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Abstract

An applied Fourier transform computation for the hydrodynamic wave-resistance coefficient
is shown, oriented to potential flows with a free surface and infinity depth. The presence of
a ship-like body is simulated by its equivalent pressure disturbance imposed on the un-per-
turbed free surface, where a linearized free surface condition is used. The wave-resistance
coefficient is obtained from the wave-height downstream. Two examples with closed solutions
are considered: a submerged dipole, as a test-case, and a parabolic pressure distribution of
compact support. In the three dimensional case, a dispersion relation is included which is a
key resource for an inexpensive computation of the wave pattern far downstream like fifteen
ship-lengths. 2001 Elsevier Science Ltd. All rights reserved.

Keywords:Free surface flows; Hydrodynamics; Fluid dynamics; Computational techniques; Mathematical
methods in physics

1. Introduction

When a body moves near the free surface of a fluid, a pattern of trailing gravity
waves is formed. The energy spent in building this pattern comes from the work
done by the body against the wave resistance. As a first approximation, the wave
resistance can be computed with a potential model, whereas for the viscous drag it
can be assumed that the position of the surface is held fixed at the reference hydro-

* Corresponding author. Tel.:+54-342-4559175; fax:+54-342-4550944.
E-mail addresses:jdelia@trantor.arcride.edu.ar (J. D’Elia), mstorti@intec.unl.edu.ar (M.A. Storti),

rnsergio@arcride.edu.ar (S.R. Idelsohn).

0029-8018/01/$ - see front matter 2001 Elsevier Science Ltd. All rights reserved.
PII: S0029 -8018(00 )00073-1



262 J. D’Elia et al. / Ocean Engineering 29 (2002) 261–278

static position, i.e. a plane. This is, basically, the Froude hypotheses. With this
assumption, we are neglecting the interaction produced by the boundary layer, which
tends to produce a larger body, whose wave pattern, in turn, tends to modify the
potential flow which is the input to the boundary layer process. Even if a potential
model is assumed for the liquid, the problem is non-linear due to the free surface
boundary condition. Potential methods are classical and widely accepted for calculat-
ing several kind of flow configurations, e.g. see Morino (1985) and D’Elı́a et al.
(2000a,b,c,d). In some problems a two-dimensional approach is sufficient, for
instance, flows past multicomponent airfoils, infinite cascade and ground effects, e.g.
see Mokry (1990) and Storti et al. (1995), and it is an interesting case due to the
possibility of using analytic functions of complex variable, which allows an elegance
of treatment.

Methods for determining the wave-resistance force generated by a moving ship-
like body is an old problem in ship hydrodynamics, whose history stretches back
over 100 years. Today, several analytical and semi-analytical strategies for determin-
ing the wave resistance by a moving ship-like body with potential models are avail-
able, e.g. see Wehausen and Laitone (1960) and Wehausen (1973) for an extensive
review (where 16 pages of authors references are given) or, more recently, Miloh
(1991) and Larsson and Baba (1996). Notwithstanding, a short review follows, where
modern CFD approaches, like finite and boundary elements, are omitted. As is well
known, potential linearized wave-resistance theories can be applied for relatively
slender ships, and they are often used for hull improvement, for instance, container
ships at high speeds. These theories are closely related on the Michell’ s integral and
its modified forms, e.g. see Weinblum (1930), Karp et al. (1960), Maruo and Bessho
(1963) and Inui (1962), while simplified expressions are based on slender ship
theories, e.g. see Wyatt and Chang (1994). For catamarans see Papanikolaou and
Androulakakis (1991), Min (1992) and Suzuki (1993). The reduction of ship waves
for the preservation of river banks was studied by Doctors et al. (1991), while Nob-
lesse and Gagan (1976) proposed a non-linear theory by continuous mapping. Never-
theless, thin ship theories are not applicable for full hulls, such as a tanker in ballast
condition, so many efforts have been made to improve linearized wave-resistance
theories, e.g. see Ogilvie (1968), Newman (1976), Raven (1996) and D’Elı́a (1997),
where linearized freesurface conditions are formulated on the basis of a double body
flow around the ship-like body (the double body flow). In an infinitely deep and
unbounded fluid, standard procedures for the solution of the Michell integral involve
the use of Fourier series/integral or Green function theory, for instance, Wehausen
(1973) treats a linearized moving deeply submerged body by the last method. Not all
these flow problems can be solved with an equivalent effort, for instance, a separable
coordinate system must be used in the Fourier methods and, then, the boundary
conditions are imposed on one of the surface coordinates. On the other hand, Chang
and Chwang (1997) have been studying the wave pattern of a moving source, in a
viscous fluid of infinite depth, by the use of the Fourier transform, whose solutions,
which satisfy linearized free surface conditions, possess some characteristics of the
classical Kelvin ship wave pattern. As a first simplification, the presence of the body
can be simulated by its equivalent pressure disturbance, of compact support, on the
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free surface. Some of the motions which can arise under simple surface pressure are
discussed, by example, by Lamb (1945). Lamb’s presentation is well known but, as
Stoker remarks, assumes fictitious damping forces in order to be rid of the free
oscillations and thus obtain a unique solution.

In this work, an applied Fourier computation of the wave-resistance over a ship-
like body in steady motion is made, by means of a potential flow model with a
linearized free surface boundary condition and infinity depth. The presence of the
body is simulated by an equivalent pressure disturbance of compact support on the
free surface. The analytical and semi-analytical solutions that can be obtained by
this alternative method can be used to test other numerical algorithms such as those
based, for instance, on finite differences, finite elements or boundary elements. In
particular, we have used it to test finite element and panel codes coupled with a
Discrete Non-Local (DNL) absorbing boundary condition, e.g. see Storti et al.
(1998a,b, 2000) and Bonet et al. (1998). Also, in the extension to the three dimen-
sional case, a dispersion relation is found as a key element for an inexpensive compu-
tation of the wave pattern far downstream, for instance, fifteen ship-lengths, as is
described in a previous work, see D’Elı́a et al. (2000a,d).

2. Computation of the velocity potential by contour integration

The linearized governing equation system for the perturbation velocity potential
f(x, z) of an inviscid and incompressible flow with a pressure perturbation P(x) on
its free surface is, e.g. see Stoker (1957),

�f,xx+f,zz=0 in z�0;

f,z+K −1f,xx=P,xU/(rg) at z=0;
(1)

with ���x�+�, where K=g/U2 is the characteristic wavenumber, U is the free-
stream speed, g is the gravity acceleration and r is the fluid density. The z-axis is
parallel to the upstream non-perturbed velocity U and the z-axis positive upwards.
The Froude number is defined as Fr=U/√gL, where L is a characteristic length of
the flow problem and is related to the characteristic wave-number by Fr=1/√KL. In
addition, we will assume that the pressure perturbation P has compact support.

One word about the pressure perturbation P(x). As is well known, perturbation
techniques are often employed to solve two and three dimensional potential flows
with a free surface. For instance, from these techniques we obtain the thin, slender
and slow ship cases, e.g. see Wehausen (1973) or Ohkusu (1996). In any case, quasi-
linearized approximations are obtained by substituting �=��o+f and neglecting
terms O(f2), where � is the total potential velocity. For flows with past-submerged
or floating bodies, �o the rigid wall, or double body, potential solution satisfying
the homogeneous Neumann boundary condition ∂y�o=0 at the hydrostatic equilib-
rium plane (z=0), whereas f is the perturbation potential satisfying a perturbed system
equation, where its free surface condition is related to a Neumann boundary condition
with a source term proportional to the streamlined second derivative of the rigid-
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wall potential �o. On the other hand, for submerged bodies this perturbed Neumann
boundary condition can be replaced by an equivalent pressure load distribution
imposed on z=0, which is caused by the presence of the body in the flow. Then, in
these cases, we can solve a simpler perturbed flow problem, where the submerged
body is replaced by its equivalent pressure distribution imposed at the hydrostatic
equilibrium plane. Also, some hovercraft-like flow problems can be included in this
approach. Going back to Eq. (1) for its solution we employ the pair-Fourier transform

f(x,z)� �
�

��

dsê+isxf̂(s,z); (2)

f̂(s,z)�
1

2p �
�

��

dxe−isxf(x,z); (3)

where f�f (velocity potential) or f�P (surface pressure). Replacing (2) in the
Laplace Eq. (1) results

d 2f̂
dz2 �s2f̂�0 for z�0; (4)

whose solution is f̂(s,z)=Ce�s�z, for z�0. Performing the Fourier transform in Eq.
(1b), we have

df̂
dz

�
s2

K
f̂�

isU
rg

P̂�0 for z�0; (5)

introducing the solution f̂(s,z) in Eq. (4) it follows that the Fourier transform of the
velocity potential is

f̂(s,z)�H(s)P̂(s,z); (6)

where

H(s)�
iU
rg

s
�s�−K −1s2; (7)

is a transfer function in the complex plane. Introducing Eq. (6) in the Fourier Trans-
form Eq. (2), we conclude that

f(x,0)�
iU
rg �

�

��

ds
seisx

�s�−K −1s2P̂(s,0); (8)

where P̂(s,0) is analytic on the complex plane s, so we can consider Eq. (8) as a
contour integral over the complex s-plane. The factor eisx is also analytic, whereas
for the kernel H(s)=s/(|s|�K −1s2), we first have to define how |s| is extended to the
whole complex plane. A natural way is with a branch-cut on the imaginary axis
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Fig. 1. The kernel H(s) has a branch-cut over the imaginary axis and two poles at s=±K.

|s|��+s if Re(s)�0;

−s if Re(s)�0.
(9)

Then, the transformed velocity potential f̂(s,0) also has a branch-cut on the imagin-
ary axis and two isolated poles at s=±K, see Fig. 1. But, the integration path for Eq.
(8) is on the real axis and then passes over the two poles, so we have to define how
we consider the residues at them. If we consider that the path passes through the
center of the pole and P is symmetric, then f(x, 0) is also symmetric, which is an
incorrect result, so we consider the integral over a path P� with the poles on the
left, see Fig. 2. In the first place let us consider the integral for x�0, where we
deform the integration contour to path P−

(−d), composed of four sub-paths
P−

(−d)=BC+CO+OC�+C�B�, see Fig. 3. Note that we also include the path COC�
around the cut. The contribution of the two segments BC and C�E� is

|eisx|�e−|s	||x|�e−d|x|; (10)

where s	=Im(s)��d, so the contribution of the first path BC+C�B� tends to
C1 e−d|x|. On the other hand, the contribution of the second path CO+OC� can be
estimated as C2d, since Eq. (6), and then

f(x,0)�C1e−dx
C2d. (11)

Fig. 2. Integration path P� leaving the poles on the left.
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Fig. 3. Integration path P−
(−d), leaving the poles on the left and for x�0.

Taking d=|x|−1/2 we have f(x,0)→0 when x→�� (upstream). Next, let us consider
the case x�0 (downstream). The path is now P−

(+d), see Fig. 4. As is usual in complex
theory, the contributions around the poles are equivalent to their residues. On the
other hand, the contribution of the paths ABO and OB�A� can be estimated as before,
so they tend to zero for x→+�, whereas the contribution of the residues are

�
P(+k)
P(−k)

dsH�2pi[Res{H,
K}
Res{H,�K}]; (12)

On a neighborhood of s=±K, the poles are in the denominator (|s|�K −1s2) which are
written now as

|s|�K −1s2��
s
K

(s�K); (13)

Fig. 4. Integration path P−
(+d), leaving the poles on the left and for x�0.
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and then

Res{H,�K}��
iKU
rg

e±ikxP̂(�K) (14)

Thus we have

f(x,0)�Ae+iKxP̂(
K)
Ae−iKxP̂(�K); (15)

where A=2pKU/(rg)=2p/rU. In brief, the solution for a path such as the P�, see
Fig. 2, is of the form

f(x,0)��0 for x→−�;

2ARe{eiKxP̂(K)} for x→+�;
(16)

where P̂(�K)=P̂(�K), since P(x) is real. If we used an integration path leaving the
poles on the right, the solution would be

f(x,0)��2ARe{eiKxP̂(K)} for x→−�;

0 for x→+�.
(17)

But, we know that the solution with physical sense is the first case, so the correct
integration path is P�. That is, the appropriated branch-cut and integration contour
are selected from agreement with the experimental observation (waves downstream
only). On the other hand, this selection is equivalent to the well known Sommerfeld
radiation condition (the waves should behave at infinity like progressive waves mov-
ing away from the source), e.g. see Stoker (1957). Alternatively, one can show that
the integration path P� is the correct one by adding a small diffusive term, or Ray-
leigh artificial viscosity term, and in such a case the poles move to the Im{s}�0
semi-plane, so the integral in Eq. (8) can be taken straightforwardly on the real axis,
i.e. leaving both poles on the left. It is easy to show, then, that letting the diffusive
term tend to zero is equivalent to deform the integration path as P�. This artifice is
widely regarded as a reliable way to satisfy the radiation boundary conditions. For
instance, if there is no pressure perturbation, the linearized free-surface boundary
condition (1) reduces to

f,xx
Kf,z�0 at z�0; (18)

This boundary condition is invariant under longitudinal coordinate inversion x→�x
and, so, it would give either a symmetric solution or an ill posed problem. This is
corrected through the addition of a Rayleigh artificial viscosity term

f,xx
Kf,z
nf,x�0 at z�0 (19)

where n is the Rayleigh viscosity parameter. On the other hand, in the numerical
solution of Eq. (18) by finite-differences techniques, the symmetry is broken by
means of upwind-like operators which are equivalent to the numerical solution of
Eq. (19). A very comprehensive analysis about this topic is given by Letcher (1993),
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and an extension is made by D’Elı́a et al. (2000a,d). Going back to Eq. (17), the
elevation h is then obtained from, e.g. see Wehausen (1973) or Landweber (1961)

h��
U
g

∂f
∂x

��
4p
rg

Re[iKeiKxP̂(K)]; (20)

h�
4p
rU2Im[eiKxP̂(K)]; (21)

and the (maximum) wave height is

h̄�
4p
rU2|P̂(K)| for x→�. (22)

It is well known that the wave resistance is directly related to the amplitude down-
stream but we will give an alternative derivation.

3. Computation of the wave resistance by contour integration

The wave resistance for transversal unit area is given by

Fx� �
�

��

Pdx
∂h
∂x

�� �
�

��

Pdx
∂
∂x� P
rg

�
U
g

∂f
∂x�. (23)

The contribution of the first term is null since we assume that P has compact
support, so

Fx��
U
g �

�

��

dxPf,xx; (24)

but from Eq. (8)

∂2f
∂x2 � �

p−

ds e+isx F(s)P̂(s); (25)

where

F(s)�
U
rg

(is)3

|s|−K−1s2; (26)

replacing P̂(s) by its Fourier inverse transform (3) we have

∂2f
∂x2� �

�

��

dx�G(x�x�)P(x�); (27)
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where

G(�x)�
1

2p�
p�

dse±isx F(s); (28)

is a function on the complex plane. Next, let us decompose this function G as

G(x)�Ga(x)
Gs(x); (29)

where Gs/a are its symmetric and antisymmetric components, respectively. In Appen-
dix A we show that the antisymmetric part does not contribute to the wave resistance
computation, so

Fx��
U
g��P(x)Gs(x�x�)P(x�)dxdx�; (30)

and that the symmetric part, on the transformed plane, is given by

Gs(x)�i Res{F(s),
K} cos(Kx) (31)

where we still have to evaluate the residue, but with Eq. (13), we have

Res{F,K}�
U
rg

lim
s→K

(s�K)
(is)3

|s|−K −1s2�
iK 3u
rg

. (32)

Replacing in Eq. (31) we obtain

Gs(x)��
K 2

rU
cos(Kx); (33)

inserting this results in Eq. (30)

Fx�
K 2

rg �
�

��

P(x)P(x�) cosK(x�x�) dx dx�. (34)

Since sin(Kx) is skew-symmetric, we can replace the cosine by the complex
exponential

Fx�
K 2

rg �
�

��

P(x)P(x�)eiK(x−x�) dx dx�; (35)

or

Fx �
4p2K 2

rg
�P̂(K)�2 (36)

where P̂(K) is the Fourier transform of the pressure disturbance. On the other hand,
the wave resistance, Eq. (36), can be written in terms of the wave amplitude h̄, Eq.
(22), as
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Fx�
1
4
rgh 2; (37)

in agreement with classical results, for instance, see Landweber (1961). Thus, we
have a derivation of the wave resistance by means of the Fourier transform of the
pressure disturbance, imposed on the unperturbed free surface, and its residues
around the poles in the complex plane, where only the symmetric part of the G
function contributes to its value.

4. Two examples with closed solutions

4.1. Submerged dipole

This is a rederivation of a known result, as a test case. The complex potential of
a submerged dipole (or infinitesimal cylinder) at a depth f with respect to the surface
z=0 is

f(t) �
U2b
t+if



U2b
t−if

; (38)

where t=x+iz is the complex variable, U2b is the dipole intensity, so a submerged
cylinder of radius b can be replaced by a dipole of intensity U2b in the limit of a
very small radius. The velocity field is w=u�iv=df/dt or

w��
U2b

(t+if )2 �
U2b

(t−if )2. (39)

For the wave resistance computation we need its value on the plane z=0, with
P(x)=rbw, so

P(x)��
rU2b2

(x+if)2�
rU2b2

(x−if )2; (40)

and its Fourier transform is

P̂(s)��
rU2b2

2p �
�

��

dx� 1
(x+if)2


1
(x−if)2�e−isx. (41)

This expression can be considered as a contour integral on the complex plane t,
where P̂(0)=0 (Fig. 5). For s�0 we chose an integration path P on a straight line
AB, so we have z=Im(t)=cnst�0 and

|eist|�e−|s|z; (42)

so the integral tends to zero for z→�, then
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Fig. 5. Integration path 
 around the poles.

P̂(s)=−irU2b2Res� e−ist

(t−if)2, if�
=−irU2b2Res�e−is(t−if)

(t−if)2 esf,if�
=−irU2b2esfRes�e−isx

x2 , 0�
=−irU2b2esfRes�1−isx +%

x2 ,0�
=−rU2b2sesf.

(43)

Since P is real and even, then P̂(s) too, so the Fourier transform for all s is

P̂(s)�rU2b2|s|e−|s|f; (44)

replacing in Eq. (37) and defining the non-dimensional wave-resistance coefficient
as Cw=Fx/rU2b we obtain

Cw�
1
rU2b

4p2K 2

rg
r2U4b4K 2e−2Kf; (45)

Cw�4p2�b
f	3� f

K −1	3

e−2f/K−1
; (46)

which is a classical expression, for instance, see Landweber (1961) and Lamb (1945).
In this case, the pressure perturbation has not compact support, i.e. it extends to
infinity; however, it decays �|x|−2. In Fig. 6 we show the plot of this analytical wave-
resistance coefficient as a function of the Froude number, compared with a finite
element solution, e.g. see Storti et al. (1998a,b, 2000).

4.2. Parabolic pressure distribution of compact support

As a second example, let us consider a parabolic pressure distribution of com-
pact support
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Fig. 6. Wave-resistance coefficient for a submerged dipole.

P���P[1−(x/a)2] for |x|�a;

0 for |x|�a.
(47)

Its Fourier transform is

P̂(s)��4a�P
sa cos sa− sin sa

(sa)3 ; (48)

where P̂(0)=4a�P/3 is finite; see Fig. 7. The induced wave resistance is, replacing
in Eq. (37),

Fx�
16(Ka)2�P2

rg �Ka cosKa−sinKa
(Ka)3 �2

(49)

Fig. 7. Aspect of the P̂(s) for the submerged dipole and for the parabolic pressure distribution.
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We can define a non-dimensional wave-resistance coefficient as Cw=Fx/(rU2a) and

Cw�16P2
M

[Ka cos Ka−sin Ka]2

(Ka)3 (50)

where PM=�P/(rga). Defining the Froude number as Fr=U√ga, then Ka=1/Fr2. In
Fig. 8 we show the plot of the analytical wave-resistance coefficient as a function
of the Froude number, compared with a finite element computation detailed by Storti
et al. (1998a,b).

5. The three dimensional case

The extension to the (symmetric) three dimensional case can be done by means
of an additional Fourier transform in the transversal (beam) direction. The contri-
bution to the wave-resistance of each mode can be computed with a contour integral
similar to the one studied here, but with the simplification that for the non null
transversal m-modes, the branch cuts on the imaginary axis do not cover the whole
axis but, indeed, they extend for |Im(k)|�|M|. This assertion can be shown as follows.
The linearized governing system for f(x, y, z) is now

�f,xx+f,yy+f,zz=0 in z�0;

f,z+K −1f,xx=y, at z=0;
(51)

where y(x,y,0)=U/(rg)P,x. We assume that f,y are a linear combination of plane
waves on x,y and for f there is an exponential attenuation in z. Then, taking its
Fourier transforms

Fig. 8. Wave-resistance coefficient for a parabolic pressure distribution of compact support.
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f� �
�

��

dk �
�

��

dm eikx+imy+nzf̂; (52)

y� �
�

��

dk �
�

��

dm eikx+imyŷ; (53)

where n=n(k,m) is a dispersion relation that remains to be determined. Replacing
Eqs. (52) and (53) in Eq. (51) we have

�(−k 2−m2+n2)f̂=0 ;

(n−K −1k 2)f̂=ŷ ;
(54)

eliminating n we find f̂=Ĝŷ, with the kernel

Ĝ(k,m)�
1


k 2+m2−K−1k 2
; (55)

this is singular at the points k=±i|m| and k=±Km where

Km�K�1/2+1/2
1+4m2K −2. (56)

The singularities at k=±i|m| can be linked by a branch-cut passing through infinite,
so the integration path passes through a regular aperture on the imaginary axis, see
Fig. 9, and in some way, the problem for m�0 is more regular than the m=0 case.
Lastly, the numerical solution of Eqs. (52) and (53), with kernel (55), can be com-
puted with the discrete Fourier transform

f(I,J)��N�1

k�1

�N�1

m�2

ŷ(k,m)W+kI
N W+mJ

N


k 2+m2−K −1k 2
; (57)

Fig. 9. The branch-cuts get farther away from the real axis as the beam Fourier m-modes increase.
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for I,J=0,1,…,N�1, where the contribution of the term k=m=0 is null, as mentioned
in Section 2, N2 is the total number of sample points and

ŷ(k,m)�
1

N2 �N�1

I�0

�N�1

J�0

y(I,J)W−kT
N W−mJ

N ; (58)

for k,m=1,2,…,N�1, where WN=exp(2pi/N) is the weighting kernel. These compu-
tations can be efficiently implemented, for instance, through the Fast Fourier Trans-
form. On the other hand, the dispersion relation given by Eq. (56) is a key term for
an inexpensive computation of the wave pattern far downstream, like ten or 15 ship-
lengths, and it is detailed in a previous work, see D’Elı́a et al., 2000a.

6. Conclusions

The overall approach is limited by the restrictions of the potential flow model,
the use of a linearized free surface boundary condition and the replacement of the
body by its equivalent pressure disturbance on the unperturbed free surface. In the
wave-resistance formula arrived by the Fourier transform, only the symmetric part
contributes to its value. The analytical approach allows to consider additional test
cases, whenever the Fourier transform of the pressure distribution can be done in
closed form, like the parabolic pressure distribution of compact support. The exten-
sion to the (symmetric) three dimensional case can be done by means of an additional
Fourier transform in the transversal (beam) direction, where the transversal Fourier
modes are more regular and in practical cases it can be performed numerically by
the Fast Fourier Transform. In the extension to the three dimensional case, a disper-
sion relation was found as a key element for an inexpensive computation of the
wave-pattern far downstream.
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Appendix A. Contribution of the antisymmetric and symmetric parts of G to
the wave resistance

In fact, from Eqs. (24), (27) and (29) we have that the wave resistance is the sum
of its symmetric and anti-symmetric parts Fx=Fs+Fa, where

Fs/a�
U
g��P(x)Gs/a(x�x�)P(x�) dxdx�. (59)
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But, interchanging the integration variables x and x� in the skew-symmetric term
Fa, we see that

Fa��
U
g��P(x�)Ga(x��x)P(x) dx�dx; (60)

but since Ga(�x)=�Ga(x) we have

Fa�
U
g��P(x�)Ga(x�x�)P(x) dx�dx; (61)

thus, Fa=�Fa, so the unique solution is Fx=0 and only the symmetric part Gs is
relevant for the wave-resistance computation and given by Eq. (30). On the other
hand, the symmetric part Gs is obtained as

Gs(x)�
1
2

[G(x)
G(�x)]; (62)

For G(�x), with the variable change u=�s, we have that



ds=−du ;

F(s)=−F(u) ;

exp(−isx)=exp(iku) ;

�
P−

→�
P+

;

(63)

and then

G(�x)�
1

2p�p+

du F(u)eiux ; (64)

replacing Eqs. (28) and (64) in Eq. (62) we arrive to the contour integral

Gs(x)�
1

4p�



dsF(s)eisx ; (65)

where 
 is now the net path composed of 
=
++
−, and 
+ are small circles around
each pole, see Fig. 5. Next, from the residue theorem

Gs(x)�
i
2
(F+
F−); (66)

where

F±�Res�F(s)eisx,�K� (67)
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We know that eisx is analytic on ±K and we write

Res�F(s)eisx,�K��eiKxRes {F(s),� K}; (68)

and since F(s) has isolated poles on ±K, the residue can be expressed as

Res{F,�K}� lim
s→�K

(s�K)F(s); (69)

but with the variable change u=�s

Res{F,�K}� lim
u→�K

(K�u)F(�u); (70)

and observing from Eq. (26) that F is skew-symmetric, we have

Res{F,�K}�lim
u→K

(u�K)F(u); (71)

and then

Res{F,�K}�Res{F,
K}; (72)

From Eqs. (66), (67) and (72) the symmetric part Gs is written as Eq. (31).
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