpH ⊆Πp′H).

An extension of the Born rule provides a definition of an additive, non negative and normalized
probability on the generalized context, given by

Pr(p) ≡ Tr(ρt0Πp). (10)
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We can now show that the contrary inferences of the example developed by J.B. Hartle [7] and
presented in the previous section do not appear with our formalism. The projectors PA = |A⟩⟨A| and
PΦ = |Φ⟩⟨Φ| do not commute, there is no description of the quantum system involving properties
A at time t1 and Φ at time t2, and therefore the conditional probabilities appearing in Eqs. (4) are not
even defined. The conditional probabilities appearing in Eqs. (5) are also not defined in our formal-
ism, because the projectors PB = |B⟩⟨B| and PΦ do not commute. The negative results of this example
can be generalized. In what follows, we prove for an arbitrary quantum system that our formalism of
generalized contexts do not allow for the retrodiction of contrary properties.

For the general case, we consider a state ρt0 at time t0, two contrary properties p and q at time
t1 > t0 and another property r at time t2 > t1, and we search for the possibility to obtain for both
conditional probabilities the results Prρt0 (p, t1|r, t2) = 1 and Prρt0 (q, t1|r, t2) = 1.

The projectors Πp and Πp,0 = U(t0, t1)ΠpU(t1, t0) are respectively Schrödinger and Heisenberg
representations of the property p at time t1. Analogously, Πq and Πq,0 = U(t0, t1)ΠqU(t1, t0) are
representations of the property q at time t1. Moreover, Πr and Πr,0 = U(t0, t2)ΠrU(t2, t0) are repre-
sentations of the property r at time t2.

The conditional probabilities are meaningful in our formalism if the following compatibility con-
ditions are satisfied

[Πp,0, Πr,0] = 0, [Πq,0, Πr,0] = 0, (11)

while the contrary properties p and q are represented by orthogonal projectors, and therefore

[Πp,0, Πq,0] = 0. (12)

The commutation relations given in Eqs. (11) and (12) are the compatibility conditions required
to consider a two times generalized context including the contrary properties p and q at time t1 and
property r at time t2, in which both conditional probabilities Prρt0 (p, t1|r, t2) and Prρt0 (q, t1|r, t2) are
meaningful.

In our formalism, the required retrodictions would have the explicit forms

Prρt0 (p, t1|r, t2) =
Tr(ρt0Πp,0Πr,0)

Tr(ρt0Πr,0)
= 1, Prρt0 (q, t1|r, t2) =

Tr(ρt0Πq,0Πr,0)

Tr(ρt0Πr,0)
= 1.

Taking into account the commutation relations given in Eqs. (11), the previous equations are equiv-
alent to

Tr(ρ∗

t0Πp,0) = 1, Tr(ρ∗

t0Πq,0) = 1, ρ∗

t0 ≡
Πr,0ρt0Πr,0

Tr(Πr,0ρt0Πr,0)
. (13)

As Πp,0 and Πq,0 represent contrary properties at the same time t0, we can follow the arguments
given at the end of Section 2 to show that there is no ρ∗

t0 for which both equations given in Eqs. (13)
can be valid. Therefore we conclude that the problem of retrodiction of contrary properties do not
arise in our formalism of generalized contexts for quantum histories.

5. On the usefulness of the formalism of generalized contexts

In axiomatic quantum theories the states are considered as functionals acting on the space of ob-
servables and therefore appearing after the observables in a somehow subordinate position [17,18].
Quantum histories play the role of the observables of ordinary quantum theory and it seems reason-
able that the allowed sets of histories satisfy state independent conditions. The consistency conditions
of the theory of consistent histories produce state dependent families of consistent histories. On the
contrary, the compatibility conditions of the generalized context formalism are state independent.

The state independent compatibility conditions of the generalized context formalism produce an
important difference with respect to the theory of consistent histories. Each quantum history has a
Heisenberg representation given by a projection operator and each valid set of quantum histories is
generated by a projective decomposition of the Hilbert space. As a consequence, a generalized con-
text of quantum histories has the logical structure of a distributive orthocomplemented lattice of sub-
spaces of the Hilbert space, i.e. the same logical structure of the quantum properties of an ordinary
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context. It is because of this logical structure that in our formalism there is no place for the retrodiction
of contrary properties, as we already found in the example analyzed in the previous section.

In the opinion of some authors the theory of consistent histories allows too many histories and
some of them are difficult to interpret [19,20]. We have recently proved that our compatibility condi-
tions, given by the commutation of the projectors representing the properties translated to a common
time, are equivalent to the consistency conditions imposed on all possible states of the system [15].
Therefore, the formalism of generalized contexts imposes more restrictions than the theory of consis-
tent histories for the valid families of quantum histories and it allows less families of histories. This
can be an advantage of our formalism.

However, although the absence of contrary inferences may be considered as an advantage of
the generalized context formalism, we should consider the possibility that some physically relevant
families of consistent histories may be eliminated by it. We do not have yet a definite answer to this
question, but we present in what follows a brief description of two physically relevant applications of
our formalism, presented in our previous works [12,13].

5.1. Quantum measurements

Anon idealmeasurement of an observableQ of a system S is an interaction during the time interval
(t1, t2) of themeasured system S with the instrument A. It is represented in the Hilbert spaceHS ⊗HA
by a unitary transformation U = U(t2, t1) satisfying

|qi⟩|a0⟩
U

−→ |φi⟩|ai⟩,

where |qi⟩ is an eigenvector of the observable Q with eigenvalue qi, |a0⟩ is the initial reference state
of the instrument and |ai⟩ is a state of the instrument with the value ai of the pointer variable. The
state of the composed system at time t1 is |Ψ1⟩ = |ϕ1⟩|a0⟩, where |ϕ1⟩ =


i ci|qi⟩.

The formalism of generalized contexts can provide a description of the process involving the
possible values qi of the observable Q of system S at time t1 and the possible pointer values aj of
the instrument A at time t2. These properties are represented by the projectors

Πqi = |qi⟩⟨qi| ⊗ IA, Πaj = IS ⊗ |aj⟩⟨aj|,

and satisfy the compatibility conditionswhen translated to the common time t1, i.e. [U−1ΠajU; Πqi ] =

0. Therefore, the generalized context formalism allows to compute the conditional probability

Pr(qi, t1|aj, t2) =
Pr((qi, t1) ∧ (aj, t2))

Pr(aj, t2)
=

⟨Ψ1|U−1ΠajUΠqi |Ψ1⟩

⟨Ψ1|U−1ΠajU|Ψ1⟩
= δij.

For the composed system prepared in the state |Ψ1⟩ = |ϕ1⟩|a0⟩, this result can be interpreted by
saying that if the instrument pointer variable has the value aj after the measurement, the system S
had the property Q = qj before the measurement. More details of the application of this formalism
to the logic of quantum measurements can be found in Ref. [13].

5.2. The double-slit experiment

The generalized context formalismwas used to describe the double-slit experiment [12]. A particle
in a state represented by awave packet, coming from left to right, passes through a double-slit at time
t1. The particle reaches a vertical zone located to the right of the double slit at a later time t2.

We can attempt to give a description of the process involving through which slit has passed the
particle at time t1 that appear to be in some region of the vertical zone at a later time t2. As we assume
no measurement instruments, the Hilbert space to describe this process is the Hilbert space of the
particle (H = Hparticle).

The projectors representing the particle located in each slit at time t1 are

Πu
t1 ≡


Vu

d3r |r⟩⟨r|, Πd
t1 ≡


Vd

d3r |r⟩⟨r|, (14)
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where V u (V d) is the volume of the upper (lower) slit, and |r⟩ is a generalized eigenvector of the
position operator of the particle with generalized eigenvalue r .

For the later time t2, the projectors corresponding to the particle in small regions of the vertical
zone to the right of the double slit are

Πn
t2 ≡


Vn

d3r |r⟩⟨r|, (15)

where V n is the volume of the small region of the vertical zone labeled by the index n.
We proved in Ref. [12] that the properties represented by the projectors (14) and (15), translated

to the common time t1, are represented by non commuting projectors, i.e.

[Πu
t1;U

−1Πn
t2U] ≠ 0, [Πd

t1;U
−1Πn

t2U] ≠ 0,

where U = U(t2, t1) = e−iH0(t2−t1)/h̄ is the unitary evolution generated by the free particle Hamilto-
nian, H0 = p2/2m.

Therefore, our formalism shows the well known fact that it is not possible a description of the
quantum process suitable to talk about which slit passed the particle before reaching a region of the
vertical zone.

We also considered a modified double-slit experiment with an ideal measurement instrument A
located in the slits zone, interacting with the particle during the short time interval [t1, t1 + ∆1], and
with its pointer variable indicating au (ad) if the particle is detected passing through the upper (lower)
slit. A second idealmeasurement instrument B is located in the vertical zone to the right of the double-
slit, interacting with the particle in the short time interval [t2, t2 + ∆2], and with a pointer variable
indicating bn if the particle is detected in the small zone labeled by the index n of the vertical zone.
The Hilbert space for the description of this process is the tensor product of the Hilbert space of the
particle and the two Hilbert spaces of the detectors, i.e. H = Hparticle ⊗ HA ⊗ HB. The unitary time
evolution is assumed to be dominated by the interaction between the particle and instrument A in
the short time interval [t1, t1 + ∆1], by the free evolution in the time interval [t1 + ∆1, t2] and by the
interaction of the particle and instrument B in the time interval [t2, t2 + ∆2].

The possible pointer indications of the instrument A at time t1 + ∆1 are represented by the
projectors

Π
au
t1+∆1

≡ Iparticle ⊗ |au⟩⟨au| ⊗ IB, Π
ad
t1+∆1

≡ Iparticle ⊗ |ad⟩⟨ad| ⊗ IB, (16)

and the possible indications of instrument B at time t2 + ∆2 are represented by the projectors

Π
bn
t2+∆2

≡ Iparticle ⊗ IA ⊗ |bn⟩⟨bn|. (17)

We proved in Ref. [12] that the properties corresponding to the projectors (16) and (17), translated
to a common time, are represented by commuting projectors. Therefore, the generalized context for-
malism allows a history of the composed system involving throughwhich slit the particle is measured
to pass and inwhich region of the vertical plane it is measured to be at a later time. The corresponding
conditional probabilities give the expected non interference pattern.

6. Conclusions

In ordinary quantum mechanics, contrary properties are represented by orthogonal subspaces of
the Hilbert space associatedwith the physical system. In Section 2, we proved that given two contrary
properties p and q, there is no state ρ and property r for which the probability of p conditional to r
and the probability of q conditional to r can be both equal to one. Therefore, there is no possibility of
contrary inferences in ordinary quantummechanics. This result corresponds to a state and properties
considered at a single time.

Aswe discussed in Section 3, this is not the case for the theory of consistent histories, where a state
at time t0, two contrary properties p and q at time t1 > t0 and another property r at time t2 > t1 can
be found in such a way that the probability of p conditional to r and the probability of q conditional
to r are both equal to one. Although these conditional probabilities are defined in different sets of
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consistent histories [7,8], some authors have considered this fact as a serious problem for the logical
consistency of the theory [6,9,10].

Themain purpose of this paperwas to analyze the problemof contrary inferences in the framework
of our formalism of generalized contexts. In this formalism, as it was explained in Section 4, ordinary
contexts of properties at different times can be used to obtain a valid set of quantum histories if they
satisfy a compatibility condition. This condition is given by the commutation of the projectors corre-
sponding to the time translation of the properties to a single common time. These compatibility condi-
tions are state independent, an important difference with respect to the state dependent consistency
conditions of the theory of consistent histories. Each quantum history has a Heisenberg representa-
tion given by a projection operator and each valid set of quantumhistories is generated by a projective
decomposition of the Hilbert space. As a consequence, a generalized context of quantum histories has
the logical structure of a distributive orthocomplemented lattice of subspaces of the Hilbert space,
i.e. the same logical structure of the quantum properties of an ordinary context. It is because of this
logical structure that in our formalism there is no place for the retrodiction of contrary properties.

The formalism of generalized contexts imposesmore restrictions than the theory of consistent his-
tories for the valid families of quantum histories and it allows less families of histories. Although the
absence of contrary inferences can be considered an advantage of this formalism, we should also con-
sider the possibility that some physically relevant families of consistent histories may be eliminated
by it. We do not have yet a definite answer to this question, but we can mention the results we ob-
tained with physically relevant applications [14,13,12], some of which have been briefly discussed
in Section 5. These partial results encourages us to continue our future research considering more
applications of the formalism of generalized contexts.
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