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Abstract

A three-dimensional boundary element method (BEM) implementation of the interaction integral methodology for

the numerical analysis of mixed-mode three-dimensional cracks is presented in this paper. The interaction integral is

evaluated from a domain representation naturally compatible with the BEM, since stresses, strains and derivatives

of displacements at internal points can be evaluated using their appropriate boundary integral equations. Special

emphasis is put in the selection of the auxiliary function that represents the virtual crack advance in the domain integral.

This is found to be a key feature to obtain reliable results at the intersection of crack fronts with free surfaces. Several

examples are analysed to demonstrate the efficiency and accuracy of the implementation.

� 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Evaluation of fracture parameters is usually the purpose of carrying out a numerical model of a crack

problem. Two-dimensional analyses are usually sufficient to characterize through-thickness cracks. How-

ever, part through cracks, which are the most common type of crack defect found in service conditions,

have an inherently three-dimensional character. The solution to three-dimensional crack problems can
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be obtained by such techniques us the finite element method (FEM) and the boundary element method

(BEM).

When the basic assumption of linear elastic fracture mechanics is adopted, the stress intensity factors

can be evaluated in FEM and BEM by a variety of techniques, such us the extrapolation of displace-

ments or stresses, special crack tip elements, the virtual crack extension method, the subtraction of sin-
gularity technique, the alternating method and J-integral methods [1,2]. Techniques based on the

extrapolation of displacements an stresses are easy to implement, but they present the drawback that

a very high level of mesh refinement is required for its accurate evaluation [2], what makes them com-

putationally expensive. Similarly, alternating and virtual crack extension methods are also computation-

ally expensive, as they require of multiple computer runs to solve the problem. On the other hand,

J-integral methods, being an energy approach, eliminate the need to solve local crack tip fields accu-

rately, since if integration domains are defined over a relatively large portion of the mesh, accurate mod-

elling of the crack tip is unnecessary because the contribution to J of the crack tip fields is not significant.
The J-integral as devised by Rice [3] characterizes the crack driving force for two-dimensional problems,

therefore for general three-dimensional cases involving cracks of arbitrary shape an alternative form for J

is needed. Three basic schemes have evolved for the numerical computation of the J-integral in three

dimensions: virtual crack extension methods [4,5], generalization of Rice�s contour integral [6] and do-
main integral methods [7–9].

The BEM is ideally suited for the evaluation of path independent integrals, since the required stresses,

strains and derivatives of displacements at internal points can be directly obtained from their boundary

integral representations. It also has been shown that BEM produces more accurate stresses and strains
at internal points when compared with other numerical techniques, and therefore better results can be

achieved. The application of the BEM for the evaluation of J-integral in three-dimensional problems have

been the reported by Rigby and Aliabadi [10], Huber and Kuhn [11], Cisilino et al. [12,13] and dell�Erba and
Aliabadi [14]. Although the bulk of fracture mechanics literature is concerned with the first mode of crack

deformation, there are practical engineering problems that involve mixed-mode conditions. Of the above

cited papers, the works by Rigby [10] and dell�Erba [14] proposed methods for decoupling the J-integral

for mixed-mode cracks in which the symmetric and antisymmetric parts of the displacement, strain and

stress fields are separated.
Among the available methods for calculating fracture parameters, the energy domain integral (EDI) has

shown well suited for three-dimensional BEM analysis [12,13]. The EDI is versatile, efficient and relatively

simple to implement numerically. To develop the domain integral the EDI incorporates an auxiliary func-

tion q, which can be interpreted as a virtual crack front advance. This makes the EDI similar to the virtual

crack extension technique [15,16] but has the advantage that only one computer run is necessary to evaluate

the point wise energy release rate along the complete crack front. On the other hand, the interaction orM1-

integral methodology originally proposed by Chen and Shield [17] has emerged as an efficient methodology

for decoupling the J-integral for mixed-mode cracks. The M1-integral methodology is based on the super-
position of two equilibrium states, given by the actual problem and a set of auxiliary known solutions. The

M1-integral methodology has been implemented using BEM for two-dimensional cracks by Miyazaki et al.

[18].

This work presents a BEM domain formulation of the M1-integral for the computation of mixed-

mode stress intensity factors along three-dimensional crack fronts. The domain representation of the

interaction integral is presented in a straightforward approach, together with the details of its BEM

implementation. Special emphasis is put in the appropriate selection of the auxiliary function q, which

was found to be a key feature to obtain reliable results at the intersection of crack fronts with free
surfaces. Several examples are analysed to demonstrate the efficiency and accuracy of the imple-

mentation.
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2. The energy domain integral

Consider a three-dimensional crack front with a continuously turning tangent as depicted in Fig. 1(a).

Define a local coordinate system x* at position g, where the crack energy release rate is evaluated, given
by x�1 normal to the crack front, x

�
2 normal to the crack plane, and x

�
3 tangent to the crack front.

Following Natha and Moran [16], the general crack-tip contour integral along three-dimensional crack

front takes the form
Fig. 1
IðgÞ ¼ lim
C!0

dlðgÞ
Z
CðgÞ

w � dki � r�
iju

�
j,k

� �
ni dC, ð1Þ
where w is the strain energy density, r�
ij and u

�
j,k are Cartesian components of stress and displacement deriv-

atives expressed in the local system x*, dl(g) is the local crack extension, ni is the unit vector normal to the

contour C (which lies in the x�1 � x�2 plane), and dC(g) is the differential of the arc length C (see Fig. 1(a)). It

is worth noting that, although Eq. (1) comes from two-dimensional analysis it applies for three-dimensional

case, as in the limit as C ! 0, plain strain conditions prevail so that the three-dimensional fields approach

the plane problem.
In order to derive the equivalent domain representation of Eq. (1), we consider a small segment Lc of the

crack front that lies in the local x�1 � x�3 plane as shown in Fig. 1(b). Next we assume that the segment under-
goes a virtual crack advance in the plane of the crack, and we define the magnitude of the advance at each

point g as Da(g). We note that Da(g) varies continuously along dg and vanishes at each end of the segment.
Now let
I ¼
Z
Lc

IðgÞDaðgÞdg, ð2Þ
where I(g) is the integral defined in Eq. (1). When I(g) belongs to the point-wise energy release rate, I gives

the total energy released when the finite segment Lc undergoes the virtual crack advance.
. (a) Definition of the local orthogonal Cartesian coordinates at point g on the crack front. (b) Virtual crack front advance.



Fig. 2. Tubular domain surrounding a segment of the crack front.
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The appropriate domain form of the pointwise crack-tip contour integral can be obtained from Eq. (2)

by considering a tubular domain V surrounding the crack segment as shown in Fig. 2. As shown in the fig-

ure, the surface St is formed by translating the contour C along the segment Lc, and So stands for the outer

surface of V including the ends. Next an auxiliary function q is introduced, which is sufficiently smooth in V

and it is defined on the surfaces of V as follows:
q ¼
Da � dlðgÞ on St,

0 on So:

�
ð3Þ
Finally, in the limit as the tubular surface St is shrunk onto the crack segment Lc; in the absence of crack
face tractions, we obtain the domain integral
I ¼
Z
V

r�
iju

�
j,k � wdki

� �
q,i dV : ð4Þ
In the evaluation of the energy release rate, in the absence of body forces the integral given by Eq. (4) re-

duces to the domain representation of the familiar J-integral. A simple relationship between J(g) and the
pointwise crack-tip integral I(g) can be obtained if it is assumed that I(g) is constant along the segment
Lc. It follows directly from Eq. (2) that
JðgÞ ¼ IR
Lc

DaðgÞdg : ð5Þ
3. The interaction integral

In this section, the interaction or M1-integral methodology for decoupling three-dimensional mixed-

mode stress intensity factors is presented. The M1-integral is based on the principle of superposition. Let

us consider two equilibrium states with field variables denoted by the superscripts (1) and (2), respectively.

Superposition of the two equilibrium states leads to another one, (1 + 2). Then the stress intensity factors

Kð1þ2Þ
j can be written as
Kð1þ2Þ
j ¼ Kð1Þ

j þ Kð2Þ
j ðj ¼ I,II,IIIÞ: ð6Þ



A.P. Cisilino, J. Ortiz / Comput. Methods Appl. Mech. Engrg. 194 (2005) 935–956 939
The stress intensity factors can be related to the J-integral in a plain strain condition as follows:
J ¼ J I þ J II þ J III ¼
1

E
ðK2I þ K2IIÞ þ

K2III
2l
, ð7Þ
where E is the Young�s and l is the shear modulus. Using Eq. (7), the J-integral for the superimposed state
(1 + 2) can be written as
J ð1þ2Þ ¼ 1
E

Kð1þ2Þ
I

� �2
þ Kð1þ2Þ

II

� �2� �
þ

Kð1þ2Þ
III

� �2
2l

¼ J ð1Þ þ J ð2Þ þ 2
E
ðKð1Þ

I K
ð2Þ
I þKð1Þ

II K
ð2Þ
II Þ þ

Kð1Þ
IIIK

ð2Þ
III

l
: ð8Þ
Then, the M1-integral is defined as
2

E
ðKð1Þ

I K
ð2Þ
I þ Kð1Þ

II K
ð2Þ
II Þ þ

Kð1Þ
IIIK

ð2Þ
III

l
¼ J ð1þ2Þ � J ð1Þ � J ð2Þ ¼ M1: ð9Þ
Using Eq. (4) a domain representation of the M1-integral can be obtained as follows:
M1 ¼
Z
V

r�ð1Þ
ij u�ð2Þj,k þ r�ð2Þ

ij u�ð1Þj,k � r�ð1Þ
ij e�ð2Þij dki

� �
qk,i dV : ð10Þ
For the decoupling the mixed-mode stress intensity factors the problem under consideration is selected as

equilibrium state (1), so that the field variables r�ð1Þ
ij and u�ð1Þj,k will be obtained in this work from the results

of a boundary element analysis. On the other hand, the well-known plain-strain solutions for the asymp-

totic crack-tip fields with prescribed stress intensity factors KI, KII and KIII, are selected as the equilibrium

state (2). Then the field variables related with the equilibrium state (2), r�ð2Þ
ij , u

�ð2Þ
j,k and e�ð2Þij are calculated

from these asymptotic solutions. Finally the M1-integral defined in Eq. (10) can be calculated, using the

field variables related with the equilibrium states (1) and (2). By using three sets of asymptotic solutions,

ðKð2Þ
I ¼ 1,Kð2Þ

II ¼ 0,Kð2Þ
III ¼ 0Þ, ðK

ð2Þ
I ¼ 0,Kð2Þ

II ¼ 1,Kð2Þ
III ¼ 0Þ and ðKð2Þ

I ¼ 0,Kð2Þ
II ¼ 0,Kð2Þ

III ¼ 1Þ, it is possible to
obtain the stress intensity factor solutions for individual modes from Eq. (9) as follows:
Kð1Þ
I ¼ Ma

1 � E
2

Kð1Þ
II ¼ Mb

1 � E
2

Kð1Þ
III ¼ Mc

1 � l, ð11Þ
where Ma
1, M

b
1 and M

c
1 are the values of the M1-integral calculated using the three sets of asymptotic

solutions.

It is important to point out that the present implementation of theM1-integral approach is only valid for

straight crack fronts. For the application of the M1-integral along curved crack fronts extra terms need to

be included in Eq. (10) [19]. It is also worth noting that since the M1-integral is based upon the assumption

that the near-crack tip fields asymptote to the plane strain fields, it is not strictly applicable at the intersec-

tion of the crack front with a free surface. It turns that out that at the intersection of the crack front and a

free surface, the singularity is more severe than the usual 1=
ffiffi
r

p
singularity. The performance of the pro-

posed methodology at the intersection of the crack front with a free surface is extensively discussed in

the following sections of the paper.
4. The dual boundary element method and modeling considerations

Although the conventional BEM is efficient in carrying out general stress analysis, it is not possible to

use it directly for general mixed mode crack problems. The coincidence of the crack surfaces make the
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collocation point on two surfaces identical, leading to a mathematical generation [1]. Among the special

techniques devised to overcome this difficulty the dual boundary element method (DBEM) is the more

general and versatile. In what follows the DBEM is briefly presented following Cisilino et al. [20,21].

The reader is referred to the cited references for further details.

The dual boundary integral equations on which the DBEM is based are the displacement and the trac-
tion integral equations. Considering a body with domain X(X) surrounded by a boundary C(x), the dis-
placement boundary integral equation relating the boundary displacements uj(x) with the boundary

tractions tj(x) can be written as,
Cijðx0Þuiðx0Þ þ
Z

C
T �
ijðx0,xÞujðxÞdCðxÞ ¼

Z
C
U �
ijðx0,xÞtjðxÞdCðxÞ, ð12Þ
where i, j denote Cartesian components; and T �
ijðx0,xÞ and U �

ijðx0,xÞ represent the Kelvin traction and dis-
placement fundamental solutions at a boundary point x due to a unit load placed at location x 0.

Assuming continuity of both strains and tractions at x 0 on a smooth boundary, the boundary trac-

tion integral equation is obtained by differentiating Eq. (12) and applying the material constitutive

relationships
1

2
tiðx0Þ þ niðx0Þ

Z
C
T �
ijkðx0,xÞukðxÞdCðxÞ ¼ niðx0Þ

Z
C
U �
ijkðx0,xÞtkðxÞdCðxÞ, ð13Þ
where ni(x
0) denotes the component of the outward unit normal to the boundary at x 0. The kernels T �

ijkðx0,xÞ
and U �

ijkðx0,xÞ contain derivatives of T �
ijðx0,xÞ and U �

ijðx0,xÞ together with elastic constants.
The above formulation can be rewritten in terms of the crack opening and sliding displacements to re-

duce the number of unknowns (see Aliabadi and Rooke [1]). Considering that the model boundary C can be
divided into three surfaces: C+ and C�, which are the two coincident crack surfaces, and Ce, which is the

remaining surfaces, the displacement and traction equations (12) and (13) can be re-written for the case

of traction-free crack surfaces using a simplified notation as
Cijðx0Þuiðx0Þ þ
Z

Ce
T �
ijuj dC þ

Z
Cþ
T �
ijDuj dC ¼

Z
Ce
U �
ijtj dC, ð14Þ

1

2
tiðx0Þ þ niðx0Þ

Z
Ce
T �
ijkuk dC þ niðx0Þ

Z
Cþ
T �
ijkDuk dC ¼ niðx0Þ

Z
Ce
U �
ijktk dC, ð15Þ
where the new unknowns are given by the relative displacement between the crack faces Duj ¼ uþj � u�j .
The general modelling strategy can be summarized as follows:

• only one of the crack surfaces is discretized and the traction boundary integral equation (15) is applied

for collocation. The discretization is done using discontinuous elements, which are used to fulfill the con-

tinuity requirements of the field variables for the existence of the traction equation,

• continuous elements are used over the remaining model boundary, except at the intersection of the crack

with the boundary surface. In this region edge discontinuous elements are employed to avoid common

nodes at the intersection. The displacement boundary integral equation (14) is used to collocate in both

cases.

This simple strategy is robust and allows the DBEM to effectively model general crack problems. Crack

tips, crack edge corners and crack kinks do not require special treatment, since they are not located at nodal

points where the collocation is carried out.
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5. Stresses, strains and displacement derivatives

5.1. Internal points

As it has been stated in Section 3, the application of the M1-integral methodology requires the stress and
displacement derivative fields r�

ij and u
�
j,k to be known within the integration volume V. Although this quan-

tities must be expressed in the local crack-front coordinate system x*, in this work, and for the sake of sim-

plicity, they will be firstly computed in the global system x and later transformed to the local system x*.

Bearing this into mind, and in order to integrate the computation of the M1-integral into the DBEM for-

mulation, derivatives of the displacements at internal points X 0 are obtained from their boundary integral

representations. The integral equation for the displacement derivatives results from the analytical differen-

tiation of the internal counterpart of Eq. (13):
ui,mðX 0Þ ¼
Z

Ce
U �
ij,mtj dC �

Z
Ce
T �
ij,muj dC �

Z
Cþ
T �
ij,mDuj dC, ð16Þ
where the terms U �
ij,m and T

�
ij,m are the derivatives of the fundamental displacement U

�
ij, and traction T

�
ij

solutions.

Once the displacement derivatives uj,k are known, stresses rij and strains eij can be computed using the

basic continuum mechanics relationships:
ei,j ¼ 1
2
ðui,j þ uj,iÞ, ð17Þ

rij ¼ 2leij þ
2lm
1� 2m ekkdij: ð18Þ
5.2. Boundary points

Displacement partial derivatives ui,m at boundary nodes could be obtained from Eq. (14), in a similar

way to their internal counterparts, by taking the limit of Eq. (14) as point X 0 moves to the boundary,

i.e. X 0 ! x 0. However, this procedure is computationally expensive because of the occurrence of hypersin-

gular integrands. To avoid this difficulty, stresses and strains, as well as the displacements on the model

surface are evaluated in this work from the boundary displacements and tractions. Consider with this pur-
pose a local Cartesian system, x01, x

0
2, x

0
3, such that x

0
3 is the unit vector in the normal direction to the bound-

ary element. If u0j , e0ij, r0ij and t
0
j are the displacements, strains, stresses and tractions in the local system,

stress components in the normal direction can be written as
r0i3 ¼ t0i : ð19Þ
The remaining stress tensor components, r011, r
0
12 and r022 can be expressed in terms of t

0
3 and the tangential

strain tensor components e011, e022 and e012 by eliminating e033 from the general expression of Hooke�s law.
Thus,
r011 ¼
1

1� m
mt03 þ 2l e011 þ me022

	 
� �
,

r022 ¼
1

1� m
mt03 þ 2l e022 þ me011

	 
� �
,

r012 ¼ 2le012:

ð20Þ
Strain components e0ij can be found using Eq. (17), now applied in the local coordinate system.
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It is worth nothing that displacement derivatives in Eq. (17) are initially evaluated in the intrinsic ele-

ment directions (n1,n2) and then converted to the local coordinate system x0, since as usual in BEM, bound-

ary displacements are given in terms of the piecewise parametric representation (shape functions) of

intrinsic coordinates.

Finally, the nine components of the partial displacement derivatives u�j,m are computed. Using chain dif-
ferentiation, derivatives of the displacements in the global system uj,m, are related to the derivatives of the

displacements with respect to the intrinsic boundary element directions oui/onj as follows
Fig. 3.

and a
oui
onj

¼ oui
oxk

oxk
onj
, ð21Þ
where oxk/onj is the Jacobian matrix of the transformation.
As it can be seen, Eq. (21), once expanded, yields a set of six equations with the nine derivatives ui,k as

unknowns. Three of these unknowns u1,1, u2,2, u3,3, can be directly calculated from the strain tensor com-

ponents e11, e22 and e33, respectively by using Eq. (17). This leaves the system with six unknowns, which can
be further reduced to three if the values of e12, e13 and e23 are substituted in Eq. (17) and then replaced in the
system of equations. Finally, the three remaining unknowns are calculated using a set of three equations

taken from the system generated by Eq. (21). It is worth noting that, since one or more of the derivatives

ouk/onj can become simultaneously zero depending on the element orientation and shape, the selection of

the three equations cannot be arbitrary, being necessary to make special selection in each case.
6. Boundary element implementation

6.1. Interaction integral evaluation

The computation of the M1-integral was included in the DBEM code as a post-processing procedure,

and so it could be applied to the results from a particular model at a later stage. As it has been stated
in Section 3, Eq. (11) allows computation of the mixed-mode stress intensity factors at any position g
on the crack front. In each case, this requires the evaluation of a volume integral within closed domains

that enclose a segment of the crack front Lc. A natural choice here is to make g coincident with the element
nodes on the crack front, while Lc is taken as the element or element sides at which points g lies (see Fig. 3).
Schematic of the volume cells in the crack front region illustrating the virtual crack extensions for a corner node, a mid-node

surface node.



A.P. Cisilino, J. Ortiz / Comput. Methods Appl. Mech. Engrg. 194 (2005) 935–956 943
The portion of the model domain in which the volume integrals are evaluated is discretized using 27-noded

isoparametric (brick) cells, over which stresses, strains and displacements derivatives are approximated by

products of the cell interpolation functions Ui and the nodal values of rij, eij and ui,j. Nodal values of these

variables are computed following the procedures introduced in Sections 5.1 and 5.2 depending on whether

the node is internal or lies on the model boundary. Volume discretization is designed to have a web-style
geometry around the crack front, while the integration volumes are taken to coincide with the different

rings of cells. This is illustrated in Fig. 4, where one of the model faces has been removed to show the crack

and the integration domains.

As depicted in Fig. 3, three different cases need to be considered, depending on whether the node of

interest M is in the middle of an element side (mid-node), it is shared by two elements (corner node), or it

is located coincident with the external surface (surface node). If the node M is a mid-node or surface

node, Lc (the segment of the crack front over which the M1-integral is computed) spans over one

element, connecting nodes M � 1, M, and M + 1 and nodes M � 2, M � 1 and M, respectively. On
the other hand, if M is a corner node, Lc spans over two elements, connecting nodes from M � 2 to
M + 2.

Function q is specified at all nodes within the integration volumes. Consistent with the isoparametric for-

mulation, these q-values are given by
q ¼
X27
i¼1

/iQ
i, ð22Þ
where Ui are the shape functions defined within each volume cell and Qi are the nodal values for the ith

node. From the definition of q (see Eq. (3)), Qi = 0 if the ith node is on S0, while for nodes inside V, Qi

are given by interpolating between the nodal values on Lc and S0. Different criteria for specifying Qi are

discussed in next section.

Following standard manipulations
q,j ¼
X27
i¼1

X3
k¼1

o/i

ofk

ofk
oxj

Qi, ð23Þ
where fk are the coordinates in the cell isoparametric space.
Fig. 4. Boundary element discretization and integration cells.
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If Gaussian integration is used, the discretized form of Eq. (10) is given by
M1 ¼
X

cells in V

Xm
p¼1

r�ð1Þ
ij u�ð2Þj,k þ r�ð2Þ

ij u�ð1Þj,k � r�ð1Þ
ij e�ð2Þij dki

� �
qk,i det

oxj
onk

� �� �
p

wp, ð24Þ
where m is the number of Gaussian points per cell, and wp are the weighting factors.

6.2. The q-function

The auxiliary function q was introduced in Section 2 in order to model the virtual crack front advance.

Since the virtual crack advance can adopt any arbitrary shape, the only requirement for function q is to be
sufficiently smooth within the integration volume V as the evaluation of the EDI requires of its

differentiation.

Shih et al. [22] have shown that for the EDI the computed value of J is insensitive to the assumed shape

of the q function. However, it has been found in this work that the shape of the function q is relevant for the

performance ofM1-integral computations. In this sense two different approaches for the shape of function q

are investigated.

6.2.1. Bi-quadratic q

This definition of q has been employed with excellent results in the computation of EDI in a previous

work by one of the authors [12]. Within this approach q is defined to vary quadratically in the directions

tangential and normal to the crack front. Considering that the evaluation point g is at the middle of the
crack front segment Lc, and r0 is the radius of the integration domain, the function q is written as:
q x�ð Þ ¼ 1�
x�3
Lc=2

� �2�����
����� � 1�

r

r0

� �2" #
, ð25Þ
where r is the distance from the crack front in the x�1 � x�2 plane as depicted in Fig. 1.

6.2.2. Optimised q

In a recent paper Saliva et al. [9] proposed an optimum shape for the function q which under certain
considerations ensures the convergence of the EDI computations. The proposed function is
q x�ð Þ ¼ W pkx�k�b

W pkx�k�b þ
PN
i¼1
W np

j kx� � zik�b
, ð26Þ
where wp, wnp, and b are parameters to be chosen, and zi, are the positions of the N points with null pre-

scribed values of q. These are given in this work by the N cell-nodes located on So, the outer surface of the

integration volume V.

Using parameters wp, wnp, and b, it is possible to control which parts of the domain significantly contrib-
ute to the integral (see Eqs. (4) and (10)). In particular b is associated with the smoothness of q. Greater val-
ues induce approximately null gradients around the crack front, where non-null values of q are prescribed. In

contrast, the field undergoes abrupt changes outside these regions. With wp and wnp, the region with non-null

gradients can be translated near the crack front or near the boundary of the integration volume where null

values of q are prescribed. Fig. 5 illustrates the influence of the parameters as function of r/r0.

Finally, it is worth to mention that although Saliva et al. [9] propose specifying the value of q indepen-

dently of any mesh, in this work the q-values are interpolated using the internal cell shape functions as it has

been presented in Section 6.1.



Fig. 5. Influence of parameters wp, wnp, and b on the shape of function q (one dimensional case).
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7. Examples

7.1. Thick centre-cracked and double-edge-notched specimens

In order to start with the validation of the proposed formulation two examples under pure Mode-I soli-

citation are chosen as first examples. They are a thick centre-cracked panel (CCP) and a double-edge-

notched specimen (DENS) subjected to a uniaxial remote tension r. Both examples are analysed using
the same base geometry, to which appropriate boundary conditions are applied in each case as illustrated

in Fig. 6. Also depicted in Fig. 6 are the model dimensions that were chosen to coincide with those used by
Fig. 6. Geometry and dimensions of CCP and DENS.
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Raju and Newman [23] for the sake comparison. Material properties are Young�s modulus E = 1000 N/

mm2 and Poisson ratio m = 0.33.
Model discretization is depicted in Fig. 4. It consists of 193 elements and 1040 nodes. Six elements are

placed along the crack front, and a total of 35 elements are used in the crack discretization. Crack front

element dimensions are graded towards the free surface, being the smallest equal to t/32. Four rings of cells
with radii r/a equal to 0.2, 0.35, 0.5 and 0.75 are accommodated around the crack front for K computations.

With this purpose 216 cells and 2262 modes are employed.

KI-values were computed using the two approaches introduced in Section 6 for the specification of q.

Normalized results obtained for the CCP using the bi-quadratic function q are given in Table 1, while re-

sults obtained using the optimised q are presented in Table 2. Following Saliva et al. [9] parameter values

for the optimised q are chosen as wp = 6, wnp = 1, and b = 6. Both sets of results are plotted in Fig. 7, to-
gether with the reference values from Ref. [23]. Error bars indicate the 5% accuracy of the reference values.

Excellent agreement is found between the reported and computed results using both approaches for q,
except for the point coincident with the free surface, z/t = 0.5, where the optimised q performs markedly

better. It can also be observed from Table 1 that the KI-values computed at the free surface present a strong

dependence with the integration volume. If in any way an average value is computed using these results, the

resulting value presents almost 40% error with respect to the reference. On the other hand, the KI-value

obtained using the optimised q is almost independent of the integration volume, and it has only a 3% devi-

ation with respect to the reference. Finally, it is worth to mention that with the only exception of the KI-

value obtained using the bi-quadratic q for the point located on the free surface, all the other results present

a deviation less than 3% with respect to reference. Note that this deviation is always smaller than the 5%
accuracy reported for the reference.

Results for theDENS are plotted Fig. 8, together with the reference values fromRef. [23]. Results show the

same behaviour than for the CCP. For interior points results obtained using the bi-quadratic and the opti-

mised q are very accurate, while only the optimised q allows obtaining an accurate result at the free surface.

7.2. Thick panel with a centre slant crack

This second example includes a crack under mixed load conditions. It consists in a thick panel with a
centre slant crack rotated h = 30� with respect to the horizontal, and subjected to a uniaxial remote ten-
Table 1

Normalized KI=r
p

pa results for the CCP specimen using the bi-quadratic q

z/t KI=r
p

pa

r/a Average Ref. [23] Diff. %

0.20 0.35 0.50 0.75

0.0000 1.2012 1.2063 1.2090 1.2104 1.2067 1.197 0.81

0.0625 1.1970 1.2038 1.2079 1.2106 1.2048 1.201 0.32

0.1250 1.2027 1.2098 1.2134 1.2157 1.2104 1.206 0.36

0.1875 1.2055 1.2133 1.2178 1.2209 1.2144 1.211 0.28

0.2500 1.2194 1.2270 1.2307 1.2331 1.2276 1.214 1.12

0.3125 1.2316 1.2410 1.2458 1.2489 1.2418 1.223 1.54

0.3750 1.2387 1.2467 1.2503 1.2528 1.2471 1.232 1.23

0.4063 1.2435 1.2489 1.2507 1.2519 1.2487 1.237 0.96

0.4375 1.2508 1.2575 1.2597 1.2613 1.2573 1.244 1.07

0.4531 1.2549 1.2615 1.2636 1.2659 1.2615 1.245 1.33

0.4688 1.2401 1.2467 1.2485 1.2499 1.2463 1.235 0.91

0.4844 1.2142 1.2199 1.2206 1.2198 1.2186 1.198 1.72

0.5000 0.9489 0.7725 0.6115 0.3767 0.6774 1.102 38.53



Table 2

Normalized KI=r
p

pa results for the CCP specimen using the optimised q

z/t KI=r
p

pa

r/a Average Ref. [23] Diff. %

0.20 0.35 0.50 0.75

0.0000 1.2121 1.2047 1.2075 1.2094 1.2084 1.197 0.95

0.0625 1.2092 1.2049 1.2051 1.2051 1.2061 1.201 0.42

0.1250 1.1993 1.2085 1.2090 1.2089 1.2064 1.206 0.03

0.1875 1.2117 1.2119 1.2121 1.2121 1.2120 1.211 0.08

0.2500 1.2188 1.2237 1.2241 1.2238 1.2226 1.214 0.99

0.3125 1.2372 1.2385 1.2387 1.2387 1.2383 1.223 1.25

0.3750 1.2424 1.2518 1.2522 1.2523 1.2497 1.232 1.44

0.4063 1.2199 1.2206 1.2206 1.2206 1.2204 1.237 �1.34
0.4375 1.2400 1.2456 1.2457 1.2457 1.2443 1.244 0.02

0.4531 1.2296 1.2296 1.2296 1.2296 1.2296 1.245 1.24

0.4688 1.2096 1.2103 1.2102 1.2102 1.2101 1.235 2.01

0.4844 1.1768 1.1768 1.1768 1.1768 1.1768 1.198 �1.77
0.5000 1.0785 1.0667 1.0660 1.0659 1.0693 1.102 �2.97

Fig. 7. Variation of KI=r
p

pa along the crack front for the CCP specimen.
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sion r. Model dimensions are given in Fig. 9 together with a view of the deformed mesh. The discreti-
zation strategy and material properties are the same than for the CCP. For this example 2193 nodes and

407 elements are employed for the domain discretization, while 3198 nodes and 312 cells are used to

define the integration domains. Six rings of cells are placed around the crack front for the K

computations.

Computed results for KI are plotted in Fig. 10 and reported in Tables 3 and 4 using the biquadratic

and optimised q respectively. The error bar in Fig. 10 indicates the dispersion of the computed results

for the point coincident with the free surface when the bi-quadratic function q is used. Following
the same format, results for KII are presented in Fig. 11 and reported in Tables 5 and 6. Since results

for comparison along the complete crack front are not available for this example, the only value



Fig. 8. Variation of KI=r
p

pa along the crack front for the DENS specimen.

Fig. 9. (a) Schematic with the geometry and dimensions of the thick panel with a center slant crack. (b) Boundary element mesh

(deformed).
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included as a reference is the plain strain solution due to Kitagawa and Yukki [24] at the specimen

mid-plane.
It can be observed that the results show the same behaviour as for the previous example: values ob-

tained using both approaches for the function q are almost coincident along the complete crack front,



Fig. 10. Variation of KI=r
p

pa along the crack front for the slant crack.

Table 3

Normalized KI=r
p

pa results for the slant crack using the bi-quadratic q

z/t KI=r
p

pa

r/a Average

0.10 0.17 0.25 0.35 0.50 0.75

0.0000 0.9268 0.9333 0.9362 0.9376 0.9383 0.9379 0.9350

0.0521 0.9279 0.9341 0.9371 0.9386 0.9394 0.9396 0.9361

0.1042 0.9314 0.9374 0.9399 0.9411 0.9417 0.9421 0.9389

0.1563 0.9327 0.9388 0.9416 0.9431 0.9438 0.9442 0.9407

0.2083 0.9375 0.9436 0.9461 0.9473 0.9479 0.9482 0.9451

0.2604 0.9413 0.9480 0.9510 0.9525 0.9533 0.9536 0.9499

0.3125 0.9451 0.9511 0.9533 0.9543 0.9548 0.9551 0.9523

0.3594 0.9479 0.9534 0.9555 0.9563 0.9567 0.9569 0.9545

0.4063 0.9487 0.9541 0.9561 0.9570 0.9575 0.9579 0.9552

0.4297 0.9466 0.9512 0.9526 0.9532 0.9536 0.9540 0.9519

0.4531 0.9358 0.9408 0.9424 0.9430 0.9432 0.9432 0.9414

0.4766 0.9172 0.9221 0.9236 0.9240 0.9237 0.9228 0.9222

0.5000 0.8133 0.7575 0.6960 0.6264 0.5369 0.4220 0.6420
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except at the free surface where the optimised q performs markedly better. Once again K values com-

puted using the bi-quadratic q present a strong dependence with the integration path on the free surface,

while the optimised q does not. For the position coincident with the specimen mid-plane, obtained results

are in both cases in excellent agreement with the reference value. On the other hand, tabulated results

show that K values calculated over the smallest integration domains (r/a = 0.1) are more accurate (in

what refers to path independence) for the bi-quadratic q. An explanation for this behaviour is that

the reduced number of cells in the radial direction of the integration domain (two for the case r/

a = 0.1), are not able to approximate the optimised function q with the required accuracy. Note that
the biquadratic q varies more smoothly than the optimised q (see Fig. 5), and so, it can be accurately

approximated using fewer cells. As it is indicated in Tables 4 and 6, results for r/a = 0.1 are excluded

of the analysis.



Table 4

Normalized KI=r
p

pa results for the slant crack using the optimised q

z/t KI=r
p

pa

r/a Averagea

0.10 0.17 0.25 0.35 0.50 0.75

0.0000 0.8977 0.9298 0.9361 0.9372 0.9375 0.9375 0.9356

0.0521 0.9312 0.9372 0.9373 0.9373 0.9373 0.9373 0.9373

0.1042 0.9425 0.9316 0.9366 0.9370 0.9371 0.9371 0.9359

0.1563 0.9339 0.9405 0.9406 0.9406 0.9406 0.9406 0.9406

0.2083 0.9490 0.9364 0.9414 0.9418 0.9419 0.9419 0.9407

0.2604 0.9424 0.9493 0.9494 0.9494 0.9494 0.9494 0.9494

0.3125 0.9485 0.9459 0.9517 0.9522 0.9522 0.9522 0.9509

0.3594 0.9494 0.9564 0.9565 0.9565 0.9565 0.9565 0.9565

0.4063 0.9446 0.9580 0.9582 0.9583 0.9583 0.9583 0.9582

0.4297 0.9215 0.9225 0.9225 0.9225 0.9225 0.9226 0.9225

0.4531 0.9132 0.9237 0.9238 0.9238 0.9238 0.9238 0.9238

0.4766 0.8953 0.8962 0.8962 0.8962 0.8962 0.8962 0.8962

0.5000 0.8423 0.8298 0.8246 0.8236 0.8237 0.8241 0.8252

a Average results do not include results obtained for r/a = 0.1.

Fig. 11. Variation of KII=r
p

pa along the crack front for the slant crack.

950 A.P. Cisilino, J. Ortiz / Comput. Methods Appl. Mech. Engrg. 194 (2005) 935–956
7.3. Thick panel with a central circular arc crack

The last example consists of a thick panel with a central circular arc crack subjected to a uniaxial remote
tension r. Model dimensions are given in Fig. 12, where a view of the deformed mesh is also included. Model
boundary discretization is constructed using 425 elements and 2263 nodes, while 312 cells and 3198 nodes are

employed to define the integration domains. The discretization strategy and material properties are chosen

the same to the previous examples.

Computed results for KI are plotted in Fig. 13 and reported in Tables 7 and 8 using both

approaches for the specification of the function q. The error bar in Fig. 13 indicates the dispersion

of the computed results for the point coincident with the free surface when the biquadratic function



Table 5

Normalized KII=r
p

pa results for the slant crack using the bi-quadratic q

z/t KII=r
p

pa

r/a Average

0.10 0.17 0.25 0.35 0.50 0.75

0.0000 0.4720 0.4742 0.4755 0.4764 0.4771 0.4785 0.4756

0.0521 0.4723 0.4732 0.4745 0.4756 0.4764 0.4773 0.4749

0.1042 0.4711 0.4725 0.4738 0.4748 0.4754 0.4758 0.4739

0.1563 0.4705 0.4710 0.4724 0.4735 0.4742 0.4744 0.4727

0.2083 0.4686 0.4700 0.4713 0.4723 0.4728 0.4730 0.4713

0.2604 0.4679 0.4686 0.4700 0.4711 0.4718 0.4720 0.4702

0.3125 0.4638 0.4650 0.4661 0.4668 0.4672 0.4672 0.4660

0.3594 0.4603 0.4609 0.4618 0.4624 0.4627 0.4626 0.4618

0.4063 0.4586 0.4595 0.4602 0.4606 0.4606 0.4605 0.4600

0.4297 0.4554 0.4562 0.4566 0.4567 0.4566 0.4565 0.4563

0.4531 0.4636 0.4643 0.4649 0.4656 0.4667 0.4693 0.4657

0.4766 0.4824 0.4842 0.4859 0.4884 0.4928 0.5023 0.4893

0.5000 0.5791 0.6172 0.6467 0.6694 0.6827 0.6684 0.6439

Table 6

Normalized KII=r
p

pa results for the slant crack using the optimised q

z/t KII=r
p

pa

r/a Averagea

0.10 0.17 0.25 0.35 0.50 0.75

0.0000 0.4643 0.4766 0.4766 0.4768 0.4770 0.4771 0.4768

0.0521 0.4872 0.4808 0.4808 0.4808 0.4808 0.4808 0.4808

0.1042 0.4848 0.4689 0.4711 0.4711 0.4712 0.4712 0.4707

0.1563 0.4869 0.4796 0.4796 0.4796 0.4796 0.4796 0.4796

0.2083 0.4803 0.4663 0.4679 0.4679 0.4680 0.4680 0.4676

0.2604 0.4842 0.4770 0.4770 0.4770 0.4770 0.4770 0.4770

0.3125 0.4708 0.4616 0.4617 0.4617 0.4618 0.4618 0.4617

0.3594 0.4798 0.4737 0.4737 0.4737 0.4737 0.4737 0.4737

0.4063 0.4722 0.4641 0.4635 0.4635 0.4635 0.4635 0.4636

0.4297 0.4925 0.4923 0.4923 0.4923 0.4923 0.4923 0.4923

0.4531 0.4416 0.4418 0.4416 0.4416 0.4416 0.4416 0.4417

0.4766 0.5215 0.5213 0.5213 0.5213 0.5213 0.5214 0.5213

0.5000 0.5626 0.5703 0.5737 0.5748 0.5752 0.5754 0.5739

a Average results do not include results obtained for r/a = 0.1.
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q is used. Following the same format, results for KII are presented in Fig. 14 and reported in Tables 9

and 10. The reference values included in the figures for the position coincident with specimen mid-

plane were computed using a high-resolution two-dimensional DBEM models under plain strain

conditions.

As it happened with the previous examples results show that the optimised q performs markedly better

for the point coincident with the free surface, allowing to obtain reliable K values. Once again K values cal-
culated using the smallest integration domains (r/a = 0.1) are more accurate (in what refers to path indepen-

dence) when computed using the bi-quadratic q.



Fig. 12. (a) Schematic with the geometry and dimensions of the thick panel with the circular are crack. (b) Boundary element mesh

(deformed).

Fig. 13. Variation of KI=r
p

pa along the crack front for the circular are crack.
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It can be also observed from Figs. 13 and 14 that results computed using the bi-quadratic q show a

smooth variation along the crack front, while those computed using the optimised q display a rather noisy

behaviour of around 3% the reference value. Note that results computed at corner and surface nodes (i.e.



Table 7

Normalized KI=r
p

pR � sin a results for the circular arc crack using the bi-quadratic q

z/t KI=r
p

pR � sin a

r/a Average

0.10 0.17 0.25 0.35 0.50 0.75

0.0000 0.6691 0.6727 0.6748 0.6768 0.6767 0.6679 0.6730

0.0521 0.6687 0.6733 0.6757 0.6781 0.6781 0.6697 0.6739

0.1042 0.6704 0.6754 0.6778 0.6801 0.6802 0.6722 0.6760

0.1563 0.6715 0.6766 0.6792 0.6817 0.6820 0.6742 0.6775

0.2083 0.6746 0.6797 0.6821 0.6845 0.6848 0.6771 0.6805

0.2604 0.6772 0.6827 0.6853 0.6879 0.6882 0.6807 0.6837

0.3125 0.6787 0.6837 0.6859 0.6882 0.6884 0.6810 0.6843

0.3594 0.6791 0.6839 0.6860 0.6881 0.6882 0.6808 0.6844

0.4063 0.6772 0.6819 0.6840 0.6861 0.6861 0.6785 0.6823

0.4297 0.6716 0.6758 0.6774 0.6792 0.6788 0.6704 0.6756

0.4531 0.6593 0.6636 0.6653 0.6666 0.6654 0.6561 0.6627

0.4766 0.6419 0.6455 0.6468 0.6472 0.6449 0.6355 0.6436

0.5000 0.5627 0.5180 0.4681 0.4078 0.3204 0.1804 0.4096

Table 8

Normalized KI=r
p

pR � sin a results for the circular are crack using the optimised q

z/t KI=r
p

pR � sin a

r/a Averagea

0.10 0.17 0.25 0.35 0.50 0.75

0.0000 0.6409 0.6587 0.6752 0.6771 0.6766 0.6738 0.6723

0.0521 0.6707 0.6776 0.6777 0.6778 0.6777 0.6775 0.6777

0.1042 0.6726 0.6662 0.6717 0.6724 0.6724 0.6721 0.6710

0.1563 0.6711 0.6789 0.6790 0.6790 0.6790 0.6786 0.6789

0.2083 0.6784 0.6700 0.6750 0.6757 0.6757 0.6753 0.6743

0.2604 0.6768 0.6846 0.6848 0.6848 0.6848 0.6842 0.6846

0.3125 0.6828 0.6719 0.6760 0.6766 0.6766 0.6760 0.6755

0.3594 0.6798 0.6877 0.6878 0.6878 0.6878 0.6871 0.6877

0.4063 0.6610 0.6835 0.6842 0.6843 0.6843 0.6835 0.6839

0.4297 0.6383 0.6391 0.6391 0.6391 0.6391 0.6381 0.6389

0.4531 0.6346 0.6464 0.6464 0.6464 0.6464 0.6454 0.6462

0.4766 0.6085 0.6092 0.6092 0.6092 0.6092 0.6081 0.6090

0.5000 0.5806 0.5732 0.5690 0.5677 0.5673 0.5659 0.5686

a Average results do not include results obtained for r/a = 0.1.
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those reported at odd positions in the figures) are almost coincident for the bi-quadratic and the optimised

q, while results for mid-side nodes (even positions in the figure) obtained using the optimised q deviate from

the general trend. Once again it is argued that the cause of this behaviour is related to a lack of accuracy in

the approximation of the optimised q, which exhibits a stronger variation than the bi-quadratic q. Note that

in the case of mid-side nodes, the integration volumes V are one-element thick, and so the variation of q in

the direction of x�3 is just approximated within one cell (see Fig. 3). On the other hand for the case of corner
nodes, the integration volumes V are two-element thick and so a better approximation of q in the direction

of x�3 is achieved.



Fig. 14. Variation KII=r
p

pa along the crack front for the circular arc crack.

Table 9

Normalized KII=r
p

pR � sin a results for the circular are crack using the bi-quadratic q

z/t KII=r
p

pR � sin a

r/a Average

0.10 0.17 0.25 0.35 0.50 0.75

0.0000 0.7483 0.7466 0.7477 0.7372 0.7412 0.7575 0.7464

0.0521 0.7481 0.7466 0.7481 0.7376 0.7413 0.7568 0.7464

0.1042 0.7477 0.7477 0.7493 0.7383 0.7415 0.7561 0.7468

0.1563 0.7485 0.7476 0.7491 0.7382 0.7412 0.7554 0.7467

0.2083 0.7491 0.7492 0.7507 0.7394 0.7421 0.7560 0.7478

0.2604 0.7517 0.7509 0.7524 0.7410 0.7437 0.7573 0.7495

0.3125 0.7504 0.7502 0.7513 0.7394 0.7417 0.7549 0.7480

0.3594 0.7505 0.7495 0.7503 0.7383 0.7404 0.7533 0.7470

0.4063 0.7514 0.7507 0.7513 0.7392 0.7414 0.7544 0.7481

0.4297 0.7515 0.7508 0.7510 0.7392 0.7418 0.7549 0.7482

0.4531 0.7669 0.7656 0.7658 0.7551 0.7595 0.7751 0.7647

0.4766 0.7984 0.7971 0.7981 0.7897 0.7975 0.8197 0.8001

0.5000 0.9587 1.0187 1.0694 1.1074 1.1652 1.2408 1.0934
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8. Conclusions

A three-dimensional BEM domain formulation of the M1-integral methodology for the numerical com-

putation of mixed-mode stress intensity factors has been presented in this paper. The proposed formulation

has been implemented as a post-processing technique, and so it can be applied to the results from a parti-

cular model at a later stage. The implementation takes advantage of the efficiency of the boundary integral

equation to directly obtain the required displacement derivatives, stress and strain fields.

Special emphasis has been put in the appropriate selection of the auxiliary function q present in the do-
main integral formulation. In this sense two approaches have been considered: a bi-quadratic variation, and

an optimised approach recently proposed in the paper by Saliva et al. [9]. A number of examples demon-

strate the efficiency and accuracy of the proposed formulation.



Table 10

Normalized KII=r
p

pR � sin a results for the circular arc crack using the optimised q

z/t KII=r
p

pR � sin a

r/a Averagea

0.10 0.17 0.25 0.35 0.50 0.75

0.0000 0.7244 0.7381 0.7482 0.7379 0.7418 0.7454 0.7423

0.0521 0.7740 0.7685 0.7685 0.7684 0.7685 0.7687 0.7685

0.1042 0.7615 0.7419 0.7441 0.7436 0.7436 0.7436 0.7433

0.1563 0.7745 0.7684 0.7684 0.7683 0.7684 0.7685 0.7684

0.2083 0.7619 0.7432 0.7454 0.7449 0.7449 0.7450 0.7447

0.2604 0.7778 0.7717 0.7716 0.7716 0.7717 0.7718 0.7717

0.3125 0.7588 0.7452 0.7460 0.7456 0.7456 0.7456 0.7456

0.3594 0.7878 0.7827 0.7826 0.7826 0.7827 0.7828 0.7827

0.4063 0.7634 0.7659 0.7650 0.7650 0.7650 0.7651 0.7652

0.4297 0.8036 0.8034 0.8034 0.8033 0.8035 0.8036 0.8034

0.4531 0.7316 0.7438 0.7433 0.7433 0.7434 0.7436 0.7435

0.4766 0.8500 0.8499 0.8499 0.8498 0.8501 0.8503 0.8500

0.5000 0.9286 0.9428 0.9489 0.9514 0.9528 0.9536 0.9499

a Average results do not include results obtained for r/a = 0.1.
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It has been found that the function q constitutes a key feature for the performance of the proposed meth-

odology. Obtained results show that the optimised q performs markedly better for the point located at the

intersection of the crack front with the free surface, allowing obtaining reliable K results where the bi-

quadratic q fails. On the other hand, for crack front positions located in the interior of the specimen both

approaches allow computing accurate K results, however the bi-quadratic q presents a more robust behav-

iour. It is observed that, in general, the bi-quadratic q performs better for the integration volumes defined

closer to the crack front, and it is also not affected by the number of cells used to define the integration

volume in the direction tangent to the crack front.
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