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ABSTRACT: In order to operate continuous processes near the economically optimal steady-state operating point, self-
optimizing control schemes reformulate the optimization problem as a process control problem. The objective is to find
controlled variables and constant set points such that the controller leads to optimal adjustments of the inputs in the presence of
stable disturbances. In particular, the null space approach consists in selecting the self-optimizing controlled variables as linear
combinations of the inactive output variables, based on the first-order variation of the necessary conditions of optimality. In the
self-optimizing control structures proposed in the literature, the number of controlled variables required is typically equal to the
number of degrees of freedom (inputs) that are available after all the equality and active inequality constrained variables are
controlled. In this paper, we propose new self-optimizing control structures based on the null space approach, where depending
on the number of disturbances, the number of active constraints, and the number of inputs, it is possible to decrease the number
of process-dependent controlled variables by fixing linear combinations of the inputs. The effectiveness of the proposed self-
optimizing control structures with minimum number of process-dependent controlled variables is demonstrated in simulation by
means of a continuous stirred tank reactor and an evaporator.

1. INTRODUCTION
Steady-state optimization is of economic importance in many
industrial process plants that run in continuous operation.
Several techniques have been proposed in order to achieve
optimal steady-state operation.1 A typical approach is to use a
hierarchical structure involving several layers that include plant
scheduling, real-time optimization (RTO), and process
control.2,3 At the RTO layer, a detailed steady-state model is
used to compute the optimal operating point by solving a
nonlinear program (NLP). RTO typically proceeds using a two-
step approach,2,3 which consists of an iteration between
parameter estimation and optimization. At the current
operating point, the uncertain model parameters and
disturbances are identified and used to update the model to
generate new inputs via optimization.2

As an alternative to solving the parameter estimation and
economic optimization problems online, several reformulation
methods have been proposed, where the optimization problem
is recast as the problem of tracking selected variables whose
optimal values are approximately invariant to uncertainty.
These include constraint control,4 optimizing control,5−7 self-
optimizing control,8,9 and tracking the necessary conditions of
optimality (NCO), which is known as NCO-tracking.10,11

In self-optimizing control (SOC) schemes, the process
model is exploited off-line in order to find a control structure
such that an acceptable economic loss is achieved by keeping
the controlled variables at constant set point values.8 For given
values of the disturbance variables, the economic loss associated
with a given SOC structure is defined as the difference between
the value of the cost function obtained upon implementing the
SOC strategy and the true optimal value of the cost function.
Using a first-order variation of the NCO for an unconstrained
optimization problem and a linearized model of the output
variables, Halvorsen et al.12 derived a local expression for the

loss in terms of the disturbance values and measurement error.
Based on this result, local methods were proposed for finding an
optimal linear combination of measurements that minimizes
the (local) worst-case loss,12 and the (local) average loss.13

Many contributions to the SOC literature can be found that
build on these two approaches. Kariwala14 proposes an
algorithm for finding the combination matrix that minimizes
the worst-case loss. Heldt15 considers a class of structural
constraints on the combination matrix, wherein each controlled
variable consists of the linear combination of an individual
subset of measurements. The worst-case loss12 and the average
loss13 approaches will, in general, result in smaller losses by
increasing the number of measurements used in the linear
combination matrix. However, since the improvements in the
loss may quickly become negligable, it has been proposed to fix
the number of measurements and to find the best subset of
measurements that minimizes the loss.16 This represents a
combinatorial problem.
Also based on the first-order variation of the NCO for

unconstrained optimization problems, Alstad and Skogestad17

proposed the null space method for selecting self-optimizing
controlled variables as linear combinations of the measurement
variables. The approach consists in selecting linear combina-
tions that lie in the null space of the sensitivity matrix of the
optimal outputs with respect to the disturbances. In the absence
of measurement error, Alstad et al.18 have shown that the null
space method zeroes the local loss expression derived by
Halvorsen et al.12 On the other hand, in the presence of
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measurement error and extra measurements, it is possible to
select a subset of measurements to be used in the null space
method such that the local loss due to measurement error is
minimized.18 Links between SOC using the null space method
and the two-step approach of RTO have been discussed.19

Most approaches for formulating a SOC problem are based on
the assumption that the set of active constraints at the optimum
does not change when the disturbances change. Changes in the
active set have been considered by reformulating the SOC
problem for each active set region.20

In the SOC structures proposed in the literature, the number
of self-optimizing controlled variables is typically equal to the
number of degrees of freedom that are available after
controlling all the equality and active inequality constrained
output variables.8,9,12,13,17,18 In this paper, we show that in cases
where the number of disturbances is lower than the number of
inactive input variables, it is possible to decrease the number of
process-dependent controlled variables in self-optimizing
control strategies based on the null space method, by fixing
linear combinations of the inputs. Based on this idea, this paper
presents SOC structures based on the null space method with
minimum number of process-dependent controlled variables,
wherein as many linear combinations of the inputs as possible
are fixed, and the remaining linear input combinations are used
as manipulated variables for controlling the self-optimizing
controlled variables, which include the active constrained
output variables and linear combinations of inactive input and
output variables. Reducing the number of process-dependent
controlled variables permits to reduce the dimension of the
dynamic control problem that must be solved in SOC strategies
based on the null space method.
The paper is organized as follows. Section 2 formulates the

constrained optimization problem and presents the first-order
variation of the necessary conditions of optimality. Based on
this variational analysis, the null space method proposed by
Alstad and Skogestad17 is reformulated in section 3 for the case
of a constrained optimization problem. The self-optimizing
control structures with minimum number of controlled
variables are presented in section 4 for different scenarios
that depend on the problem dimensions. The applicability of
the proposed SOC structures is illustrated in simulation in
section 5 for a continuous stirred tank reactor and a forced-
circulation evaporator. Finally, section 6 concludes the paper.

2. PROBLEM FORMULATION
2.1. Optimization Problem. The behavior of the plant is

represented by a nonlinear state-space model of the form:

̇ =

=

x f x u d

y x

( , , )

( )

p p p p

p p p (1)

where xp ∈ Rnxp is the vector of state variables, u ∈ Rnu is the
vector of decision (or input) variables, yp ∈ Rny is the vector of
measured (or output) variables, and dp ∈ Rndp is the vector of
process disturbances. The notation (·)p is used for the variables
associated with the plant.
In any practical application, the input−output mapping

corresponding to the operation of the plant at steady state,
which is represented here as yp = Hp(u,dp), is not known
precisely, and only an approximate steady-state model is
available:

=f x u d 0( , , ) (2a)

=y x d( , ) (2b)

where x ∈ Rnx are the model state variables, and d ∈ Rnd is a set
of model parameters. We denote by y = H(u,d) the input−
output mapping representing the steady-state behavior
predicted by the model. In order to obtain y one has to first
solve the model eq 2a in order to compute the states x and then
obtain y by evaluating eq 2b.
The steady-state economic optimum of the plant is given by

the solution of the following optimization problem:
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where ϕ:Rnu × Rny → R is the scalar cost function to be

minimized; yp
eq ∈ Rny

eq

is the set of equality constrained outputs

for which yS are the set point values; yp
in ∈ Rny

in

is the set of
inequality constrained outputs for which yL and yU are the
lower and upper bounds, respectively; and uL and uU are the
lower and upper bounds on the decision variables. The
measured outputs yp are partitioned into the controlled outputs
yp
eq and the remaining outputs yp

in, for which lower and upper
bounds can always be found. Hence, ny = ny

eq + ny
in.

It is assumed that ny
eq < nu, that is, the number of equality

constrained outputs is lower than the number of inputs.
Without this assumption there are no degrees of freedom
available for optimization. Also, we assume that there exists a
feasible solution to problem 3 for any dp ∈ , where the
disturbance set comprises the disturbances that may be
encountered during the operation of the plant.
The plant mapping Hp(u,dp) is not known accurately, and

only the approximate model y = H(u,d) is available. Using the
model, the solution of the original problem 3 can be
approached by solving the following NLP problem:

ϕ= Φ =

= =

≤ = ≤

≤ ≤

★u d u d u H u d

y H u d y

y y H u d y

u u u

( ) arg min ( , ): ( , ( , ))

s.t. ( , ) ,

( , ) ,

u

eq eq S

L in in U

L U (4)

Let us consider the following model accuracy assumption:
Assumption 1 (No Structural Plant-Model Mismatch). The

model equations are structurally correct, that is, Φ = Φp, and H
= Hp. In other words, it is assumed that plant-model mismatch
is only originated by differences in the values of the model
parameters d.
Since self-optimizing control is based on this assumption,

only the optimization problem 4 will be considered in the
development of the approach proposed in this paper.

2.2. Sensitivity Analysis. In order to conduct a sensitivity
analysis of problem 4, the following invariant active set
assumption is considered:

Assumption 2 (Invariant Active Set). Locally, the set of
active constraints of problem 4 does not change with the
process disturbances d.
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Let us assume that at the optimal point u★(d) there are mL

inequality constrained outputs at their lower bounds, mU

inequality constrained outputs at their upper bounds, nL inputs
at their lower bounds, and nU inputs at their upper bounds. We

define the matrix PyL ∈ RmL × ny
in

such that each row of PyL has a
one at the index number corresponding to an inequality
constrained output that is active at its lower bound and zeros

elsewhere. Similarly, the matrix PyU ∈ RmU × ny
in

is defined for the
inequality constrained outputs that are active at their upper

bounds, and the matrices PL ∈ RnL × nu and PU ∈ RnU × nu are
defined for the inputs that are active at their lower and upper
bounds, respectively. This way, the active inequality constrained
outputs can be denoted collectively as the vector ya, with the
corresponding set points yaS, and the mapping Ha(u,d):

= ∈ = ∈
⎡
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with ny
a = mL + mU. In turn, the inactive inequality constrained

outputs and the corresponding mapping are denoted as the
vectors yna = yin\ya and Hna = Hin\Ha, respectively. The active
inputs can be denoted collectively as the vector ua, with the
corresponding set points uaS:
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with nu
a = nL + nU. In turn, the inactive inputs can be denoted as

the vector una = u\ua. Also, the equality and active inequality
constrained variables can be denoted collectively as the vector
z, with the corresponding set points zS, and the mapping
Z(u,d):
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with nz = ny
eq + ny

a + nu
a.

By taking the active inequality constraints as equality
constraints and removing the inactive constraints, it is possible
to reformulate problem 4 as follows:

= Φ

= =

★u d u d

z Z u d z

( ) arg min ( , )

s.t. ( , )

u

S
(10)

The first-order NCO of problem 10 read (the notation ab =
∂a/∂b is used henceforth):

μ= Φ + =Z 0u u u
T

(11)

= − =μ z z 0( )S T
(12)

with (u, d, μ) = Φ(u, d) + μT(Z(u, d) − zS) being the
Lagrangian function, and μ ∈ Rnz the Lagrange multipliers.
Let dnom be the nominal parameter values, and consider the

parametric disturbance δd = d − dnom. The deviation of the
optimal inputs induced by δd is δu★ = u★(d) − u★(dnom), and
the corresponding deviations of the Lagrange multipliers is
δμ★. The first-order variations of the NCO eqs 11, 12 read:

δ δ δμ+ + =u d Z 0uu ud u
T

(13)

δ δ+ =Z u Z d 0u d (14)

where δu and δμ are first-order approximations of δu★, and
δμ★, respectively, and uu, ud, Zu, and Zd are all evaluated at
(u★(dnom), dnom). Equations 13 and 14 can be written as

δ
δ

δ
μ

= − =
⎡
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d

uu u
T
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Assuming that the linear independence constraint qualification
(LICQ) holds at u★(dnom), then Zu has full row rank, and if nz
< nu one can find N ∈ Rnu × (nu−nz) such that the columns of N
are an orthonormal basis of the null space of the rows of Zu,
that is, ZuN = 0. If in addition the reduced Hessian matrix
NT

uuN is positive definite, then the KKT matrix M is
nonsingular,21 and there is a unique vector pair (δu,δμ)
satisfying

δ
δμ

δ= − =− −
⎡
⎣⎢

⎤
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⎡
⎣
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d

1 1 1 2

3 4 (16)

Hence, the (approximate) optimal inputs are a linear function
of the disturbances:

δ δ= = − +u d ZK , with K [M M ]ud d1 2 (17)

3. SELF-OPTIMIZING CONTROL USING THE NULL
SPACE METHOD

In self-optimizing control the active input and output variables
are controlled to their optimal boundary values, and for the
remaining degrees of freedom, nc = (nu − nz) controlled
variables c ∈ Rnc are selected as functions of the inactive input
and output variables, such that near optimal operation is
achieved by keeping c at constant set points cS.8,12 The null
space method by Alstad and Skogestad17 is based on the first-
order variation of the NCO. In this section, the null space
method for constrained optimization problems is presented.
The first-order variation of the output variables is

δ δ δ= +y H u H du d (18)

Using eq 17 in eq 18, we have

δ δ= +y H H d[ K ]u d (19)

From eqs 19 and 17, we have

δ

δ
δ= =

+⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
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y

u
d

H H
S , with S

K

K
u d

(20)

Next, let us analyze some characteristics of matrix S. For the
case of the equality and active inequality constrained variables
we have

δ δ δ= +z Z u Z du d (21)
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Using eq 14 in eq 21, we have δz = 0. Since this is valid for all
δd, it must be that the rows in K corresponding to the active
input variables are equal to 0, and the rows in [HuK + Hd]
corresponding to the equality constrained outputs and the
active inequality constrained outputs are equal to 0.
Removing from eq 20 the equality constrained outputs and

all the active inequality constrained inputs and outputs, one can
write

δ

δ
δ=

⎡
⎣⎢

⎤
⎦⎥

y

u
dS

na

na
na

(22)

where Sna ∈ Rnna × nd, with nna = (ny
na + nu

na), is obtained by
eliminating from S all the rows corresponding to the equality
constrained outputs and active variables.
Let us assume that Sna is full column rank, and let the

columns in na ∈ Rnna × nc be a set of nc orthonormal vectors
that lie in the left null space of Sna. Hence, ( na)TSna = 0, and
from eq 22 we have

δ

δ
δ= =

⎡
⎣⎢

⎤
⎦⎥

y

u
d 0( ) ( ) STna

na

na
na T na

(23)

Notice that, the dimension of the null space of Sna should be
greater than or equal to nc, which requires that nna − nd ≥ nc.
This last inequality reduces to ny

eq + ny
in ≥ nd, or equivalently, ny

≥ nd. That is, the number of measured output variables should
be greater than or equal to the number of disturbances
(regardless of whether these outputs are controlled at fixed set
points or not).
Based on eq 23, the null space methodinitially proposed

by Alstad and Skogestad17consists in selecting the controlled
variables and set point values as follows:

= =
★
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T

S
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na
S na T

na
nom nom

na
nom

(24)

where una★(dnom) includes the optimal values in u★(dnom)
corresponding to the inactive inputs. Notice that eq 24
represents a square control problem with nu controlled variables
and nu input variables. Since the active input variables can be
fixed to their boundary values, the number of controlled
variables is actually (ny

eq + ny
a + nc) = nu

na. The SOC structure
corresponding to the control problem 24 is depicted in Figure
1. The active input variables ua are applied directly to the plant,
and the inactive inputs una are decoupled into the inputs u′ ∈
R(ny

eq+ny
a) and u″ ∈ Rnc. The inputs u′ are used to control the

equality and active inequality constrained outputs by means of
the constraint controller c. Meanwhile, the inputs u″ are used
to control the SOC variables c by means of the sensitivity
controller s. The dashed-line box in Figure 1 represents the
plant as viewed by the sensitivity controller. This is the same
controlled plant as viewed by the SOC controller proposed by
Alstad and Skogestad.17

Remark 1 The formulation of the null space method given in
this section presents some differences with respect to the
original formulation presented in the literature.17,18 In the

original formulation, the inactive output and input variables are
considered collectively as output measurements, while here
they are considered separately in equation 22, the same as in
Francois et al.1 Another difference is that in previous work1,17,18

it is assumed that a number of degrees of freedom (inputs) are
consumed in controlling the active constraints (for instance, the
inputs u′ and ua in Figure 1), and the optimization problem is
formulated as an unconstrained optimization problem in terms
of the remaining inputs (i.e., in terms of the inputs u″ in Figure
1). In contrast, in this paper, we consider the constrained
optimization problem in terms of all the inputs u, and the null
space method is derived based on the first-order variations of
the NCO for the constrained optimization problem. In
principle, the approach is the same. However, the alternative
formulation used here is justified because it is key in deriving
the new SOC structures that will be presented in section 4.
Remark 2 (Condition ny ≥ nd) Notice that the condition ny

≥ nd found in this paper is similar to the condition found in
Alstad and Skogestad.17 In Alstad and Skogestad,17 it was found
that the number of independent measurement variables should
be greater than or equal to the number of extra degrees of
freedom plus the number of disturbances. The apparent
difference in this condition is due to differences in the notation
used in Alstad and Skogestad17 with respect to the notation
used in this paper. The measurement variables considered in
Alstad and Skogestad17 include the inactive output and input
variables. Hence, using the notation of this paper, the condition
given in Alstad and Skogestad17 can be written as nu

na + ny
na ≥ nc

+ nd. Recalling that nc = nu
na − ny

eq − ny
a, the condition reduces to

ny ≥ nd.
Equivalent Formulation. An equivalent way of arriving to

the control problem 24 is by selecting a particular matrix ∈
R(nu+ny) × nu, such that the columns of are a set of nu normal
vectors that lie in the left null space of S (defined in eq 20), that

is, TS = 0. These column vectors are linearly independent (by
construction) but they are not all orthogonal. They are selected
as follows: The first nz columns in correspond to an
orthonormal set of unit vectors. Each unit vector has a one at
the index number corresponding to a variable in z, and zeros
elsewhere. The remaining nc columns in are constructed
from the columns in na by adding zeros in the positions
corresponding to the variables in z. Using this choice of it is
possible to arrive to the control problem 24 by selecting the
controlled variables and set points as follows:

Figure 1. Self-optimizing control structure, including the constraint
controller c and the sensitivity controller s.
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This equivalent formulation of the control problem shows that
the selection of the active constraints as controlled variables can
also be viewed as being based on a null space approach. Notice
that, the dimension of the null space of S should be greater than
or equal to nu. Assuming that S is full column rank, this requires
that ny ≥ nd. This is the same condition found previously. The
following example shows how to construct na and from S.
Example 1 Consider the case in which there are four inputs,

two outputs, and two disturbances, with the second output and
the second input being active at the nominal optimum. Let us
assume that the matrix S is given by

=
−

=
−

⎡

⎣
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⎦
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⎢⎢⎢⎢
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⎦
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S

1 2
0 0
2 1
0 0
3 1
2 4

, S

1 2
2 1
3 1
2 4

na

where the rows of S corresponding to the active output and
input variables are equal to 0. These rows are eliminated in
order to obtain the matrix Sna. Next, the null space matrix na

can be obtained, for example, by singular value decomposition
of (Sna)T.

≈

− −
−

−
−

≈

− −

−

−
−

⎡

⎣
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⎤
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0.5050 0.7504
0.6092 0.2888
0.6092 0.2888

0.05208 0.5196

,

0 0 0.5050 0.7504
1 0 0 0
0 0 0.6092 0.2888
0 1 0 0
0 0 0.6092 0.2888
0 0 0.05208 0.5196

na

Finally, the null space matrix is obtained from na and the
knowledge of the active constraints.
First-Order Approximation of Optimal Operation. The

null space method is based on the first-order variation of the
NCO, and as discussed by Marchetti and Zumoffen,19 it
provides a first-order approximation of optimal operation. The
equation TS = 0 can be rewritten as

=
−⎡

⎣⎢
⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

H

I

H

0
KT Tu d

(26)

Now, if we assume that eq 18 is exact, and that the variables r
are controlled to their set point values rS in eq 25 with integral
control action, then at steady state we will have

δ
δ

δ

δ δ

δ
= =
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from where

δ δ=
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u
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Using eq 26 in eq 28, we have

δ δ=
⎡
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⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

H

I
u

H

I
dKT Tu u

(29)

The linear system (eq 29) has the unique solution δu = Kδd
if and only if the square matrix T[Hu

T I]T is nonsingular.
Notice that the rank of is nu, and that the rank of [Hu

T I] is
also nu, which are necessary conditions for T[Hu

T I]T to be
nonsingular. The operating point δu = Kδd is a first-order
approximation of optimal operation. In practice, since eq 18 is
not exact, it is not possible to write the second equality in 27,
and a (slightly) different operating point will be reached at
steady-state.

4. SELF-OPTIMIZING CONTROL STRUCTURES WITH
MINIMUM NUMBER OF CONTROLLED VARIABLES

In the SOC structures proposed in the literature, the number of
additional self-optimizing controlled variables is typically equal
to the number of degrees of freedom that are available after
controlling all the equality and active inequality constrained
output variables (i.e., equal to nc, with nc = nu

na − ny
eq − ny

a). In
this section, we show that if the number of disturbances is
lower than the number of inactive inputs, then it is possible to
decrease the number of self-optimizing controlled variables by
fixing linear combinations of the input variables. In this paper,
the following distinction is made between controlled variables
and fixed variables:

Controlled Variables. We refer to process-dependent
controlled variables, that is, variables that depend on the
outputs y, which are functions of the states and disturbances as
per eq 2b. A controller with integral action is in general
required in order to meet the set points with zero offset.

Fixed Variables. We refer to input variables and
combinations of input variables that can be fixed at their target
values at the input of the process; that is, they do not depend
on the process dynamics.
Three different scenarios will be analyzed depending on the

dimensions of the problem considered.
4.1. Scenario 1: nd ≤ (ny

eq + ny
a) < nu

na. If the number of
equality constrained outputs plus the number of active
inequality constrained outputs is greater than or equal to the
number of disturbances, then the condition ny ≥ nd is already
satisfied by controlling yeq and ya. Therefore, it is not necessary
to include any inactive output variables in eq 22, which reduces
to

δ δ=u dKna na (30)

where Kna ∈ Rnu
na × nd is obtained by eliminating from K all the

rows corresponding to the active input variables. The columns

in ∈ Rnu
na × nc orthonormal vectors that lie in the left null

space of Kna, so that ( na)TKna = 0. In this case, the variables c
are linear combinations of the input variables only. Therefore,
they can be fixed to their optimal values cS, and the only
variables that need to be controlled are yeq and ya. The
controlled variables and their set points, as well as the fixed
variables and their targets, are the following:
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= = ★

y y

y y

u u

c u c u d

Controlled variables Set points

Fixed variables Targets

( ) ( ) ( )

eq S

a aS

a aS

na T na S na T na
nom (31)

Next, we shall specify the manipulated variables used to control
yeq and ya. The fixed variables can be obtained collectively from
the inputs u as

=
⎡
⎣⎢

⎤
⎦⎥

u
c

u( )
a

u T

(32)

where the first nu
a columns in u ∈ Rnu×(nu

a+nc) are the unit
vectors that have a one at the index number corresponding an
active input variable, while the remaining nc columns in u are
obtained from the columns in na by adding zeros in the
positions corresponding to the active input variables. Let the

columns in matrix ∈ Rnu×(ny
eq+ny

a) be a set of orthonormal
vectors that lie in the left null space of u, so that T u = 0.
Notice that the dimension of the null space of u is (nu − nu

a −
nc) = (nz − nu

a) = (ny
eq + ny

a). Using , the manipulated variables
used to control yeq and ya can be selected as

=v uT (33)

which are linear combinations of the inactive input variables
(notice that the columns in corresponding to the active input
variables are zero columns). Equations 32 and 33 can be
written jointly as

=
⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

u
c
v

u
( )

a u T

T
(34)

Noticing that the square matrix [ u ] is invertible (since it
has linearly independent columns), it follows that the input u
can be uniquely reconstructed from v and from the targets uaS

and cS as follows:

= =

= +

−⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥

⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

u
u

c
v

u

c
v

u

c
v

( )
[Q Q ]

Q Q

u T

T

1 aS

S 1 2

aS

S

1

aS

S 2
(35)

The resulting self-optimizing control structure is depicted in
Figure 2. Notice that only the constraint controller is required.
The dashed-line box in Figure 2 represents the plant as viewed
by the constraint controller.
If the number of disturbances is lower than or equal to the

number of controlled output variables (equality constrained
outputs and active inequality constrained outputs), then it is
not necessary to include additional controlled variables in order
to obtain a self-optimizing control structure. Instead, it is
possible to use linear combinations of the input variables (i.e.,
directions in the input space) in order to control the equality
and active inequality constrained outputs, while the input
variables for the remaining degrees of freedom are fixed at their

optimal values along computed directions in the input space,
which are locally invariant to disturbances. In this scenario, self-
optimizing control is achieved with only (ny

eq + ny
a) controlled

variables. No additional inactive output variables (or combina-
tions of output variables) need to be measured online and
controlled.

4.2. Scenario 2: (ny
eq + ny

a) < nd < nu
na. If the number of

disturbances is greater than the number of equality and active
inequality constrained outputs, but smaller than the number of
inactive inputs, then the minimum number of inactive output
variables yna required to satisfy ny ≥ nd is (ny

na)min = nd − ny
eq −

ny
a. On the other hand, the dimension of the left null space of
Kna is (nu

na − nd), which means that it is possible to fix (nu
na − nd)

linear combinations of the inputs. Let the columns in una ∈
Rnu

na×(nu
na − nd) be taken as a set of (nu

na − nd) orthonormal vectors
that lie in the left null space of Kna, so that ( una)TKna = 0.
Using una, the linear combinations of inputs cu = ( una)Tuna

can be fixed at the locally invariant optimal values cuS =
( una)Tuna★(dnom).

In this case, na ∈ Rnna × nc can be selected in the left null

space of Sna ∈ Rnna × nd as follows:

=
⎡
⎣⎢

⎤
⎦⎥

0na yna
una

(36)

where yna includes the first nd − ny
eq − ny

a columns in na,
which can be chosen to be orthonormal. The whole set of
column vectors in na should be linearly independent. Using

una and yna, the controlled variables and their set points, as
well as the fixed variables and their targets, can be selected as
follows:

= =

= =

★

★

★

⎡
⎣⎢

⎤
⎦⎥

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

y y

y y

c
y

u
c

H u d d

u d

u u

c u c u d

Controlled variables Set points

( ) ( )
( ( ), )

( )

Fixed variables Targets

( ) ( ) ( )

eq S

a aS

yna T
na

na
S yna T

na
nom nom

na
nom

a aS

u una T na uS una T na
nom

(37)

Notice that the controlled variables c and the fixed variables cu

can be written jointly as

=
⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

c
c

y

u
( )u

na T
na

na (38)

Figure 2. Self-optimizing control structure with minimum number of
controlled variables when scenario 1 holds.
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On the other hand, the fixed variables can be obtained
collectively from the inputs u as

=
⎡
⎣⎢

⎤
⎦⎥

u
c

u( )
a

u
u T

(39)

where the first nu
a columns in u ∈ Rnu×(nu−nd) are the unit

vectors that have a one at the index number corresponding an
active input variable, while the remaining (nu

na − nd) columns in
u are obtained from the columns in una by adding zeros in

the positions corresponding to the active input variables. Let
the columns in matrix ∈ Rnu × nd be a set of orthonormal
vectors that lie in the left null space of u, so that T u = 0.
Using , the manipulated variables used to control yeq, ya, and c
can be selected as

=v uT (40)

which are linear combinations of the inactive input variables.
Equations 39 and 40 can be written jointly as

=
⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

u
c
v

u
( )

a

u
u T

T
(41)

The square matrix [ u ] being nonsingular, it follows that
the input u can be uniquely reconstructed from v and from the
targets uaS and cuS as follows:

= =

= +

−⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥

⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

u
u

c
v

u

c
v

u

c
v

( )
[Q Q ]

Q Q

T

T

u 1 aS

uS 1 2

aS

uS

1

aS

uS 2
(42)

The manipulated variables v can be decoupled into the

variables v′ ∈ R(ny
eq+ny

a), which are used to control the equality
and active inequality constrained outputs, and the variables v″
∈ R(nd−ny

eq−ny
a), which are used to control the SOC variables c.

The proposed self-optimizing control structure with minimum
number of controlled variables in this scenario is depicted in
Figure 3. Self-optimizing control is achieved with a minimum of
nd controlled variables.
4.3. Scenario 3: (ny

eq + ny
a) < nu

na ≤ nd. If the number of
disturbances is greater than or equal to the number of inactive
input variables, then the left null space of Kna is empty, which
means that it is not possible to fix any linear combinations of
the inputs. In order to satisfy the condition ny ≥ nd, the
minimum number of inactive output variables required is nd −

ny
eq − ny

a. In this case, the controlled variables and set points
required to obtain a self-optimizing control structure are those
given in eq 24 (the active input variables are fixed). The
number of additional controlled variables required is nc. The
self-optimizing control structure for this scenario is that
depicted in Figure 1. Self-optimizing control is achieved with
nu
na = (ny

eq − ny
a + nc) controlled variables, and it is not possible

to reduce the number of controlled variables by fixing linear
combinations of the input variables.

4.4. Effect of Measurement Error on the Optimality
Loss. The NCO of problem 4 can be decomposed into two
parts: the sensitivity part (eq 11) and the constraint part (eq
12). The sensitivity part is equivalent to zeroing the reduced
gradient of the cost function. A parametric variational analysis22

shows thatin the presence of parametric (or disturbance)
variations of magnitude δdfailure to enforce the active
constraints would lead to a loss of optimality (δd). In
contrast, upon enforcing the active constraints, the loss of
optimality would be (δd2), which is due to failure in zeroing
the reduced gradient. In other words, when disturbances take
place, there is often much more to win (locally) in terms of
optimality by controlling the active constrained variables to
their optimal boundary values than by zeroing the reduced
gradient. This justifies why controlling the active constrained
quantities4 has become widely adopted in basically all
optimizing control approaches.5−7,10,17,23 Where these ap-
proaches differ is on how the sensitivity part of the NCO is
dealt with. Different sensitivity control strategies have been
proposed, such as gradient control,24 neighboring-extremal
control (NEC),23 extremum-seeking control,25 and self-
optimizing control approaches, such as the null space method,17

which is revisited in this paper.
When considering the effect of measurement error, it is

important to keep in mind that, in terms of optimality loss,
measurement error is in general more detrimental to the
constraint part of the NCO than to the sensitivity part of the
NCO. This follows as a result of the previously mentioned
parametric variational analysis.22 In addition, measurement
error in the active constrained variables may result in violation
of the constraints, which calls for implementing constraint
backoffs,26 with the consequent loss in optimality.
The effect of measurement error and disturbances on the

performance of the sensitivity controller should be analyzed in
order to determine whether it is justified or not to include the
sensitivity controller. In Gros et al.,23 the cost improvement of
using the NEC scheme is compared to using the nominal
inputs on the perturbed plant (the active constraints are
assumed to be perfectly controlled). If this cost improvement is
too small, or if it is comparable to the cost variation due to
measurement noise, then it is not justified to apply NEC.23 A
similar type of analysis should be carried out for all sensitivity
control strategies, including SOC approaches such as the null
space method.
In this section, a local sensitivity analysis is conducted in

order to analyze the effect of disturbances and measurement
error on the optimality loss incurred by SOC. This analysis is
analogous to the sensitivity analysis conducted in previous
works.12,18 A difference with previous work is that here the
analysis is conducted for the constrained optimization problem
that is formulated in the space of all the input (manipulated)
variables. Most importantly, in the following analysis, a clear
distinction is made between the effect of measurement error in
the input and output variables. This discrimination will enable

Figure 3. Self-optimizing control structure with minimum number of
controlled variables when scenario 2 holds.
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us to arrive to important conclusions concerning the SOC
scenarios discussed in this paper. Initially, the analysis will be
carried out for the general SOC problem given in eq 25. The
special cases concerning the SOC structures with minimum
number of controlled variables for scenarios 1 and 2 will be
discussed later. Instead of using the null space combination
matrix na, the general combination matrix na will be used,
which will enable us to establish links with other SOC
approaches different from the null space method. In order to
incorporate the active constraints, the matrix is constructed
from na in the same way is constructed from na.
We shall assume that the KKT second-order sufficient

conditions for a strict local minimum of problem 4 are satisfied
(see e.g., Theorem 4.4.2 in Bazaraa et al.27). Since we are
performing a local analysis, we shall consider that the first-order
variations of the NCO (eqs 13 and 14) and of the outputs (eq
18) are exact. The null space method is concerned with the
sensitivity part of the NCO. Hence, we will focus only on the
optimality loss due to failure in zeroing the reduced gradient;
that is, under the assumption that the active constraints are
perfectly controlled.
Optimality Loss due to Sensitivities. A second-order Taylor

expansion of the Lagrangian function at the optimum point
u★(d) gives

μ μ= + −

+ − −

★ ★ ★ ★

★ ★

u d d u d d d u u d

u u d u u d

( , , ( )) ( ( ), , ( )) ( ( ))
1
2

( ( )) ( ( ))T

u

uu (43)

Since u★(d) is an optimum point, we have u = 0 and
Z(u★(d),d) = zS. Assuming that the active constraints are
perfectly controlled at u, we have Z(u,d) = zS. Therefore,

μ = Φ★u d d u d( , , ( )) ( , )

μ = Φ★ ★ ★u d d d u d d( ( ), , ( )) ( ( ), )

From 43 it follows that the optimality loss is given by

= Φ − Φ

= − −

★

★ ★

u d u d d

u u d u u d

Loss ( , ) ( ( ), )
1
2

( ( )) ( ( ))T
uu (44)

In this analysis, the constraints are assumed to be linear, and
the effect of the curvature of the constraints on the cost is taken
into account by using the Hessian of the Lagrangian function.
Since the active constraints are assumed to be linear, we have
that u − u★(d) belongs to the tangent space = {w ∈ Rnu:
Zuw = 0}. The Hessian of the Lagrangian function is not in
general positive definite, but it is positive definite when
restricted to the tangent space.27

Input Reached by the SOC Controller. Let nu ∈ Rnu and ny

∈ Rny denote the input and output measurement error vectors,
respectively. The input reached by the SOC controller in the
presence of disturbances and measurement error (assuming the
controller has integral action) can be derived by adding
measurement error to eq 27:

δ δ

δ

+ ̃ + +

+ ̃
=

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

H u n H d n

u n
0

( )uT
u

d
y

u
(45)

which can be written as

δδ + ̃ + + =
⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

H

I
u n n

0

H

0
d 0( )T u u T

y
T d

(46)

Since we are only interested in the effect of measurement
error on the sensitivity part of the NCO, the projection of the
input measurement error on the tangent space is included in
46:

̃ =n nBBu T u

where the columns of the matrix B ∈ Rnu×(nu‑nz) are an
orthonormal basis that spans the tangent space (thus, ZuB =
0). In addition, the output measurement error corresponding to
the equality and active inequality constrain output variables is
assumed to be equal to zero. That is, the elements in ny

corresponding to these controlled output variables are equal to
zero. Because of this, and due to the structure of , it follows
that the first nz equations in 46 reduce to

δ δ+ ̃ + =Z u n Z d 0( ) du
u

which means that the active constraints are active at (u + ñu).
Given that ñu ∈ , it follows that the active constraints are
active at u. Therefore, the input u computed from eq 46 can be
used in eq 44. Considering that

δ δ= − =★ ★ ★u u d u d d( ) ( ) Knom

and recalling that SOC requires that the matrix T[Hu
T I]T be

invertible, we have

δ δ δ− = − = − − ̃ −★ ★ ⎡
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⎦⎥u u d u u n

0
n d( ) M My

y
u d

(47)

with
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Loss in Terms of the Disturbances and Measurement
Error. In the presence of parametric disturbance δd and zero-
mean measurement noise nu, ny, the (local) optimality loss
associated with the SOC controller that uses the combination
matrix na is given by

δ δ
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d
(48)

where E(·) represents the mathematical expectation operator.
The first and second terms in eq 48 represent the expected loss
associated with the output and input measurement noise,
respectively. The third term represents the loss associated with
the disturbances. Notice that the output noise loss and the
disturbance loss depend on the choice of the controlled
variables through the combination matrix na, while the loss
due to input noise is independent of na.
If the null space method is used, then = , and from eq

26, it follows that Md = 0. This is exactly the same result
obtained in Alstad et al.,18 where it is shown that by using the
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null space method the (local) loss due to disturbances is equal
to zero. Yet, the null space method does not in general
minimize the loss eqs 44 or 48 in the presence of measurement
error. In order to take measurement error into account,
alternative SOC approaches have been proposed, which find
the combination matrix na that minimizes the worst-case
loss,12 and the average loss.13

Loss for the SOC Structures with Minimum Number of
Controlled Variables. Scenario 1. If nd ≤ (ny

eq + ny
a) < nu

na, then
it is possible to select a null space matrix na that fixes nc linear
combinations of the input variables. Since no inactive output
variables are needed, the expected value of the loss in eq 48
reduces to

= ̃ ̃E E n n(Loss)
1
2

(( ) )u T
uu

u

Notice that, in this scenario it is not possible to improve this
loss by any combination matrix na that incorporates inactive
output variables and(or) does not belong to the null space of
Sna, as this would make the output noise loss and(or) the
disturbance loss greater than zero.
Scenario 2. If (ny

eq + ny
a) < nd < nu

na, then it is possible to
select the inactive output variables yna and the null space
matrices yna and una in eq 36 so as to minimize the
optimality loss due to output measurement error, that is, the
first term in eq 48. This problem falls outside the scope of this
paper.
4.5. Fixing Linear Combinations of the Input

Variables Using Alternative SOC Approaches. The SOC
strategies based on the worst-case loss12 and the average loss13

will not in general result in fixing linear combinations of the
input variables, even if the optimality loss in doing so might be
negligible. However, using these methods, it is possible to fix
linear combinations of the input variables by imposing certain
structure to the combination matrix na. Since in this case na

is not restricted to be a null space matrix, we may (in principle)
fix from one to nc linear combinations of the inputs, regardless
of the number of disturbances:
Fixing nc Linear Combinations of the Inputs. If (ny

eq + ny
a) ≥

1, it is possible to fix nc linear combinations of the inputs, c =

( na)Tuna, by selecting na ∈ Rnu
na × nc such that the second and

third terms in eq 48 are minimized. In this case, the SOC
control structure in Figure 2 can be used. Notice that, if (ny

eq +
ny
a) = 0 it makes no sense to fix nc = nu

na linear combinations of
the inputs, as this would be equivalent to applying the nominal
optimal inputs directly to the plant.
Fixing Less than nc Linear Combinations of the Inputs. It

is possible to fix nu
f , 1 ≤ nu

f , ≤ (nc − 1) linear combinations of
the inputs by selecting the controlled variables c and the fixed
variables cu as

=
⎡
⎣⎢

⎤
⎦⎥

⎡
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⎤
⎦⎥

c
c

y

u
( )u

na T
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where na has the following structure:

=
⎡
⎣⎢

⎤
⎦⎥

0na yna
una

(50)

The inactive output variables yna, as well as the matrices yna ∈
Rnna×(nc−nu

f ) and una ∈ Rnu
na×nu

f

can be selected so as to minimize

the loss expression in 48. In this case, the SOC control
structure depicted in Figure 3 can be implemented.
The analysis of such alternative SOC structures with reduced

number of process-dependent controlled variables may be a
subject of future research.

4.6. Discussion. A number of remarks are in order:

• Minimum number of controlled variables. The self-
optimizing control structures proposed use the minimum
number of controlled variables without compromising
local optimality, in the sense that the optimum input δu
= Kδd is reached (locally) at steady state. Nevertheless, it
might be possible to find self-optimizing control
structures with acceptable optimality loss by fixing
additional input combinations that are not invariant to
disturbances, but that do not result in significant
optimality loss. The possibility of further reducing the
number of controlled variables, with the acceptance of
the additional optimality loss, may be a subject of future
research.

• Notice that, it is always possible to use the self-
optimizing control structure in Figure 1 in the case of
scenarios 1 and 2. This corresponds to the original SOC
structure proposed by Alstad and Skogestad.17

• The null space approach allows for important flexibility
in selecting the null space matrix . In this paper, we
have taken advantage of this flexibility in order to select
in the columns of as many linearly independent
combinations of the inputs as possible, with the aim of
reducing the number of required controlled variables by
fixing these input combinations to their invariant optimal
values.

· In the special case where there are no equality or active
inequality constrained outputs (i.e., ny

eq = ny
a = 0), the

following statements hold: (i) scenario 1 cannot take
place; (ii) if nd < nu

na, then scenario 2 takes place, but
without including the constraint controller c, and with
v = v″; (iii) if nu

na ≤ nd, then scenario 3 takes place,
without including the constraint controller c, and with
una = u″.

5. ILLUSTRATIVE EXAMPLES

5.1. SELF-OPTIMIZING CONTROL OF A CONTINUOUS
STIRRED TANK REACTOR

The reactor in the Williams−Otto plant is considered.28 It
consists of an ideal CSTR in which the following reactions
occur:

+ → = ×

+ → + = ×

+ → = ×

− +

− +

− +

A B C k

B C P E k

C P G k

, 1.6599 10 e

, 7.2117 10 e

, 2.6745 10 e

T

T

T

1
6 6666.7/( 273)

2
8 8333.3/( 273)

3
12 11111/( 273)

R

R

R

where the reactants A and B are fed with the mass flow rates FA
and FB, respectively. The desired products are P and E. C is an
intermediate product and G is an undesired product. The
reaction rates are

= = =r k X X r k X X r k X X, ,A B B C C P1 1 2 2 3 3

where Xi is the mass fraction of species i, and kj is the kinetic
coefficient of reaction j, which is dependent on the reactor
temperature. Operation is isothermal at the temperature TR.
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Assuming that the level control is perfect (i.e., F = FA + FB), the
dynamic behavior of the reactor is described by the following
set of differential equations:

̇ = −
+
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F F
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where 51-56 are the species mass balances; 57 is the heat
balance in the reactor, and 58 is the heat balance in the jacket.
A PI controller regulates the reactor temperature by adjusting
the jacket inlet temperature TJin.
Variables and parameters: TinA,TinB = inlet temperatures of A

and B, TJ = jacket temperature, TJin = inlet temperature of the
fluid entering the jacket, FJ = flow rate of the fluid entering the
jacket,W = reactor mass holdup,WJ = jacket mass holdup, Cp =
heat capacity of the reactants, CpJ = heat capacity of the fluid in
the jacket, ΔHi = enthalpy of reaction i, U = heat transfer
coefficient, Ao/Vo = specific heat exchange area.
The decision variables are the set point of the reactor

temperature, TR
sp, and FB, that is, u = [TR

sp FB]
T. The disturbance

variable considered is FA (i.e., d = FA). The set of eqs 51−56 is x ̇
= f(x,u,d), with x = [XA XB XC XP XG XE]

T. The nominal model
uses FA = 1.4 kg/s. Since the temperature controller is designed
with zero offset, we have TR

sp = TR at steady state. Hence, the
steady-state model is given by 0 = f(x,u,d).
The objective is to maximize profit at steady state operation,

which is expressed as the price difference between the products
and the reactants:

Φ = + − −X F X F F F1200 80 76 114P E A B (59)

The steady-state optimization problem reads:

Φ

=

≤

≤ ≤ ≤ ≤

F

X

F T

f x u 0

max
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2 4, 70 100,

F T
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B

B R

,B R
sp
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where Φ is defined in eq 59 and XB is constrained to be lower
than or equal to 0.25. This optimization problem formulation is
the same as that used in Marchetti et al.29

The constraint XB ≤ 0.25 is the only active constraint at the
optimum for the nominal value of FA, and also for any FA ∈
[1.069, 2.322]. Therefore, assuming that the concentration XB
can be measured online, a constraint controller should be
implemented for controlling XB. Notice that, in this example we
have nu

na = 2, ny
a = 1, and nd = 1, which corresponds to scenario

1. Hence, we can use the self-optimizing control structure
depicted in Figure 2.
Let us denote by U★(FA) the optimal solution map of

problem 60 as a function of the disturbance value FA. The
nominal optimum is u̅★ = U★(1.4) = [85.6, 2.549]T. Figure 4

shows the location of u̅★ on the constraint boundary XB = 0.25
for the nominal value of FA. The disturbance considered is an
increase in the value of FA from 1.4 kg/s to 1.85 kg/s. As a
result, the constraint boundary shifts as indicated in Figure 4,
and the new optimum is ub

★ = U★(1.85). Notice that the
optimal solutions are always located on the curve U★(FA) for
any FA ∈ [1.069,2.322].
In order to apply the null space approach, the inputs are

scaled as (FB)scaled = (FB − 2)/2 and (TR
sp)scaled = (TR

sp − 70)/30.
The vector of scaled inputs is denoted by us, and the scaled
nominal optimum is denoted by u̅s

★. The gain matrix in eq 17 is
computed at the nominal point as K = [8.377, 1.631]T. The
corresponding gain matrix for the scaled inputs is Ks = [0.2792,

Table 1. Model Variables and Parameters

variable value unit variable value unit

TinA 60 °C TinB 60 °C
FA 1.4 kg/s FJ 3 kg/s
W 2105 kg WJ 200 kg
Cp 4.184 kJ/(kg °C) CpJ 4.184 kJ/(kg °C)
ΔH1 −263.8 kJ/kg ΔH2 −158.3 kJ/kg
ΔH3 −226.3 kJ/kg Ao 12.2 m2

Vo 2.1052 m3 U 0.72 kJ/(m2 °C s)

Figure 4. Steady-state map for problem 60. Thick solid curves:
constraint boundary for XB. Dotted curves: contours of the profit
function.
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0.8154]T. Since there are no active input variables, we have una

= u, and the null space of Ks is
na = u = [−0.9461,

0.3239]T. Therefore, the combination of input variables c =
( na)Tus can be fixed at the target value cS = ( na)Tu̅s

★ =
−0.40224. In this example, the control problem 31 reads:

= = =

= = −

y X y v

c c

u

u

Controlled variable Set point Manipulated variable

0.25

Fixed variable Target

( ) 0.40224

B s

s

a aS T

na T S

The manipulated variable used to control XB is v =
Tus, with

= [0.3239, 0.9461]T. This way, eq 35 becomes us = Q1c
S + Q2v,

with Q1 = [−0.9461, 0.3239]T, and Q2 = [0.3239, 0.9461]T.
When FA increases from 1.4 kg/s to 1.85 kg/s, the self-

optimizing controller will take the operation to point ub in
Figure 4, which is at the intersection of the line and the
constraint boundary XB = 0.25. Here, is the affine subspace
for which δc = c − cS = 0. Notice that is tangent to U★(FA) at
u̅★. The optimality loss of point ub with respect to the optimum
ub
★ is negligible. The simulation results obtained using a PI
controller with parameters Kpi = 5 and τpi = 1 (min) are shown
in Figure 5. The disturbance in FA takes place at time t = 50

(min). The self-optimizing constraint controller brings XB back
to the active value of 0.25, and reaches at steady state exactly
the operating point ub in Figure 4.
Notice that, if in this optimization scenario a linear

combination of the inputs is not fixed, then the null space
method would require measuring at least one inactive output
variable (e.g., a state variable different from XB). In this case, the
control structure depicted in Figure 1 should be implemented,
requiring two (process-dependent) controlled variables instead
of one.
5.2. Self-Optimizing Control of an Evaporator. We

consider the forced-circulation evaporator described by Newell
and Lee,30 as modified by Kariwala et al.13 This evaporator
example has been used to illustrate the performance of self-
optimizing control schemes in numerous studies.13,15,31 It has

also been used to illustrate the implementation of model
predictive control.32 The liquid feed is mixed with recirculating
liquor, which is pumped through the evaporator. The
evaporator is a heat exchanger, which is heated by steam.
The mixture of feed and recirculating liquor boils inside the
evaporator, and a vapor−liquid mixture flows to the separator,
where the liquid and vapor are separated. Most of the separated
liquid, which is more concentrated than when it entered the
evaporator, becomes recirculating liquor, and a small
proportion of it is drawn off as product. The evaporator is
depicted in Figure 6 and the main variables are listed in Table

2. The process model equations are given in Kariwala et al.13

The process model has three state variables, L2, X2, and P2. In
order to stabilize the plant operation, a controller is needed for
the separator level L2. A PI controller is used with a set point
for L2 of 1 m, which manipulates the product flow rate F2.
The objective is to maximize profit at steady-state operation,

which is expressed as13

Figure 5. Time response of key variables in the self-optimizing control
of the CSTR example.

Figure 6. Forced-circulation evaporator.

Table 2. Evaporator Variables and Values at the Nominal
Optimum

variable description value

F1 feed flow rate 10.155 kg/min
F2 product flow rate 1.430 kg/min
F3 circulating flow rate 23.545 kg/min
F4 vapor flow rate 8.725 kg/min
F5 condensate flow rate 8.725 kg/min
X1 feed comp. 5.00%
X2 product comp. 35.50%
T1 feed temp. 38 °C
T2 product temp. 83.26 °C
T3 vapor temp. 76.42 °C
L2 separator level 1 m
P2 operating pressure 42.25 kPa
F100 steam flow rate 10.06 kg/min
T100 steam temp. 151.52 °C
P100 steam pressure 400.00 kPa
Q100 heat duty 368.07 kW
F200 cooling water flow rate 232.63 kg/min
T200 cooling water inlet temp. 17 °C
T201 cooling water outlet temp. 37.63 °C
Q200 condenser duty 335.90 kW
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Φ = − − − − +F F F F F F4800 0.2 600 0.6 1.009( )2 1 100 200 2 3
(61)

where the first term is the product value, while the last four
terms are operational costs related to the steam and cooling
water utilities, pumping effort, and raw material cost. The
decision variables, disturbances, and measured output variables
are

=

=

=
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X T T
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The nominal disturbance values are X1 = 5%, T1 = 38 °C, and
T200 = 17 °C, that is, dnom = [5 38 17]T, which is different
from the nominal disturbance values used in Kariwala et al.13

The steady-state optimization problem reads:
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where Φ is defined in eq 61. Let us denote by U★(d) the
optimal solution map of problem 62 as a function of the
disturbance values d. The nominal optimum is u̅★ = U★(dnom)
= [400, 232.62, 23.545, 10.155]T. The values of all the process
variables at the nominal optimum are given in Table 2. At the
optimal point, there is one active input, P100 = 400 kPa, and one
active inequality constrained output, X2 = 35.5%. In this work, it
is assumed that the disturbance values can vary within the
following ranges:

≤ ≤

° ≤ ≤ °

° ≤ ≤ °

X

T

T

4.95% 5.1%

36 C 40 C

15 C 20 C

1

1

200 (63)

The following remarks are in order:

• The degrees of freedom and constraints are similar to
those adopted in Kariwala et al.13 The evaporator
pressure P2 is very sensitive to the value of the
disturbance X1. In industrial practice it would be advisible
to control P2, which would consume an additional degree
of freedom. However, since the purpose here is to
illustrate the different SOC scenarios, we choose to leave
P2 free, the same as in Kariwala et al.13

• The disturbance ranges in eq 63 were selected such that
the set of active constraints in problem 62 does not
change with the disturbance values. Notice that the
ranges are quite tight, as it happens that outside these
ranges P2 quickly becomes active, either at its lower or
upper boundary value. These changes in the active set
were handled by using a cascade control strategy.13

However, in this work we want to limit our study to the
case where the set of active constraints does not change.

In this problem we have the following description of the
variables:

• Active inputs: ua = P100 (nu
a = 1)

• Active outputs: ya = X2 (ny
a = 1)

• Inactive inputs: una = [F200 F3 F1]
T (nu

na = 3)
• Inactive outputs: yna = [F4 F5 T2 T3 P2 F100 T201]

T (ny
na =

7)
• Equality outputs: none (ny

eq = 0)

Hence, depending on whether 1, 2, or 3 disturbances are
considered, the problem falls in the framework of scenarios 1, 2,
and 3, respectively.

Scenario 1. If the only disturbance is d = X1 (nd = 1), then it
is possible to implement the SOC structure described in section
4.1, which is depicted in Figure 2. The matrices involved in the
control structure design are the following:

= =
− −
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In this example, the control problem 31 reads:
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The only controlled variable is the product composition X2,
which is controlled at its lower boundary value of 35.5 using as
the manipulated variable the input combination v = Tu. In this
case, a PI controller is selected and the tuning procedure is the
classical internal model control (IMC) approach. The propor-
tional gain and the reset time constant result KP = −2, and τI =
50, respectively.
The dynamic response obtained when the composition X1

changes from 5.0% to 5.1% at t = 1000 min is shown in Figure
7. The active constraint X2 = 35.5 is effectively controlled using
the manipulated variable v. The optimality loss at steady state (t
= 6000) is 6.0542. Notice that, in this optimization scenario the
original SOC structure would require three controlled variables
instead of only one, if no linear combinations of the input
variables are fixed.

Scenario 2. If we have d = [X1 T200]
T (nd = 2), then it is

possible to implement the SOC structure described in section
4.2, which is depicted in Figure 3. The minimum number of
inactive output variables required is ny

na = nd − ny
eq − ny

a = 2 − 0
− 1 = 1. In this case, we choose yna = T201. Next, the matrices
involved in the control structure design are computed at the
nominal optimum operating point:
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where Syna corresponds to the output variable T201.

In this example, the control problem 37 reads:
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The controlled variables are ya = X2 and c, while the
manipulated variables are v1 and v2. In order to define the input-
output pairing between [δya δc]T and [δv1 δv2]

T we use the
relative gain array (RGA) approach. For this purpose, the
matrix P2 given in A-8 and the RGA matrix Λ = P2 ⊗ (P2

T)−1

are computed:

=
−
−

Λ =
−

−
⎡
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⎤
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⎡
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⎤
⎦⎥P

5.4481 2.7687
0.8387 0.4168

,
43.8841 44.8841

44.8841 43.88412

(64)

The RGA approach suggests the following input-output
pairing: v1 − c and v2 − X2. The high absolute value of the
entries in the matrix Λ is a clear signal of high interaction
between both control loops. Both SISO feedback control loops
are implemented via PI controllers and tuned using the classical
IMC approach. This procedure gives the following setting: Kp

1 =
2 and τI

1 = 10 for the first loop, and Kp
2 = −1, τI2 = 20 for the

second one.
The dynamic response obtained when at time t = 1000 min

the composition X1 changes from 5.0% to 4.95% and the
cooling water inlet temperature T200 changes from 17 to 15 °C
is shown in Figures 8 and 9. The active constraint X2 = 35.5 and
the SOC variable c are effectively controlled using the
manipulated variables v1 and v2. The peeks observed in Figure
9 are in part due to unmodeled dynamics (i.e., due to theFigure 7. Self-optimizing control of the evaporator example in

scenario 1. Positive disturbance in X1. Plot a: manipulated variable−v.
Plot b: controlled variable−X2. Plot c: Profit−Φ.

Figure 8. Self-optimizing control of the evaporator example in
scenario 2. Negative disturbances in X1 and T200.
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presence of algebraic equations in the simulation model). The
optimality loss at steady state (t = 6000) is 1.9524. Notice that,
in this optimization scenario the original SOC structure would
require three controlled variables instead of two, if one does not
fix a linear combination of the input variables.
Scenario 3. If the three disturbances d = [X1 T1 T200]

T are
considered (nd = 3), then the alternative SOC structures with
reduced number of controlled variables do not apply. In this
case, the original null space method described in section 3 is
applied. The minimum number of inactive output variables
required is ny

na = 2. In this case, we select y1
na = F4, and y2

na = T2.
The sensitivity matrix and the null space matrix are given by

= =
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(65)

The corresponding control problem reads:

The matrix P3 given in eq A-11 in the Appendix, and the RGA
matrix Λ are computed as

=
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−
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− −
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P
0.0564 2.0554 12.2095
0.0436 0.2774 0.2157
0.0575 0.1986 0.9302

,

0.6410 3.0567 4.6977
9.9877 9.5141 1.4737

11.6287 5.4574 5.1714

The RGA approach suggests the following input-output
pairing: F1−X2, F3−c1, and F200−c2. The high absolute value of
the entries in the matrix Λ is a clear signal of high interaction
among the control loops. The three SISO feedback control
loops previously defined are implemented via PI controllers and
tuned using the classical IMC approach. This procedure gives
the following setting: KP

1 = −0.09 and τI
1 = 50 for the first loop

and KP
2 = 150, τI

2 = 50 for the second loop, and KP
3 = −1500, τI3

= 50 for the last one. It is worth noting that the last two control
loops (c1 and c2) were implemented by normalizing the
corresponding data matrices (to zero mean and divided by the
maximum expected values), so the PI tuning parameters
correspond to this normalized situation.
At time t = 1000 min the composition X1 changes from 5.0%

to 4.95% and the cooling water inlet temperature T200 changes
from 17 to 15 °C. Meanwhile, a ramp disturbance is imposed
on the feed temperature T1, starting at t1 = 1000 min with
T1(t1) = 38 °C, and ending at t2 = 2000 min with T1(t2) = 36
°C. For brevity, only the dynamic responses of the product
composition X2 (controlled active constrained variable) and the
profit are shown in Figure 10. The optimality loss at steady
state (t = 5000) is 2.9225.

Comparison with Constraint Control. Let us introduce a
fourth control policy called ACO. This control policy is based
on controlling the active constrained outputs only. In this case,
the control loop identified as F1−X2 is implemented, while the
remaining degrees of freedom F3, and F200, are fixed at their
nominal optimal values. In Table 3, the performance in terms of
optimality loss of the different SOC schemes implemented is
compared with ACO for the same disturbance cases considered
for each scenario. It can be viewed that in this evaporator case
study there is relatively little to win by using the null space
approach with respect to simply controlling the active
constraint.

Figure 9. Self-optimizing control of the evaporator example in
scenario 2. Negative disturbances in X1 and T200.
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6. CONCLUSIONS
This paper has shown that, in cases where the number of
disturbances is lower than the number of inactive input
variables, it is possible to decrease the number of process-
dependent controlled variables required in SOC structures
based on the null space approach. This can be done by fixing
linear combinations of the inputs to their invariant optimal
values, while using the remaining input combinations for
controlling both, the active constrained output variables, and
additional self-optimizing controlled variables that are linear
combinations of the inactive input and output variables. The
minimum number of process-dependent controlled variables is
obtained by fixing as many linear combinations of the inputs as
possible. Based on this idea, this paper presented SOC
structures with minimum number of process-dependent
controlled variables for two different scenarios. Scenario 1
considered the case where the number of disturbances is lower
than or equal to the number of (linearly independent) active
constrained output variables, whereas scenario 2 considered the
case where the number of disturbances is greater than the
number of active constrained output variables and lower than
the number of inactive input variables. Fixing linear
combinations of the inputs by means of the proposed control
structures permits to reduce the dimension of the dynamic
control problem that must be solved. One of the advantages of
SOC is that in many cases one can achieve near optimal

operation using simple PID controllers. Hence, minimizing the
number of process-dependent controlled variables permits to
minimize the required number of control loops.
In the case of scenario 1, a sensitivity analysis shows that the

proposed SOC structure, based on the null space method, not
only minimizes the required number of control loops, but also
minimizes the expected value of the optimality loss due to
disturbances and measurement error (with respect to other
choices of the controlled variables that include additional
output variables and(or) do not satisfy the null space
condition).
The applicability of the proposed SOC structures was tested

in simulation in a CSTR reactor and an evaporator.

■ APPENDIX. RELATIVE-GAIN ARRAY AND THE
SELECTION OF CONTROL LOOPS

If we take δd = 0, eq 18 can be decomposed as follows:
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where Huna
eq , Huna

a , and Huna
na are obtained by eliminating from Hu

the columns corresponding to δua (i.e., the active input
variables). Next, let us derive the expressions of the static open-
loop gain matrix P associated with each of the controller
scenarios described in section 4.
Scenario 1. In this case we have

δ

δ
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From eq 35 we have

δ δ= Qu vna
2
na

(A-3)

where Q2
na is obtained by eliminating all the rows in Q2

corresponding to the active input variables. From eqs A-1−A-
3 we get
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Scenario 2. In this case we have
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From eq 37 we can write

δ
δ

δ
=

⎡
⎣⎢

⎤
⎦⎥c

y

u
( )yna T

na

na (A-6)

Meanwhile, from eq 42 we have

δ δ=u vQna
2
na

(A-7)

where Q2
na is obtained by eliminating all the rows in Q2

corresponding to the active input variables. From A-1, A-
5−A-7, we get

Figure 10. Self-optimizing control of the evaporator example in
scenario 3. Negative disturbances in X1, T1, and T200.

Table 3. Comparison with Active Constraint Control

disturbances scenarios

X1 T1 T200 1 2 3 ACO

5.1 38 17 6.0542 8.7340
4.95 38 15 1.9524 2.2123
4.95 36 15 2.9225 3.5104
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Scenario 3. In this case we have
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From eq 24 we can write

δ
δ

δ
=

⎡
⎣⎢

⎤
⎦⎥c

y

u
( )na T

na

na (A-10)

Hence, from A-1, A-9, A-10, we get
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The matrices Pi, i = 1,2,3, can be used to define the input-
output pairing between the controlled and manipulated
variables by using the well-known relative gain array (RGA)
approach. Indeed, the RGA can be computed as Λ = Pi ⊗
(Pi

T)−1with ⊗ the element-by-element product.33

The well-conditioning of Pi guarantees confidence for the
RGA approach. In this context, a design criteria used in
plantwide control for selecting among many possible control
structures is to find a control structure for which the matrix Pi is
well conditioned.
In the cases of scenarios 2 and 3, there might be more

nonactive output variables than the minimum number required.
In this case, the choice of which (and how many) output
variables are included in yna will influence the condition number
of Pi. On the other hand, in the three scenarios, the choice of
the null space matrix na will also influence the condition
number of Pi. Hence, a design criterion for selecting yna and

na could be to minimize the condition number of matrix Pi.
These design decisions, which are important in order to define
the final SOC structure and the pairing between the controlled
and manipulated variables, fall outside the scope of this paper
and may constitute a direction of future research.
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