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Abstract

Type 1 diabetes mellitus correlates with several brain disturbances, including hypersensitivity to stress,
cognitive impairment, increased risk of stroke and dementia. Within the central nervous system, the hip-
pocampus is considered a special target for alterations associated with diabetes. Neurogenesis is a plastic
event restricted to few adult brain areas: the subgranular zone of the dentate gyrus and the subventricular
zone (SVZ). First, we studied the ability for neurogenesis in the dentate gyrus and SVZ of chronic diabetic
mice induced by streptozotocin (STZ). Using bromodeoxyuridine (BrdU) labelling of cells in the S-phase, we
observed a strong reduction in cell proliferation rate in both brain regions of diabetic mice killed 20 days
after STZ administration. Second, because oestrogens are active neuroprotective agents, we investigated
whether 17p-oestradiol (200 ug pellet implant in cholesterol during 10 days) restored brain cell prolifer-
ation in the diabetic mouse brain. Our results demonstrated a complete reversibility of dentate gyrus cell
proliferation in oestrogen-treated diabetic mice. This plasticity change was not exclusive to the hippo-
campus because oestrogen treatment restored BrdU incorporation into newborn cells of the SVZ region of
diabetic animals. Oestrogen treatment did not alter the hyperglycemic status of STZ-diabetic mice. More-

over, oestrogen did not modify BrdU incorporation in control animals. These data show that oestrogen
treatment strongly stimulates brain neurogenesis of diabetic mice and open up new venues for under-
standing the potential neuroprotective role of steroid hormones in diabetic encephalopathy.

Introduction

The various behavioural, neuroendocrine and neurophysio-
logical abnormalities appearing in uncontrolled type 1
diabetes mellitus support the concept of a diabetic encephal-
opathy (1-5). At the cellular level, diabetes can alter, among
other structures, hippocampal glial cells and neurones.
Astrogliosis, with increased expression of the glial fibrillary
acidic protein (GFAP) is a prominent hippocampal feature in
spontaneous and induced models of type 1 diabetes mellitus
(6, 7), such as the nonobese diabetic mice, and in streptoz-
otocin (STZ) diabetic rat, respectively. The reactive astrocytes
found in diabetic mice may provide neuroprotection to the
ailing neurones, in agreement with the role of astrocytes in
trauma, ageing and degenerative diseases (8§, 9).

In type 1 diabetes mellitus, hippocampal neurones are
indeed highly vulnerable (10). Dendritic atrophy, down-

regulation of glucocorticoid receptors, altered expression of
insulin-growth factor-I (IGF-I) receptors, decreased glucose
transporters and susceptibility to apoptosis are described in
the hippocampus of diabetic animals (5, 7, 10-14). Moreover,
STZ-treated mice present increased expression of early genes
in the pyramidal cell layer and dentate gyrus, and hyperac-
tivity of NADPH-diaphorase/nitric oxide synthase in the
CA3 subfield (15). In animals with type 1 diabetes mellitus,
the increased production of nitric oxide, together with the
beneficial effects of antioxidants, suggests that oxidative stress
may be involved in neuronal pathology (16, 17).
Physiologically, it is worth noting that neurogenesis con-
tinues throughout adulthood in dentate gyrus and ventricular
subependyma around the hippocampus known as the ‘sub-
ventricular zone’ (SVZ) (18). In these regions, cell prolifer-
ation is usually assessed by measuring incorporation of the
thymidine analogue, bromodeoxyuridine (BrdU), which is
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taken up by dividing cells during the S-phase. This technique
has shown that neural progenitors in the dentate gyrus
proliferate, migrate into the granular layer and differentiate
into granule cells (19), whereas SVZ-born neurones are
destined for the olfactory bulb (20). This neuronal cell
proliferation shows a marked plasticity in response to
hormones and environmental factors (20, 21). Functionally,
neurogenesis in the dentate gyrus is associated with the
formation of some types of hippocampal-dependent memor-
ies (22) and the depletion of proliferating cells correlates with
impaired acquisition of a fear-conditioned response (23). For
example, in diabetic animals, 48 h after diabetes induction, a
pronounced reduction of cell proliferation exists in the
dentate gyrus subgranular zone (24) in association with
changes in learning and memory, again suggesting hippo-
campal dysfunction (1-3, 14, 25, 26).

In the central nervous system (CNS), oestrogens exert
trophic and protective effects under normal and patholo-
gical conditions (27-30). Recently, it has been established
that oestrogens can be synthesized by hippocampal neu-
rones in adult rats (31). Regarding the control of neuro-
genesis, oestrogens increase the number of immature
neurones of the dentate gyrus (32) and prevent neurotox-
in-induced granule cell apoptosis (33). These protective
effects may consequently modify behaviours including
learning and memory (22). The oestrogen effect may be
only transient because granule cell proliferation is no longer
stimulated after prolonged exposure to high oestrogen
doses (34). In agreement with the stimulatory effect in the
dentate gyrus, oestrogens also modulate proliferation and
differentiation of cells cultured from wall lining of the SVZ
of adult rats (35). In molecular terms, oestrogen action in
the dentate gyrus and SVZ may be mediated by the
oestrogen receptor (ER) because one or both isoforms of
ERa and B are found in stem cells of the ventricular wall
of adult rat (35) while the mRNAs for both ERa and ERf
and ERo immunoreactivity coexist in the infragranular
layer and hilus of the dentate gyrus (28, 36). The role of
the intracellular receptor in the dentate gyrus is supported
by an ER antagonist blocking the induction of neurogen-
esis induced by IGF-I (37). In addition, oestrogens also
influence second messengers and different kinases in the
CNS by pathways independent of the classical ER (28),
suggesting a multifactorial modulation of cell proliferation
in dentate gyrus and SVZ.

In the present study, we investigated whether the reduction
of granule cell proliferation reported in the dentate gyrus in
type 1 diabetes mellitus (24) is reflected by a definitive long-
term damage or a reversible condition. We resorted to
oestradiol treatment of STZ-diabetic and control mice,
considering the reported stimulation of cell proliferation
and presence of ER in areas related to neurogenesis of adult
animals. The results demonstrated: (i) normalization of
dentate gyrus cell proliferation in oestrogen-treated diabetic
mice; (ii) that this plasticity change was not exclusive to the
hippocampus because the reduced BrdU incorporation into
SVZ structures of diabetics was also restored by oestrogen
treatment; and (iii) that oestrogen effects on cell proliferation
occurred without changes in the hyperglycemic status of STZ-
diabetic mice.

Materials and methods

Animals and treatment

Male C57BL/6 mice were housed under conditions of controlled humidity and
temperature (22 °C), and a 12 : 12 h light/dark cycle (lights on 07.00 h) at the
facility of the Institute of Biology and Experimental Medicine (Buenos Aires,
Argentina). Experimental procedures followed the NIH Guide for the Care
and Use of Laboratory Animals (Assurance Certificate #A5072-01). Twelve-
week-old mice (weighing approximately 30 g) received a single i.p. dose of
200 mg kg body weight STZ (Sigma, St Louis, MO, USA) dissolved in 0.5 m
sodium citrate buffer or the vehicle alone (n = 67 animals per group). Two
days after injection, glycosuria was determined using Keto-Diastix (Bayer
Diagnostics, Buenos Aires, Argentina). Following a positive urine test, mice
were bled by retro-orbital puncture and blood glucose levels were evaluated
using Accutrend (Roche Diagnostics, Mannheim, Germany), and quantita-
tively measured using colourimetry (Accutrend GC, Boehringer Mannheim,
Mannheim, Germany). Animals with glycaemia higher than 11 mmol/l
glucose were classified as overtly diabetic. STZ-treated mice showed marked
hyperglycaemia (15.8 £ 2.0 mm) 48 h after STZ injection. As shown in
Fig. 1, 10 days after STZ or vehicle injection, a 12 mg cholesterol pellet
containing 200 pg of 17B-oestradiol (Sigma), or only cholesterol, was placed
s.c. under light ether anaesthesia to selected groups of diabetic or control
mice. Finally, 10 days after oestradiol or vehicle treatment, animals were
weighed and decapitated. Their blood and tissues were collected at the time of
killing (12.00 h) for determination of glycaemia and weight of the testis and
hypophysis. As determined by radioimmunoassy (38), the oestradiol pellet
implant in mice produced highly elevated levels of circulating oestradiol
(497.3 £ 70.4 pg/ml) compared to normal male mice (14.93 £+ 2.31 pg/ml).

BrdU administration and immunocytochemistry

Mice received a single i.p. injection of S5-bromo-2’-deoxyuridine (BrdU)
(Sigma) at 50 pg/g body weight (10 mg/ml stock, dissolved in 0.9% saline)
and were killed 2 h later. At this time period, BrdU incorporation measures
the extent of cell proliferation only (39). Before perfusion, mice were deeply
anaesthetized by i.p. injection of ketamine (33.3 mg/100 g body weight). They
were perfused transcardially with 30 ml of 0.9% saline followed by 50 ml 3%
paraformaldehyde (PFA) in phosphate buffer (PB), pH 7.4. Brains were
incubated overnight in 3% PFA. On the next day, they were transferred to
Tris-buffered saline (TBS), pH 7.4 and processed for free-floating BrdU
immunocytochemistry. Brains were sectioned frontally at 50 pm using a
vibrating microtome.

For DNA denaturation and BrdU detection, sections from each mouse
were processed separately. They were incubated in prewarmed 50% forma-
mide/2 x SSC at 65 °C for 10 min, rinsed in 2 x SSC for 10 min, incubated in
2 N HCI at 37 °C for 30 min, rinsed in 0.1 m boric acid, pH 8.5, for 10 min,
washed three times in TBS, pH 7.4 and blocked for 30 min in TBS with 0.1%
Triton X-100 and 10% horse serum. Sections were incubated for 48 h at 4 °C
in a shaker with rat anti BrdU mAb (1 : 200, Accurate Chemicals, Westbury,
NY, USA) diluted in blocking solution. After three washes in 0.1% Triton

BrdU

STZ OF Diabetic + OF
STZ—————Ci———— Diabetic
Ve}“i_c_l_g -------------------- o — Control + OE
12 weeks of ag;/aﬂﬂe """" chol ... —| Control
10 days 10 days
Diabetes Killing

Fic. 1. Summary of the experimental design. C57BL/6 males of 12 weeks of
age were injected with streptozotocin (STZ) (200 mg/kg) or vehicle (citrate
buffer). Ten days afterwards, animals were s.c. implanted with a cholesterol
pellet containing 200 pg of 17p-oestradiol (OE) or vehicle alone (chol). After
10 days, mice were injected with a single dose of 5-bromo-2 deoxyuridine
(BrdU) (50 mg/kg) and killed 2 h later. This procedure originated the fol-
lowing four groups (from top to bottom): diabetic + OE, diabetic, con-
trol + OE and control, respectively.
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X-100-TBS, sections were incubated with the secondary antibody, a biotin-
ylated anti-rat IgG (1 : 200, Sigma) in 0.1% Triton X-100-TBS during 2 hina
shaker at room temperature. After three washes in TBS, they were processed
following the ABC kit instructions (Vector Laboratories, CA, USA). For
development, we used 3,3’-diaminobenzidine (DAB) at 0.5 mg/ml, 0.05%
H,0O, at room temperature. Sections were mounted in gelatin-coated glass
slides and air dried. After counterstaining with cresyl violet to better
identification of the brain region of interest, the slides were dehydrated with
graded ethanols and xylene and mounted with Permount (Fisher Chemical,
Fairlawn, NJ, USA). Nonspecific staining was assessed in the absence of
primary antibody.

Quantitative analysis of BrdU positive cells

For each group, 9-10 sections from each animal were analysed. The level of
the dentate gyrus for counting BrdU labelled cells corresponded to the ‘middle
dentate gyrus’, in which the suprapyramidal and the infrapyramidal blades are
joined at the crest region and the dentate gyrus is orientated horizontally
beneath the corpus callosum (40). In sections containing the ‘middle’ dentate
gyrus, BrdU positive cells were also counted in the entire SVZ. The SVZ
comprised the wall of the posterior lateral ventricle near the fimbria
hippocampus and the hippocampal arch above the CA1-CA2 subfields just
below the corpus callosum (20). Localization of dentate gyrus and SVZ
corresponded to Plate(s) 16-17, A 2, 400-2500 from the stereotaxic atlas of
the mouse brain (41).

Cell counting in the hippocampal dentate gyrus and SVZ was performed
by computerized image analysis using Optimas II software coupled to an
Olympus BH-2 microscope (Melville, NY, USA) equipped with a VT-C330N
video camera (6). Data were presented as the mean + SE BrdU-positive cells
corresponding to control plus vehicle (cholesterol) (n = 6 animals), control
plus oestrogen (n = 6), diabetic plus vehicle (n = 5), and diabetic plus
oestrogen (n = 5) groups. Manual counting of BrdU positive cells was also
performed at x400 magnification and no differences were found with the
software-generated counting. The investigators who processed the cell
counting were blinded to the procedure.

Double immunofluorescence and confocal microscopy

The neuronal or glial phenotype of newborn cells was studied using double
immunofluorescence. Briefly, sections were processed as described above and
incubated with rat anti BrdU (1 : 200) and one of the following specific
antibodies: mouse anti-B-III tubulin (1 : 1000 Promega, Madison, WI, USA),
anti-Neu-N (1 : 100, Chemicon, Temecula, CA, USA) or rabbit anti-GFAP
(1 : 400 Sigma). After washing in buffer, sections were incubated for 2 h at RT
with the secondary antibodies (1 : 200). BrdU was detected with goat-anti-rat
IgG coupled to FITC, B-III tubulin with horse-anti mouse IgG coupled to
rhodamine and GFAP with horse antirabbit IgG coupled to rhodamine. After
sequential washes, sections were mounted on gelatin-coated slides and
examined under a Nikon Eclipse E 800 confocal scanning laser microscope.
Images were acquired sequentially in a line-scanning mode through an optical
section of 1 um in the z-axis, and merged using Nikon EZC1 version 2.1
software (Nikon, Melville, NY, USA).

Statistical analysis

Group differences for cell counting, blood glucose levels, and body and
tissue weight were determined by one-way analysis of variance (ANOVA)
followed by Bonferroni’s post-hoc test. P < 0.05 was considered statistically
significant.

Results

Glycaemia, body and tissue weight

Morning blood glucose levels of diabetic mice measured
20 days from the time of diabetes induction were slightly
lower in oestrogen-treated animals (601 = 24.4 mg/dl) com-
pared to untreated mice (654 £ 76.4 mg/dl), although dif-
ferences did not reach significance. Body and tissue weight
was recorded to ascertain the clinical effectiveness of

oestrogen treatment lasting for 10 days in the diabetic group.
In the beginning of the experiments, the mean of body weight
was 30.52 + 1.02 g, while at the time of killing (i.e. 20 days
after diabetes induction), the measure was as follows: control
mice implanted with cholesterol: 33.35 £+ 0.98; control with
oestrogen: 31.86 + 1.48; diabetic ~with  cholesterol:
23.1 £ 1.1 (P < 0.001 versus control + cholesterol); and
diabetic with oestrogen: 22.4 + 0.7 (P < 0.001 versus con-
trol + oestrogen). Testis weight was significantly reduced by
oestrogen treatment in the diabetic group (80.7 £ 3.3 mg)
compared to the control (102.2 + 7.5 mg, P < 0.05) and
diabetic + vehicle groups (88.7 = 2.9 mg). Pituitary weight

was subnormal in  vehicle-receiving diabetic mice
(1.2 £ 0.07 mg, P < 0.05), compared to control mice
(2.05 £ 0.1 mg) and oestrogenized diabetics (1.9 +

0.07 mg). Thus, the deleterious effect of uncontrolled diabetes
on pituitary weight was recovered by oestrogen treatment of
diabetic mice. As expected, oestrogen-treated animals showed
testicular atrophy.

BdrU incorporation into dentate gyrus and SVZ cells.

In control mice, several BrdU labelled cells were observed in
the suprapyramidal and infrapyramidal layers at the middle
level of the dentate gyrus (Fig. 2a). Cell counting in both
layers of each dentate gyrus demonstrated a mean of 14 + 2
labelled cells in control mice, a figure not significantly
modified 10 days after oestrogen treatment (Fig. 2a, Ctl
versus Ctl + OE; Fig. 3a). By contrast, a marked reduction
to 4.8 = 1.9 labelled cells was found in the steroid-naive
diabetic group (P < 0.01 versus control) (Fig. 2a, STZ,
Fig. 3a), which was restored to control levels after 10 days
of oestrogen treatment (14.9 = 1.1; P < 0.001 versus diabe-
tic + vehicle), as shown in Fig. 2(A) (STZ + OE) and in
quantitative form in Fig. 3(A). At higher magnification
(Fig. 2, inserts a—c), BrdU-labelled cells from vehicle-treated
controls, controls plus oestrogen and oestrogenized diabetic
mice, respectively, showed similar clusters of dark stained
nucleus and irregular shape, without morphological differ-
ences between untreated and oestrogenized groups. The
pattern of BrdU staining is representative of immature cells
under division as previously reported in the literature (42).
BrdU-labelled cells were also observed in areas of the SVZ
selected for counting (Fig. 2B). These areas enclosed the wall of
the lateral ventricle near the fimbria of the hippocampus and
the area below the corpus callosum and above the CA1l and
CA2 subfields. Representative photomicrographs of BrdU
positive cells in the SVZ in control (Ctl), control plus oestrogen
(Ctl + OE), diabetic (STZ), and diabetic plus oestrogen
(STZ + OE) groups are shown in Fig. 2(B). The number of
BrdU positive cells in SVZ from control, control plus oestro-
gen, and diabetic plus oestrogen groups was similar as shown
histologically (Fig. 28, Ctl, Ctl + OE and STZ + OE,
respectively) and quantitatively (Fig. 3B). By contrast, diabetic
mice implanted with the cholesterol vehicle pellet presented a
significant reduction in cells incorporating the thymidine
analogue (P < 0.01 versus all other groups) (Fig. 2B, STZ
and Fig. 3B). Thus, a clear enhancement of BrdU incorpor-
ation was caused by oestradiol treatment of diabetic mice.

© 2004 Blackwell Publishing Ltd, Journal of Neuroendocrinology, 16, 704-710
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Fic. 2. (a) Representative photomicrographs of 5-bromo-2 deoxyuridine (BrdU)-immunopositive cells in the dentate gyrus (dentate gyrus). Cells incorporating
BrdU were easily seen in vehicle-treated control (Ctl), oestrogen-treated control mice (Ctl + OE) and oestrogen-treated diabetic mice (STZ + OE). By
contrast, they were practically absent in vehicle-treated diabetic mice (STZ). Magnification x 40. Photographs correspond to the suprapyramidal and the
infrapyramidal blades encircled in black in the brain schema on the left. Higher magnification of BrdU-incorporating cells are shown in the inserts
corresponding to Ctl (a), Ctl + OE (b) and STZ + OE (c) Magnification x 1000. (B) Representative photomicrographs of BrdU-immunopositive cells in the
subventricular zone (SVZ). Group label as in the legend to Fig. 2(a). Abundant cells incorporating BrdU are seen in Ctl, Ctl + OE and STZ + OE, by
contrast to the paucity of cells in STZ. As in (a), the brain region of interest is encircled in black. Magnification x 400.

The phenotype of BrdU-positive cells was studied using
markers for neurones (B-III-tubulin and Neu-N) and astro-
cytes (GFAP). Confocal analysis showed that some cells in
the dentate gyrus showed BrdU and B-I11-tubulin colocaliza-
tion. By contrast, BrdU-positive cells did not co localize with
GFAP or Neu-N, a marker of more mature neurones (results
not shown). Thus, in spite of the short time interval after
BrdU administration, reaction with the B-III-tubulin anti-
body suggested some BrdU cells already expressed an
immature neuronal phenotype.

Discussion

For the first time, the present study demonstrates the
stimulatory effect of oestrogens on CNS cell proliferation
in a pharmacological model of type 1 diabetes mellitus.

STZ-induced diabetic male mice were overtly diabetic,
showing a pronounced glycosuria and hyperglycaemia at
the time of oestrogen pellet implantation (i.e. 10 days after
STZ administration). After an additional 10 days of oestra-
diol treatment, changes of endocrine glands weight indicated
the pharmacological effectiveness of the oestrogen treatment.
Increased pituitary weight in oestradiol-implanted diabetic
mice may result in concomitant lactotroph cell hyperplasia
and angiogenesis (43). Testicular atrophy was also expected,
due to oestrogenic inhibition of pituitary gonadotrophins
and/or by a direct testicular action (44). The latter finding
raises the question on whether androgen levels in the diabetic
animals prevent neurogenesis. Although this possibility
appears unlikely, it cannot be excluded by the current
experimental design. Furthermore, the effect of oestradiol
on neurogenesis cannot be due to amelioration of the diabetic

© 2004 Blackwell Publishing Ltd, Journal of Neuroendocrinology, 16, 704-710
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Fic. 3. Quantification of the number of 5-bromo-2 deoxyuridine (BrdU)-
immunopositive cells in the (A) dentate gyrus (DG) and (8) SVZ of vehicle-
implanted control mice (Ctl), oestrogen-treated control mice (Ctl + OE),
vehicle-treated diabetic mice (STZ) and diabetic mice receiving oestrogen
(STZ + OE). To study cell proliferation, animals were killed 2 h after
administration of BrdU. Statistical significance was performed by ANova
followed by Bonferroni’s post-hoc test: (a) ##STZ versus all other groups
[d.f. = 4, F(11,76), P < 0.01]. (8) #STZ versus all other groups [d.f. = 4,
F(27,63), P < 0.001].

state because blood glucose values did not differ significantly
between untreated or oestrogen-treated diabetic mice. In one
study, oestrogen treatment did not significantly alter blood
glucose and plasma insulin levels in STZ-diabetic rats but
adversely affected body weight compared to controls (45).
The various alterations of neuronal structure, function and
metabolism reported in type 1 diabetes mellitus (6, 7, 1013,
15, 46) were recently shown to be accompanied by pro-
nounced reduction of dentate gyrus cell proliferation (24), in
agreement with our present data in the dentate gyrus.
Additionally, we showed that BrdU incorporation, a measure
of cell proliferation in animals killed 2 h after nucleotide
administration (39), was diminished in SVZ cells of diabetic
mouse brain. Regarding the fate of the proliferating cells,
Seaberg and van der Kooy (20) stated that some cell types in
the dentate gyrus generate neurones whereas others generate
glial progeny, suggesting they are restricted progenitor cells.
By contrast, these authors defined SVZ cells as stem cells
because they were able to generate neurones, astrocytes and
oligodendrocytes (20). Due to the schedule of BrdU admin-
istration performed in our experiments (i.e. one injection 2 h
before sacrifice), only some proliferating cells showed
colocalization with markers of immature neuronal phenotype

like B-III-tubulin and we were unable to found Neu-N/BrdU
or GFAP/BrdU positive cells. In a recent study, Kemper-
mann et al. (47) emphasized that cell fate decisions towards
neuronal development are made soon after division. Along
this line, new experiments are in progress to identify the
proliferating, migrating and differentiating cells after admin-
istration of several injections of BrdU to oestrogenized
diabetic mice. In functional terms, the impaired neurogenesis
in dentate gyrus may lie beneath the numerous deficits in
learning and memory behaviour previously shown in diabetic
animals (3, 26, 48). In agreement with this assumption,
preliminary data from our group showed a better perform-
ance of diabetic mice treated with oestrogens in the elevated
asymmetric plus-maze, a task related to explorative beha-
viour, compared to diabetic mice receiving vehicle.

Of particular interest, and shown here for the first time,
oestradiol treatment during 10 days was able to completely
restore cell proliferation in dentate gyrus and SVZ of diabetic
mice. These data reinforce the notion that regions involved in
neurogenesis are targets for oestrogens because ERa and ERf
were detected in the stem cells of the SVZ, whereas cells of the
dentate gyrus expressed ERP mRNA, retained radiolabel
nuclear oestradiol injected into rats and contained ERa and
ERp immunoreactivity (28, 32, 49). It is also worth noting
that oestradiol effects were exclusively observed in diabetic
but not in normal mice. This finding was not entirely
unexpected because it was reported that, in normal animals,
oestrogens did not significantly affect the number of BrdU-
immunoreactive cells in rat dentate gyrus unless a neurotoxin-
induced reduction was provoked (32, 33). Furthermore, the
possibility exists that the stimulation of cell proliferation
following oestrogen treatment in diabetic mice follows from
the growth-related effects of this hormone upon newly divided
cells that differentiate into neurones in the hippocampus (50,
51). Mechanistically, it was established that oestrogens can
activate cellular cascades involving growth factors, including
IGF-I and its cognate receptor (37, 52). In normal rat
hippocampus, IGF-I promotes proliferation and neuronal
differentiation (53). In type 1 diabetes mellitus rat hippocam-
pus, expression of IGF-I and its receptor are reduced and
accompanied by apoptotic neuronal loss and functional
cognitive impairment (14). Because oestrogens regulate
IGF-I expression (52), it is not excluded that, in type 1
diabetes mellitus animals implanted with oestrogens, an
oestradiol-IGF-I interaction takes place in SVZ and dentate
gyrus cell proliferation, a hypothesis that deserves further
analysis.

Finally, the literature reports that, in brain complications
of diabetes mellitus, oestrogens also provided neuroprotec-
tion. Thus, oestradiol treatment of diabetic rats reduced
infarct size of the striatum after transient middle cerebral
artery occlusion (54), enhanced the subnormal brain glucose
utilization rates of type 2 diabetic (db/db) mice (55), and
improved the disturbances of cerebral energy metabolism and
deterioration of memory functions of adult rats injected
intracerebrally with STZ (48). Future studies are required to
elucidate whether oestrogens can be therapeutically useful for
normalization of neuronal disturbances and for improvement
of learning disabilities of animals with type 1 diabetes mellitus
and eventually diabetic patients.
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