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Abstract

Although most eggs are intensely predated, the aerial egg clutches from the aquatic snail Pomacea canaliculata have only
one reported predator due to unparalleled biochemical defenses. These include two storage-proteins: ovorubin that
provides a conspicuous (presumably warning) coloration and has antinutritive and antidigestive properties, and PcPV2 a
neurotoxin with lethal effect on rodents. We sequenced PcPV2 and studied whether it was able to withstand the
gastrointestinal environment and reach circulation of a potential predator. Capacity to resist digestion was assayed using
small-angle X-ray scattering (SAXS), fluorescence spectroscopy and simulated gastrointestinal proteolysis. PcPV2 oligomer is
antinutritive, withstanding proteinase digestion and displaying structural stability between pH 4.0–10.0. cDNA sequencing
and protein domain search showed that its two subunits share homology with membrane attack complex/perforin
(MACPF)-like toxins and tachylectin-like lectins, a previously unknown structure that resembles plant Type-2 ribosome-
inactivating proteins and bacterial botulinum toxins. The protomer has therefore a novel AB toxin combination of a MACPF-
like chain linked by disulfide bonds to a lectin-like chain, indicating a delivery system for the former. This was further
supported by observing PcPV2 binding to glycocalix of enterocytes in vivo and in culture, and by its hemaggutinating, but
not hemolytic activity, which suggested an interaction with surface oligosaccharides. PcPV2 is able to get into predator’s
body as evidenced in rats and mice by the presence of circulating antibodies in response to sublethal oral doses. To our
knowledge, a lectin-pore-forming toxin has not been reported before, providing the first evidence of a neurotoxic lectin in
animals, and a novel function for ancient and widely distributed proteins. The acquisition of this unique neurotoxic/
antinutritive/storage protein may confer the eggs a survival advantage, opening new perspectives in the study of the
evolution of animal defensive strategies.
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Introduction

Escaping predation is essential to survival. To reduce predation,

organisms have developed an array of chemical and physical

defensive strategies, but predators in turn have evolved adaptive

mechanisms to overcome these defenses in a battle of coevolving

prey defenses and predator counter-defenses [1]. Eggs are perhaps

the most endangered stage in the life cycle of an animal.

Motionless and often conspicuous, eggs are highly vulnerable to

both predators and parasites [2] and their high nutritional value

makes them subject to intense predation. Consequently, many

invertebrates defend their eggs by endowing them with deterrent

chemicals as has been well documented in insects that sequester

toxic compounds from plants [3–5] and in some terrestrial and

marine gastropods [6,7]. There are, however, a few eggs that are

winning in the ‘‘arms-race’’ and escape intense predation such as

the aerial egg clutches from the aquatic apple snail Pomacea

canaliculata (Lamarck, 1822) (Caenogastropoda, Ampullariidae)

which, while filled with large amounts of carbohydrates and

storage proteins (perivitellins) [8], have only one reported predator

worldwide, the fire ant Solenopsis geminata (Fabricius, 1804) [9].

Females from this freshwater apple snail deposit clutches of

hundreds of pink-reddish eggs that are unusual in two respects:

they are cemented outside the water and they are brightly colored

[10,11]. The conspicuous egg coloration presumably advertises to

visual-hunting predators the presence of egg defenses (aposematic

or warning coloration), a strategy used by noxious organisms to

visually communicate their toxicity or distastefulness to potential
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predators [12]. Biochemical evidence indicates that apple snail

perivitellins are involved in egg defense against predation [13].

These proteins, synthesized in the female albumen gland, are

deposited around the fertilized ovocyte as part of the perivitelline

fluid [14]. Two of these perivitellins, PcPV2 (previously called

PV2) and ovorubin (PcOvo), are neurotoxic and diminish rat

growth rates, respectively [8,13,15–17]. PcPV2 is a neurotoxin

with a strong lethal effect on the central nervous system of mice

that induces changes in calcium homeostasis and results in the

apoptosis of selected neuron populations. Structural studies have

shown that PcPV2 is a globular, compact and well-folded glyco-

lipoprotein, with 2.5% w/w carbohydrates [18]. This 400 kDa

oligomer is an octamer of four 98 kDa heterodimers, each

composed of a 67 kDa heavy chain (PcPV2-67) and a 31 kDa

light chain (PcPV2-31). The heavy and light chains are held

together by disulfide bonds and the heterodimers are assembled

into native PcPV2 by non-covalent forces [18]. PcPV2 is the only

reported genetically encoded toxin located inside an egg [17].

PcPV2 is synthesized and secreted together with the other

identified component of the apple snail egg defenses, the

carotenoprotein PcOvo. This protein is a multifunctional perivi-

tellin that is massively accumulated in the perivitelline fluid and is

involved in protection against abiotic stressors [19], as well as

against predators. Besides providing conspicuous coloration to

eggs, PcOvo defends the embryos against predators by reducing

the digestibility and nutritional quality of the eggs [13,20]. The

recently described proteome of P. canaliculata perivitellin fluid

revealed more potential defensive proteins [21].

Unlike this comprehensive body of information on PcOvo,

information is lacking about the capacity of the neurotoxin PcPV2

to withstand the harsh gastrointestinal environment or about its

ability to reach a predator’s circulatory system, both of which are

critical steps allowing the toxin to reach the central nervous

system. This, together with the lack of sequence data for egg

neurotoxins, motivated the present study. Through a combination

of biochemical, biophysical, histopathological, molecular biology,

and cell biology experiments, we show that PcPV2 consists of a

membrane attack complex/perforin-like heavy chain covalently

linked to a lectin-like light chain. We provide evidence showing

that its native structure is rather stable in the pH range of the

gastrointestinal tract and that it is able to withstand simulated

gastrointestinal digestion. The toxin is a functional lectin and

shows no hemolytic activity, interacts with rat small intestine

epithelia in vivo and with intestinal cells in cultures, and would be

able to reach the circulation in rats. These results provide the first

clues about the mechanisms that allow the neurotoxin to enter a

predator’s body. To our knowledge, the presence of a neurotoxic

lectin with a dichain structure able to traverse the intestinal barrier

has not been reported in animals.

Methods

Ethics Statement
All the studies performed with rats, mice and rabbits were

approved by the Directive Board of the INIBIOLP and were

carried out in accordance with the Guide for the Care and Use of

Laboratory Animals [22]; (Instituto de Investigaciones Bioquı́mi-

cas de La Plata’s Animal Welfare Assurance No. A5647–01).

PcPV2 Isolation and Purification
Egg masses of P. canaliculata with embryos developed to no more

than the morula stage were employed. Eggs were homogenized

with 20 mM Tris/HCl, pH 6.8 buffer, containing a protease

inhibitor cocktail (Sigma Chemicals, St. Louis). The crude

homogenate was centrifuged sequentially at 10,0006g for

30 min and at 100,0006g for 50 min. PcPV2 was isolated from

the supernatant by ultracentrifugation and purified by HPLC

using a Mono Q HR 10/10 column as detailed previously [23].

Proteins were quantified [24] and purity was checked by PAGE.

Cloning of PcPV2 Subunits
Total RNA was extracted from albumen gland (AG) using

Trizol (Invitrogen, Carlsbad, USA) according to the manufactur-

er’s procedure. The first strand cDNA synthesis from total RNA

(2 mg) was performed using oligo dT and M-MLV reverse

transcriptase (USB, Cleveland, USA). N-terminal sequences of

both subunits (NCBI accession No.: P0C8G7 for PcPV2-67 and

P0C8G6 for PcPV2-31 [14]) were used to search against the P.

canaliculata transcriptome using tBLASTn [25]. The matched

unigenes were used to design primers for 39RACE (Rapid

Amplification of cDNA Ends) to obtain the full open reading

frames (ORF). The PCR products were checked by agarose gel

electrophoresis, purified and ligated into the pMD-18T plasmid

(Takara, Dalian, China). This plasmid was sequentially trans-

formed in E.coli competent cells for subsequent DNA sequencing.

Sequences were deposited in GenBank (accession No:

JX155861 for PcPV2-67 and JX155862 for PcPV2-31.

Sequence Analysis
Signal peptides of each protein were predicted by the SignalP

4.0 Server [26]. Kinase specific eukaryotic protein phosphoryla-

tion sites were predicted by the NetPhosK 1.0 Server under a filter

threshold of 0.85. N-Glycosylation sites were predicted with Net-

Glyc 1.0.

The translated amino acid sequences were used for phylogenetic

analysis using MrBayes (v.3.2.0) with a mixed amino acid model

[27]. Bayesian analysis was performed with four chains of 100,000

generations. The tree was sampled every 100 generations, and the

final burnin value was set to 20,000. The standard deviation of the

split frequencies fell below 0.01. The tree was visualized by

Treeview (v.1.6.6).

PcPV2 Stability with Regard to pH
PcPV2 (0.24 mg/mL) at different pH values (2.0 to 12.0) were

prepared using sodium phosphate salts and citric acid buffers [28].

After 48 h of incubation, samples were analyzed by light scattering

and fluorescence spectroscopy (see below).

Small Angle X-ray Scattering (SAXS)
SAXS experiments were performed at the D02A-SAXS2 line

operating in the Laboratório Nacional Luz Sincrotron, Campinas

(SP, Brazil). The scattering pattern was detected using a 2D-

MARCCD charge coupled device assisted by FIT 2D software

{Hammersley, 1997 12369/id}. The wavelength of the beam was

kept to 1.448 Å, and the sample-to-detector distance was

1044 mm, allowing a nominal Q-range between 0.012–

0.25 Å21. The temperature was stabilized at 15uC using a

circulating water bath.

Corrections for beam intensity, detector homogeneity and

sample absorption were performed following standard procedures.

At least three independent curves were averaged for each single

experiment. The size of PcPV2 was determined using the gyration

radii (RG) obtained by analysis of SAXS patterns as Guinier plots

(ln(I) = ln(I0)–RGQ2/3, Q = 4psin(h)/l, RGQ#1) and the globu-

larity evaluated by inspecting the Kratky plot (I(Q)*Q2 versus Q).

The Pair Distance Distribution Function (PDDF) was evaluated
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using the regularized Fourier transformation method implemented

in the program GNOM 4.5 [30].

Fluorescence Spectroscopy
Tryptophan fluorescence spectra of PcPV2 (1.2 mM) at each pH

(2.0 to 12.0) were recorded in emission scanning mode in an Olis-

upgraded SLM 4800 (Bogart, GA). Tryptophan emission was

excited at 290 nm (4-nm slit) and recorded between 310 and

410 nm (4-nm slit). Fluorescence measurements were performed

in 5-mm optical path length quartz cells at 20uC. Each spectrum

was corrected for buffer fluorescence and averaged from at least

two independent runs.

Gel Electrophoresis
Denaturing electrophoresis was performed on a 4–20% gradient

SDS-PAGE using b-mercaptoethanol as reducing agent and

stained with Coomassie Brilliant Blue R-250 (Sigma Chemical

Co, USA).

PcPV2 Isoelectric Point Determination by 2-dimensional
Electrophoresis

Two-dimensional electrophoresis (2-DE) isoelectric Focusing

(IEF) was performed using an Ettan IPGphor III (GE Healthcare,

Uppsala, Sweden) and 7-cm linear pH 4–7 immobiline dry strips

(GE Healthcare). Strip rehydration and loading were carried out

overnight at room temperature in a dilution buffer containing 1 mg

of PcPV2. PAGE electrophoresis was carried out at 15 mA/gel

and spots visualized by Coomassie Brilliant Blue R-250.

For the 2-DE SDS-PAGE, immobiline strips were immersed in

7 M urea, 2 M thiourea, 2% CHAPS, 0.5% v/v IPG buffer 4–7

linear containing 3 mg protein. After IEF, the immobiline dry

strips were equilibrated at room temperature for 20 min in a

buffer containing: 75 mM Tris–HCl, 6 M urea, 30% v/v glycerol,

2% w/v SDS, 0.002% w/v bromophenol blue and 1% w/v DTT,

and then alkylated for 20 min in the above buffer, but with 4.5%

w/v iodacetamide in place of DTT. The second-dimension was

carried out in 12% polyacrylamide gels.

In vitro PcPV2 Digestibility
The simulated gastrointestinal digestion of PcPV2 was per-

formed following the method described by Moreno [31] with slight

modifications. Briefly, gastric digestion was performed at 37uC for

120 min at pH 2.5 in the presence of porcine pepsin (Sigma, UK)

at a ratio of enzyme: substrate 1:20 (w/w). Aliquots were taken at

0, 60 and 120 min and analyzed by SDS-PAGE using b-

mercaptoethanol as reducing agent. The digestion was stopped

by raising the pH to 7.5 using 50 mM phosphate buffer. For

in vitro duodenal digestion the 120 min gastric digest was used as

starting material using trypsin from bovine pancreas (Sigma) at a

ratio of enzyme: substrate 1:400 (w/w), at 37uC taking aliquots at

0, 60 and 120 min for SDS-PAGE analysis as described above.

Albumin was used as positive (with enzyme) and negative (without

enzyme) controls in both gastric and duodenal digestions.

Binding Assay to Rat Intestinal Tissue
PcPV2 binding to epithelial cells of the small intestine (in vivo

test) was performed using male Wistar rats from the Animal

Facility Colony of the Faculty of Medical Sciences, UNLP. Rats

came from a colony started with the strain WKAHlHok (Hokkaido

University, Japan). Animals weighing 15062 g were housed in

cages with a 12:12 l:d cycle at 2261uC and 45–60% relative

humidity. Rats (n = 6) were orally administered 100 ml of egg

extract (8 mg of total protein) in 50 mM phosphate buffer (pH 7.4)

on a daily basis, and a control group was administered the same

amount of buffer without the toxin. After 4 days, they were

euthanized by CO2 inhalation in a closed chamber. CO2 was

slowly piped into the chamber, so that the animals were exposed to

a gradually rising gas concentration to ameliorate suffering. The

first part of small intestine was cut, washed 6 times with PBS to

remove food and non-bound protein, and fixed in 4% phosphate

buffered formalin (pH 7.0) for histological examination. Cylindri-

cal tissue samples of the small intestine were post fixed in

formaldehyde and embedded in paraffin wax. Five tissue sections

from each animal were assayed by immunohistochemistry (IHC).

Tissue sections from control and treated animals were incubated

with rabbit polyclonal anti-PcPV2 serum (1:100 dilution) previ-

ously prepared [14], and revealed with the Envision plus kit (Dako,

Carpinteria, CA, USA). Positively immunostained regions showed

a golden dark brown color using 3,39-diaminobenzidine tetra-

hydrochloride (DAB) and H2O2 reaction substrates. All sections

were counterstained with Maeyer hematoxylin.

Binding Assay to Intestinal Epithelial Cells in Culture
PcPV2 was labeled with the Alexa Fluor 488 Protein Labeling

Kit (Life Technologies-Molecular Probes) according to manufac-

turer’s instructions. Labeled bovine serum albumin (BSA) was

employed as a negative control.

Human colorectal adenocarcinoma cells (Caco-2) obtained from

the ATCC (Cedarlane Inc., Burlington, ON) were cultured in

Dulbecco’s modified Eagle’s medium (DMEM) (4.5 g/liter D-

glucose) supplemented with 10% newborn calf serum, penicillin/

streptomycin, amino acids and vitamins (Life Technologies-

Invitrogen). Cells were cultured at 37uC in a humidified

atmosphere of 5% CO2. Culture medium was replaced every 2

days and subcultured by trypsination when 95% confluent. Cell

viability of every preparation exceeded 90% as determined by

trypan blue exclusion, counting the stained cells.

For the PcPV2 treatment, harvested cells were seeded on 24-

well plates (Orange Scientific, Belgium), at approximately 80%

confluence in controls at the end of a 2-day experiment. The

culture medium was replaced daily and after 48 h incubation, cells

were washed twice with PBS and incubated with an Alexa488-

labeled PcPV2 preparation in PBS (400 mg/ml) for 1 h at 37uC.

Cells were observed in an inverted fluorescence microscope

(Olympus IX-71). Negative control wells were incubated with an

Alexa488-labeled BSA in PBS (400 mg/ml). All protein prepara-

tions used in cell culture assays were sterilized by filtration

(0.22 mm).

Hemagglutinating and Hemolytic Activity
Rabbit erythrocytes were obtained from the animal facilities at

University of La Plata (UNLP). Blood samples were obtained by

venous puncture and collected in sterile Elsever’s solution

(100 mM glucose, 20 mM NaCl, and 30 mM sodium citrate,

pH 7.2) (Sigma-Aldrich, St. Louis, MO, USA). Prior to use,

erythrocytes were washed by centrifugation at 15006g for 10 min

in 20 mM phosphate buffer, 150 mM NaCl, pH = 7.4. This

procedure was repeated several times until the supernatant

remained clear. Hemagglutinating activity was assayed in micro-

titer U plates (Greiner Bio One, Germany) by incubating a two-

fold serial dilution of PcPV2 (1.6 g/L) with 1% erythrocyte

suspension in phosphate buffer at 37uC for 2 h. Results were

expressed as the inverse of the last dilution showing visible

hemagglutinating activity at naked eye [32]. Hemolytic activity

was followed measuring the release of hemoglobin spectrophoto-

metrically at 412 nm in the supernatant of the wells [33].
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Rat and Mice Oral Immunization Analysis
To check if the toxin was able to reach predator’s circulatory

system, rats (n = 5) were subjected to an oral, sublethal adminis-

tration of egg extract containing 3 mg protein in PBS (approx.

400 mg PcPV2), with a second dose of 3 mg after 19 days.

Adjuvants were not used. Serum was harvested 4 days later and

kept at 270uC until used. Spots of 1 mg PcPV2 toxin were

pipetted onto nitrocellulose membranes (Amersham). After block-

ing for 1 h at 37uC with 5% (w/v) non-fat dry milk in PBS–

Tween, the membranes were incubated overnight at 4uC with

anti-sera dilutions in 1% (w/v) non-fat dry milk in PBS–Tween

from control and PcPV2 treated animals. The specificity of rat

serum towards PcPV2 was detected using an anti-rat IgG

horseradish peroxidase conjugate (Bio Rad Laboratories, Inc.).

Immunoreactivity was visualized by electrochemiluminescence.

In another study, 2062 g BALBc female mice (n = 12) were

given an oral, sublethal dose containing 3 mg of egg extract in

PBS, with a second dose of 3 mg protein in PBS after 7 days. No

adjuvants were employed. After 14 days, control (n = 6,) and

treated (n = 6) mice were injected i.p. with 40 mg of purified

PcPV2, a dose well above its reported LD50, 96 h of 0.25 mg/kg,

i.p. (5 mg/mice) [17]. Control and treated mice were observed

every 6–8 h for 96 h and behavioural changes monitored. As soon

as flaccid paralysis of the outstretched rear limbs appeared or their

condition severely deteriorated, animals were recorded as ‘‘dead’’

and euthanized by CO2 inhalation as described above.

Statistical Analysis
Data were analyzed by one way analysis of variance (ANOVA).

When p values were ,0.05, the significance between groups was

estimated by Tukey’s test.

Results

PcPV2 Primary Structure Features
Cloning of the full-length cDNA of the two PcPV2 subunits

allowed the primary structure analysis. When compared with

sequences available in GenBank, the PcPV2-31 and PcPV2-67

sequences displayed the highest identity with tachylectin-1 from

the lancelet Branchiostoma belcheri (PcPV2-31) and a MACPF from

the Mediterranean mussel Mytilus galloprovincialis (PcPV2-67) (E-

values of 1 e220 and 3 e288, respectively).

The translated PcPV2-31 protein consists of 285 residues with a

putative signal sequence of 29 residues. The cleavage site,

predicted to be at position 29–30, is coincident with N-terminal

sequencing of the protein by Edman degradation [14], which

confirms that the first residue of the small/light subunit is Phe

(Figure 1A). After removing the signal peptide, the mature protein

has a calculated molecular mass of 28.2 kDa and an estimated

isoelectric point (pI) of 8.69, while 2-dimensional electrophoresis

(2-DE) analysis showed the presence of several isoforms of different

pI ranging from ,4.7–9, [Figure S1]. The protein displays a single

N-link glycosylation site (NXS/T) predicted at [N-99] and a

protein kinase C phosphorylation site predicted at [S-135]. The

nucleotide sequence reported here was deposited in the GenBank

data bank with accession No JX155862.

The PcPV2-67 subunit contained 565 translated residues and

the first 25 amino acid residues encoded a putative leader

sequence, with a predicted cleavage site between position 25 and

26 (Figure 1B). This result is consistent with the previously

reported PcPV2-67 N-terminal sequence [14] confirming that the

first amino acid of the mature protein is Ala. After removing the

signal peptide, the theoretical molecular mass of the mature

subunit was 59.5 kDa and the pI was 5.31, similar to the

experimental pIs determined by 2-DE (pI ,5.2, Figure S1). The

nucleotide sequence was deposited in the GenBank data bank with

accession No. JX155861.

The heavy chain has one predicted N- glycosylation site (NXS/

T) at [N-166] that according to Net-Glyc 1.0 has a low probablity

of being glycosylated. Regarding phosphorylation, seven potential

protein kinase C phosphorylation sites at [T-107], [T-204], [T-

271], [S-305], [T-314], [T-315], and [T-530] were predicted

(Figure 1B).

Pfam software analysis indicated that PcPV2-67 is a member of

the MACPF superfamily cl02616. (pfam score 1e-21). Analysis

also showed the presence of a MACPF domain between residues

131 and 327. The apple snail protein showed the conserved

signature motif, Y/W-G-T/S-H-F/Y-X6-GG, included in all

members of the MACPF family (Figure 1B and Figure S2). This

motif is more conserved than that of M. galloprovincialis MACPF,

where Y/W is mutated to F (Figure S2). All cysteine residues and

two GG sites (213–214, 276–277) that are assumed to be

important for MACPFs membrane binding abilities are also

conserved in PcPV2-67 which also shares with M. galloprovincialis,

C-terminal region rich in C. Like M. galloprovincialis, the P.

canaliculata MACPF does not have a calcium-dependent mem-

brane-binding (C2) domain, although it has one of the important

residues of that domain (T395) [34] (Figure S2).

Phylogenetic Analysis
BLASTx analysis using the NCBI database revealed that the

heavy and light subunits matched to 10 sequences from 6 species

and 15 sequences from 3 species (1e-5), respectively. These

sequences were further subjected to phylogenetic analysis

(Figure 2). The sequences that resemble the PcPV2-67 subunit

came from highly divergent taxa ranging from the protist,

Tetrahymena thermophila to the zebrafish Danio rerio, indicating

independent origins of these MACPF proteins. The sequences

that resemble the PcPV2-31 subunit fall into a clade with several

lancelet sequences, which may indicate an early duplication of the

tachylectin-like chain during the divergence of chordates.

Structural Stability Against pH
As gastrointestinal pH extremes are one of the first stresses that

PcPV2 must face when ingested, we studied its behavior in a wide

pH range. The native PcPV2 gyration radius, Rg, at different pH

values, determined by small angle X-ray scattering (SAXS), is

shown in Figure 3A where a slight decrease at pH .8.0 can be

observed. Below the experimentally determined pI value (,6.2) a

steady increase in Rg is observed possibly due to unspecific

aggregation of PcPV2. A similar tendency can be seen in the pH

evolution of the PDDF [Figure S3]. The steady decrease in Rg

under alkaline pH conditions can be attributed to subunit

disassembly. The Kratky plots also did not show a dramatic loss

of globularity even at both pH extremes (Figure 3B).

The tryptophan fluorescence spectra between pH values of 2.0

and 12.0 (Figure 3C, D) did not show a shift of its emission

maxima except for a slight red shift at pH 12.0. An intensity

decrease was evident at pH .8.0, indicative of the exposure of

some of the tryptophan residues to the aqueous environment.

Together with the pH behaviour of Rg, we could conclude that the

structure of PcPV2 is rather stable, and that only extreme pH

conditions could induce structural changes at the quaternary level.

Simulated Gastrointestinal Digestion of PcPV2
In addition to extreme pH conditions, digestion by proteases is

another stress that PcPV2 may endure to withstand the

gastrointestinal tract of a predator. This hypothesis was tested
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both in vitro and in vivo (see below). By using a physiologically

relevant digestion system, we found that PcPV2 was resistant to

simulated gastric digestion for 2 h, as shown by SDS-PAGE

(Figure 4A). After this simulated gastric digestion, the pH was

adjusted to duodenal conditions, trypsin was added, and PcPV2

simulated intestinal digestion was performed for another 2 h.

Again, PcPV2 showed no significant degradation (Figure 4B).

Binding to the Intestinal Microvilli and Caco-2 Cells
Knowing that the PcPV2 toxin was able to withstand simulated

gastrointestinal environmental conditions and that the light

subunit has a putative carbohydrate binding domain (lectin-like

structure), interactions between PcPV2 and the intestinal cell

surface were screened using rat intestinal tissue and an enterocyte-

like cell line. Immunlabeling with anti-PcPV2 antibodies showed

positive reactions on the surface of villi in intestinal sections

(Figure 5A,B,C,D), indicating that the toxin was specifically bound

to mature enterocytes.

Protein localization studies using Caco-2 cells showed the

presence of fluorescently labeled PcPV2 on the plasma membrane

(Figure 5E,F). To rule out the possibility of nonspecific protein-cell

interactions, Caco-2 cells were incubated with Alexa488-labeled

BSA (Figure 5E), which showed a near absence of binding.

Assuming that BSA binding represents the maximum nonspecific

interaction between Caco-2 and proteins [35], this assay indicates

that PcPV2 binding to cells by non-specific protein-cell interac-

tions is extremely low.

Hemagglutinating-hemolytic Activity of PcPV2
Taking into account the sequence homology of PcPV2-31 light

subunit with tachylectins and the toxin binding capacity towards

intestinal and Caco-2 cell membranes, we tested for hemaggluti-

nating activity against rabbit erythrocytes. Positive reaction was

observed above o.8 g/L of protein concentration or higher while

no hemolytic activity could be detected up to 1.6 g/L of the toxin.

(Figure 5G).

Effect of Oral Immunization on Rats
For the neurotoxin to exert its effect, it is not only necessary that

it reaches the intestine in a native conformation and that it

interacts with epithelia but it also has to traverse the intestinal

barrier and reach general circulation. To address this last issue, an

indirect approach was employed evaluating the immune stimulat-

ing potential of ingested PcPV2 in Wistar rats that had been given

oral sublethal doses of egg extracts as a source of PcPV2. Rats

became immunized towards the toxin. Sera of immunized rats

were positive in a dot blot performed using purified PcPV2 as

antigen (Figure 5H). Furthermore, in another experiment, all mice

subjected to an oral immunization protocol, survived an i.p

injection of PcPV2 with a dose 8 times higher than its reported

LD50, 96 h, without any altered clinical signs. On the other hand,

all control animals died in less than 40 h, displaying the previously

described symptomatology [17] (Figure 5I). These experiments

using two different mammal species evidenced circulating

antibody response to sublethal oral immunization with PcPV2.

Discussion

1. PcPV2 Structure: A Novel Combination of MACPF and
Tachylectin-like Neurotoxin

Several lectins have been reported in snail eggs, [36]. Lectin-like

factors in P. canaliculata eggs were reported in the 1970s [37]. In the

present work, we have identified a lectin-like domain in the egg

neurotoxin PcPV2. The amino acid sequence deduced from full-

length PcPV2 cDNA indicates that the PcPV2-31subunit belongs

to a group of carbohydrate-binding proteins, the tachylectins,

Figure 1. Deduced aminoacid sequences of light (A) and heavy (B) PcPV2 subunits. The putative signal sequences are in italics, MACPF
domain is marked in red and MACPF signature is boxed. Potential phosphorylation sites are underlined, and potential glycosylation sites are
underlined and in bold.
doi:10.1371/journal.pone.0063782.g001
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which are members of the F-type lectin family [36]. Tachylectins

have been reported in the tissues of several invertebrates and some

vertebrates [38], including a mollusk (Mytilus galloprovinciallis) [39].

In most cases, tachylectins seem to play a role in the innate

immune system, including bacterial phagocytosis [40]. In addition,

there are a few reports of tachylectins with bacteria-binding

abilities in vertebrate [40] and invertebrate [41] eggs. Unlike these

reported functions, the PcPV2 tachylectin-like domain might play

a different role in apple snails (see below). This study provides the

first molecular cloning of a tachylectin family member in

gastropod mollusks.

The PcPV2-31 subunit is attached by a disulfide bond [18] to

the PcPV2-67 subunit, which has high sequence identity with

MACPF superfamily, one of the largest groups of pore forming

molecules in both vertebrates and invertebrates [42,43] and, like

tachylectins, primarily involved in the immune response. In

addition, some MACPF members play other roles such as neural

migration, tumor suppression [34], or as a lethal toxin [44].

MACPF superfamily members have been described in abalone

gastropods of the genus Haliotis [45,46], thought to be involved in

the immune system. In particular, PcPV2-67 amino acid sequence

showed the greatest similarity to a pore-forming protein involved

in the immune defense and development of another mollusk, the

bivalve M. galloprovincialis [34] but, unlike the mussel MACPF it is

assembled into a neurotoxic lectin-pore-forming heterodimer. To

our knowledge this is the first study reporting a MACPF domain

with neurotoxic activity [17]. Remarkably, PcPV2 does not share

homology with other gastropod toxins namely the echotoxin-2, a

pore-forming hemolysin from the triton Cymatium parthenopeum [47],

the neurotoxin from the Crassispiridae Crassispira cerithina [48] or

the neurotoxic conotoxins from the family Conidae [49].

A literature survey of lectins covalently attached to toxins

showed that they are restricted to bacteria and plants, known as

AB toxins [50]. In particular, there are very few AB toxins with a

heterodimeric structure, namely plant type-2 RIPs (ribosome-

inactivating proteins) and botulinum neurotoxins. Similar to

PcPV2, these bacterial and plant toxins may enter the body

through ingestion. These toxins have a carbohydrate-binding

Figure 2. Bayesian phylogenetic tree of light (A) and heavy (B) PcPV2 subunits of Pomacea canaliculata. Numbers above branches
represent Bayesian posterior probabilities of finding a given clade. Scale bar, 0.2 nucleotide substitution.
doi:10.1371/journal.pone.0063782.g002
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module (CBM) linked by a disulfide bridge to a toxic subunit as a

heterodimer, and it is believed that the unifying feature of the

CBMs in toxins is their function in delivering the toxic component

of the protein to cell surfaces via a carbohydrate receptor–CBM

interaction [51]. We explored whether this mechanism was

possible in PcPV2 by analyzing if the toxin was structurally stable

in a gastrointestinal environment and if it was able to bind to

intestinal cells; both aspects are critical for toxicity (see next

section).

2. PcPV2 Withstands Gastrointestinal Digestion, Binds to
Intestinal Mucosa and would be able to Traverse the
Intestinal Barrier

The PcPV2 neurotoxin displays structural stability in a pH

range that falls within that of most vertebrate and invertebrate

digestive tract fluids [52,53]. Further, treatment of PcPV2 with

gastrointestinal proteases, at biologically relevant concentrations

revealed it is resistant, but not impervious, to pepsin and trypsin.

In a physiological context, however, intestinal digestion would be

even more limited since PcPV2 would be ingested together with

large amounts of a trypsin inhibitor [13]. In addition, the capacity

of PcPV2 to bind to intestinal cells is also indicative that it reaches

the gut in an active conformation. The resistance gastrointestinal

pH and digestive proteases are features that contribute to the

Figure 3. Effect of pH on PcPV2 structure as determined by SAXS (A, B) and Trp fluorescence (C, D). A: PcPV2 radius of giration Rg as a
function of pH. B: Kratky plot of data depicted on Figure 2A that highlights shape variations of PcPV2. C: Trp fluorescence emission spectra at
different pH values. D: Mean wavelength of the spectrum (closed circles) and maximum intensity (open circles). Mean wavelength refers to S(l F(l))/
S F(l) where F(l) corresponds to the fluorescence intensity for a given l. Error bars in A fall within the size of the points; error bars in B and C never
exceeded 1% of the value; error bars in D are 2 nm for wavelengths and 10% for signal intensity.
doi:10.1371/journal.pone.0063782.g003

Figure 4. In vitro digestibility analyzed by SDS-PAGGE. A: Gastric
digestion. Lanes 1–3, 0, 60 and 120 min of incubation, lanes 4 and 5
positive and negative control, respectively. B: Duodenal digestion.
Lanes 1–3, 0, 30 and 120 min incubation; lanes 4 and 5, positive and
negative controls, respectively. Positive control: Albumin with enzyme,
negative control: albumin without enzyme.
doi:10.1371/journal.pone.0063782.g004
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defensive potential of many plant seed defensive proteins [13], like

RIP dichain toxic lectins. [31,54,55].

Toxins that enter the predator’s body by ingestion have first to

bind to epithelial cells and then be transported into the general

circulation. The neurotoxin showed hemaglutinating activity,

indicating a functional lectin, together with a specific interaction

with both duodenal epithelia and Caco-2 cells cell surfaces,

suggesting the binding of the lectin moiety to glycoconjugates on

enterocyte surfaces. The lack of hemolytic nor Caco2 or rat

intestinal cell disruption activity would suggest that the MACPF

domain is not active. On the basis of (1) the structural and

functional similarities with plant and bacterial AB toxic lectins, (2)

the thoroughly studied delivery role the lectin moiety always plays

in plant and bacterial AB toxins and (3) the binding of PcPV2 to

enterocytes without cell disruption, we can suggest that PcPV2

structure may be indicative of a delivery system for the MACPF

toward the target cell surfaces. at the end of the journey, disrupting

target neuronal membranes. (Figure 6 summarizes the similarities

between these toxins). Future research will look at this matter.

Though we have no information on the mechanism by which

PcPV2 would traverse the intestinal barrier, we observed that it

was able to orally stimulate the immune system in rats and mice at

concentrations much lower than the amount present in an egg

clutch. The humoral response elicited resembles the reaction of

mice and rats to numerous plant dietary lectins [56–58].

3. Ecological and Evolutionary Implications
Escaping predation is essential to survival for most animals and

has resulted in the evolution of a great diversity of predator

avoidance tactics. This report brings insights into the nature of

apple snail egg defenses that suggest that the acquisition of this

multifunctional storage protein may have conferred a survival

advantage to the eggs, contributing to the virtual absence of

predators.

The selection pressure exerted by predators and by the

environment on apple snail eggs probably led to the acquisition

of new features in their storage proteins. Data suggest they have

co-opted into new functions, notably in embryo defenses against

predation. In fact, the combination of two unrelated polypeptides

resulted in a novel protein with neurotoxic properties, a feature

not concurring with the roles classically ascribed to either animal

lectins [36] or perforins [42]. Comparative analyses of the

evolutionary origin of PcPV2 subunits indicate that both chains

evolved separately, with an independent origin for MACPF-

Figure 5. Binding to cells and presence in circulation of PcPV2. A,B,C,D: Immunolocalization of PcPV2 at the brush border of rat enterocytes.
Rats were fed for 4 days on a diet without (A, B) or with (C, D) egg extracts containing the equivalent of 400 mg PcPV2. Arrows indicate anti-PcPV2
antibody binding to glycocalix. A, C: Bar 100 mm, B, D: Bar 15 mm. E, F: PcPV2 binding to intestinal cells in culture. Fluorescence microscopy of Caco-2
cells incubated for 1 h with Alexa-488 labeled BSA as control (E) or PcPV2 (F). Bar 25 mm. Arrows indicate specific toxin binding to cell surface. G:
Hemagglutinating and hemolytic activity. Wells 1–5 two-fold serial dilution of 1.6 mg/ml PcPV2; 6 Control with buffer. H, I: Immunization of rodents by
sublethal oral administration of PcPV2. Dot blot analysis of sera from rats orally immunized with PcPV2 (G). Strong positive immunoreactivity can be
seen towards PcPV2 antigen. Dots a-c, sera from control or immunized rat diluted 1:10, 1:100, 1:1000, respectively. PcPV2 was blotted onto
nitrocellulose (1 mg in 5 ml PBS/spot). H. Effect of lethal i.p. dosis of PcPV2 on control and immunized mice survival. Graph I does not include error bars
because all of the 6 immunized animals survived the intraperitoneal injection of a lethal concentration of the toxin, while all of the 6 control animals
died after the injection.
doi:10.1371/journal.pone.0063782.g005

Figure 6. Similarities and differences in structure and function in dichain toxic lectins from bacteria, plants and apple snails.
Question marks indicate unknown steps.
doi:10.1371/journal.pone.0063782.g006
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related proteins, and an early duplication for the tachylectin-like

chain. Although there are reports of tachylectins and perforins in

marine molluscs [39,45] and this study reports tachylectin

presence in Gastropoda, more comparative work is needed to

identify when the unique combination appeared.

Apple snail egg defenses may be one of the few examples in

animal chemical ecology highlighting the survival advantage of the

acquisition of an antinutritive/neurotoxic defense which is an egg

storage protein: By genetically encoding in the same complex these

multifunctional proteins, synthesis is more cost-effective because

females do not need to ingest toxic preys to endow eggs with

chemical defenses. In this way P. canaliculata is able to circumvent

allocation costs to defensive compounds, which may lower its

relative fitness, by an efficient biochemical defense whose

‘‘leftovers’’ are nutritious proteins consumed by its embryos and

hatchlings. This novel system might become useful to study the

cost-benefit paradigm, central to most of functional biology [8,13].

Finally, it is worth recalling that eggs and seeds are resting

targets and, therefore, particularly vulnerable. In this regard, it is

interesting to note that apple snail eggs and plant seed may have

both developed (passive) biochemical defense systems to protect

their embryos as an adaptation to predation, including the

preferential accumulation of toxic lectins [54].

Conclusions
This is, to our knowledge, the first evidence of a protein

combining a tachylectin and MACPF subunits; two ancient and

widely distributed proteins. Unlike their individual roles in the

immune defense, joint together they resulted in a neurotoxin that

might be involved in the biochemical defenses against predators.

This is also the first description in animals of a defense system

employed by plants against predators. It suggests unforeseen

similarities between poisonous seeds and poisonous eggs, indicat-

ing that protection mechanisms thought to be confined to plants

are also part of an animal’s defensive repertoire.

This study also provides evidence of the first steps of the

neurotoxin’s journey towards its target, indicating that it is capable

of withstanding the gastrointestinal tract, interact with epithelial

cells and reach circulation.

The discovery brings insights into the nature of apple snail egg

defenses that suggest that the acquisition of this multifunctional

storage protein may have conferred a survival advantage to the

eggs, contributing to the virtual absence of predators, setting the

stage for further investigations of the evolution of defensive

strategies against predation.

Supporting Information

Figure S1 2-DE analysis of native (A) and dissociated (B)
PcPV2.

(TIF)

Figure S2 Alignment between PcPV2-67 and the se-
quences of the five more related MACPF members from
Figure 2. Light red box indicates MACPF signature; black box,

MACPF domain.

(TIF)

Figure S3 Pair Distance Distribution Function (PDDF)
of PcPV2 obtained from SAXS data at different pH
values. The PDDF is the probability of finding a given point-to-

point distance within the boundaries of the molecule. The vertical

lines indicate the mean Paired Distance obtained from the

graphic.

(TIF)
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