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Abstract

The radiation field in photocatalytic packed beds results from direct energy exchange
between the lamp and the catalytic beads, and from mutual exchange between beads that are
close to each other. The statistical description of these exchange mechanisms requires of the
knowledge of the one-particle and two-particle distribution functions. The detailed physical
and mathematical basis of a statistical model of the structure of a bed of spherical-like
particles of non-negligible diameter, are presented in this supplement. The proposed model
has been cast in terms of one and two-particle distribution functions, based on a widely
accepted physical picture of the packing structure. The model reproduces the expected bed
structure surrounding arbitrarily chosen particles at different distances from the annulus walls.
Elsewhere, this theoretical model has been validated against results obtained with tomography

experiments.
The Reactor

The proposed device is an annular, packed bed photocatalytic reactor schematically
shown Figure 1. This system shows the main features that can be found in the industrial scale
reactor. The reactor bed is made of silica spheres of d, =0.001m average diameter, packed

inside the annular volume between an outer (R, =0.050m) cylinder and an inner

(R, =0.025m) concentric cylinder. The length of the catalytic bed is L =0.60m and the
annulus inner wall is masked outside this region. Layers of inert spheres (withoﬁt catalytic
coating) extend the packing both from the bottom of its active region downwards and from its
top end upwards. This allows that a fully developed flow pattern reaches the catalytic section
of the bed and avoids the need for considering end effects in the statistical description the bed

structure.

If needed, for rather slow reactions, the continuous reactor operation in a partial
recycle loop allows achieving large flow rates per pass without ldwering the overall residence
time. Larger flow rates amount to larger values of the Reynolds number defined on the basis
of- the superficial velocity of the fluid and the diameter of the spheres in the packed bed. In
this way highly turbulent flow regimes can be achieved, minimizing the importance of mass

diffusion effects through the film adjacent to the catalytic surface of the spheres. This
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desirable effect brings about an increasing pressure drop along the reactor axial direction and

the possibility of eroding the TiO; coating of the spherical beads as its counterpart.
Spatial Distribution Model for the Spheres in the Packed Bed.

The description of the lamp-to-bead exchange requires of the knowledge of the
distribution of single beads in the packing, while the description of the bead-to-bead exchange

requires of the knowledge of the spatial distribution of pair of beads.

A model of the spatial distribution of the spheres in the annular packed bed should

necessarily account for

i) the effect of the reactor walls on the sphere spatial distribution, and

ii) the effect of the mutual volume exclusion between spheres in the close packed bed.

These two effects preclude the possibility of considering the bed as a homogeneous
and isotropic packing, at least for sets of structural parameters within the range of practical
interest. This is more so because the thickness of a photocatalytic annular reactor employing

titanium dioxide as the catalyst is always small.

We wish to treat statistically the problem of the spatial structure of an annular packing
of spherical beads. For that, we have to conceive a large number of experiments that are the
same in their macroscopic details but vary in an undetermined manner in their microscopic

details at a few beads level.

The experiment we may associate to the one-bead distribution consists in determining
on each one of the many, macroscopically identical reactors, whether there is a sphere
centered at a given position r,. This experiment will be thought of as being repeated for all

feasible positions.

For each position, the ratio of the favorable outcomes to the total number of

determinations performed on all the identical reactors will be expected to tend to a limit as the

number of determinations tends to infinity. This limit is the probability f (1)(51) d(3)g1 of a bead
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having its center contained in the elementary volume d®r, about the generic position 1, . The

limit function f (')([,) is the one-bead distribution function.

The radiation contributions to the bead-to-bead exchange mechanism are sketched in
Figure 2. The contribution to the total energy reaching the differential surface area d®A, on
the bead at the position r,, after a reflection on a differential surface area d®A, of a
neighboring bead at the position r, is shown in Figure 2.a. The contribution due to a beam
refracted and partially absorbed by the bead at the position 1, before reaching the differential
surface area d®A , is sketched in Figure 2.b. This radiation transport mechanism involves

pairs of neighboring beads. Therefore, we are interested on the spatial distribution of pairs of

beads.

The experiment we may associate to the distribution of pairs of beads consists in
determining on each one of the many reactor replicas, whether there is a sphere centered at a

given position r; and another bead centered at r,, for every feasible pair (g,,gz)-.

The ratio of the positive outcomes to the total number of determinations performed on

all of the identical reactors is expected to tend to a limit as the number of samples tends to
infinity. This limit is the joint probability f®(r,,r,)d®r,d®r, of a bead having its center
contained in the elementary volume d®r, about r, and of another bead having its center in

the elementary volume d(3)£2 at r,. The limit function f (Z)Ql,[ 2) is the two-bead distribution

function.
Invariance Analysis and Single Reactor Statistics
Let us consider a large (though, in practice, finite), collection of macroscopically

identical reactors, called reactor replicas, that differ in a random fashion from each other in

the microscopic details of their packing structure.
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Those properties depending exclusively on the spatial distribution of beads in the
packed bed, like f(')(gl) and f(z)([,,gz) , will remain unchanged when simple operations are

performed on each of the replicas in the collection.

Each one of these replicas remains identical to itself at the macroscopic level, and so
does their entire collection, when invariance operations like rotations around the lamp axis

and (in the absence of end effects) axial translations are carried out up to an arbitrary extent.

Let’s consider a pair of fixed sampling vectors 1, and r, for each reactor replica.

During the course of invariance operations, the pair of vectors associated to each one of the
replicas remains unchanged, always pointing at the same spatial locations while the packing
rotates and translates axially. During invariance operations the pairs of sampling vectors will

sense different situations, consisting in one of the following, mutually exclusive events:

e there are simultaneously bead centers at the two locations the pair of vectors point at.
e there is a bead center around the position that one of the vectors points at, and none at the
other.

e there are no centers around the positions that the pair of vectors point at.

In this work we assume that the ratio of the number of outcomes of each kind, sensed by the
pair of sampling vectors, to the total number of them, will be the same irrespective on whether
the ratio is computed on the entire collection of reactor replicas or on any single replica in the
ensemble, subjected to the invariance operations already described. This will be more likely

so if the reactor packing contains a very large number of beads, as it happens in our case.

Invariance Analysis and Independent Variables
The indifference of the values of structure-dependent properties under virtual
invariance operations allows us to reduce the number of variables to be considered in the

description of the problem to the minimum set of independent ones.

Lets consider the one-bead and the two-bead distribution functions depending

exclusively on the packing structure. Because the packed bed consists of a cylindrical annulus
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filled at random with quasi-spherical beads, both f®(r,) and f®(r,,r,) must remain

unchanged under virtual rotations around the lamp axis keeping the sample points fixed in

space.

Similarly, neglecting end effects is equivalent to assume that the packing has infinite
axial length. In this is the case £(r,) and £®(r,,r,) must remain invariant under arbitrary

translations along the axial direction.

It is well known that in annular packed beds with [(De —Di)/ dp]>20 the two

containing walls are far enough apart to act independently and will not simultaneously affect
the beads spatial distribution'. The packing of our bench-scale setup fits well into this
condition since [(Dc -D, )/dp] =25.

In addition to this, the aspect ratio referred to the diameter of the annulus inner wall is
D, /d, =50, sensibly smaller than D;/d, =20, which is considered the lower value of the

aspect ratio for the wall curvature to have any measurable effect on the bead distribution.

Therefore, under our working conditions the packing can be thought of as distributed

between two parallel planes separated by the distance (R, —R;). In this limit, the annulus

approaches locally the shape of an infinite slab and virtual operations like rotations around the
lamp axis and axial translations become arbitrary displacements on planes parallel to the

infinite slab boundaries.

On these grounds, we can impose the following invariance conditions on both f®(r,)

and £2(r,.r,) :

f(l)(xl,yl,zl)=f(1)(x1,y]+y°,zl+z°) (1.a)

f(Z)(xl’ yl’Zl;xz’Y2’Zz)=f(2)(x1’y1 tY.,2,tZ,5X5,¥, T Y,,2, F Zc) (1.b)

In Equations 1.a,b, the position vectors r;, (i =1, 2), have been replaced with their rectangular

components (xi,yi,zi), while y, and z correspond to a displacement vector along an
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arbitrary direction on a plane parallel to the slab boundaries. Because of the assumed

arbitrariness on y, and z, we can always choose y, = —y, and z, = —z,. With this choice

fO@)=f(x,) (2.)

f(z)(llvlz)zf(Z)(xl;xz’yz Yl _Z]) (2.b)

Thus, with the given symmetries, £”(r,) is a function of a single variable X, , running along

an axis perpendicular to the slab boundaries. This conclusion is valid for all packing

properties depending upon a single particle position.

The symmetry analysis of f (Z)Ql,gz) can be carried on further. Lets introduce a
spherical coordinate system (p 6,(1)) centered at (xl,yl,zl), with its 8=0 axis parallel to the

X, axis of the original rectangular system and with the same direction. The following set of

equations represents the transformation of one coordinate system to the other:

1
pz[(xz—x1)2+(y2_y1)2+(22_21)2]2 (3.2)
pcos()z(x2 —xl) (3.b)
psinecosq)=(y2 —yl) (3.c)
p sin® sin(1)=(z2 _21) = 3.d)
with 0 <0< 7. By substitution of Equations 3.a,b,c and d in Equation 2.b
f(z)(g1 1,)=f® (x];x1 +pcosf,p sinBcosd,p sin sind)) 4

The function f (2)(;,, Iz) must remain invariant when the packing, locally assimilated to a slab,

revolves around the x axis by an arbitrary angle ¢_

f(z)ﬁl,g2)= f(z)[xl;x1 +pcosO,p sinGcos(¢—¢0)p sin@ sin(q)—(ba )] S)
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Given the assumed symmetries, we can choose ¢ =¢, thus simplifying Equation 5 into the

following
f(z)(gl,gz):f(z)(xl;x] +pcos 6) (6)

where only the minimum set of independent variables has been retained. For the assumed
symmetries, these results can be extended to all functions depending on the positions of pairs

of beads.

The Two-Particle Distribution and the Correlation Function

The two-bead distribution function f(z)(Il,[z) can be written in terms of the

correlation function g(r,,r, ) defined as follows

f(z)(Ll,[z)Ef(])(Il)f(l)(iz)g(l_'l,l'z) )

If the event consisting in that particle “1” is at position r, can occur irrespectively of
the event that particle “2” is at the position r;, and vice-versa, the events are said to be
mutually independent. If this were the case, the joint probability distribution f (2)(5,[2) of the

compound event consisting in that particle “1” is 1, and particle “2” is at r,, would be equal

to the product of the probability distributions of the single particle events,

£0(,,1,) =0, )£, ®)

From Equations 7 and 8 we can conclude that the mutual independence of the events is

equivalent to the condition g(rl, gz)=1 for all pairs (gl,gz). The condition that the beads are
rigid and cannot overlap with each other makes it imposible the occurence of all pairs ([1,[2)
for which p = “;2 - ng < 2. As a consequence of this, the equality g(r,,gz)zl cannot be

satisfied for all pairs &, ,gz) and the events are not independent.

By imposing the results of the invariance analysis of the preceding section on

Equation 7, we obtain
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£ O, r,)= 10, )t O(x, + pcos 0)g(x,: x, + p cos 0) )]

From Equation 9 we can see that proposing a model of f (2)([1,52) amounts to propose a
model of g(r,,r,), assuming that a model of the one-bead distribution function has been

adopted.

The conditional probability distribution® f(zﬂ)(zz /1) that particle “2” be at r, given
the certain fact that particle “1” is at the position r;, can be also be written in terms of

g(r1,12)

£ (e, /r,)= 1 %)) 0, )glr,.r,) (10)

With the results of the invariance analysis of the preceding section, Equation 10, can be

written as follows
f(zn)([2 /Il) - f(l)(xl + pcosg)g(x]; X, + pcos 9) ap

In Equations 7 and 10, the impact on the packing structure due to the walls in a finite system
is described by the one-particle distribution functions f®(r,) and £")(r,), while the structure
introduced by the volume exclusion effect of one particle on its surroundings is described by

the two-particle correlation function g(r1 T, )

The One-particle Distribution Function and the Solid Volume Fraction.

In the preceding section we have pursued the argument that the two containing walls
are far enough apart to act independently and will not simultaneously affect the beads

distribution at any point in the packing. At the core zone far from either wall, the beads can be

assumed uniformly distributed and the limit condition
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lim f(x)=n_ \ (12)
X = o0

must be satisfied, where n_ is the number of bead centers per unit volume at a position x_

far from either wall. In Equation 12 we have dropped the label 1 of the argument x since

there is no need to keep distinguishing it from any other in that way.

In the core region between the slab boundaries, n_ can be related to the solid volume

fraction, m_, in a simple way
Mo = VpDe (13)

where v, is the average bead volume.

The local solid volume fraction, 1(x), can be constructed on the basis of the one-bead
distribution function®>. As shown in Figure 3.a, the beads contributing to the solid volume
fraction taken at a distance x 22 from the nearest wall are those with centers at a generic
position y, such that [(x —)<y<(x+ 1)]

Assuming that there is a bead at that generic position, its circular area of intersection

with the plane through x, parallel to the wall, is

A y) =ni2li-(x—y)] (14)

On the other hand, the contribution of one bead located at the generic position y, to the
total volume of solids contained in a elementary slab of width Ax about x, equals the product

A(X,y)XAx, as shown in Figure 3.a.

Based on the translational invariance of the properties depending on a single particle
position under arbitrary displacements on a (y,z) plane at x, we arbitrarily cut out a unit area

on that plane, thus defining an elementary rectangular sampling parallelepiped of volume Ax .

The average volume of solids 8V, (x)contained in this elementary parallelepiped
when sampling a large number of (y, z) positions can be constructed by multiplying the

contribution from the generic bead at y, times the probability that the bead can be found at

that location, f (l)(y) dy, and then integrating over the range of y, to obtain:

9
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x+1

8V, (x) = (%) [dyAx,y) £9(y) (15)

x-1

The ratio of the average solid volume in the sampling parallelepiped, 8V,,(x), to its total

volume, Ax , is the local solid volume fraction:

x+1

N =(n) fay - (x-yPle0y) s x>2 (16)

For x <2 the situation is somewhat different. As it is shown in Figure 3.b, the centers

of the beads in the packing cannot reach positions such that y <1. This amounts to say that

f (I)(y) must be zero for 0 < y <1 and no contributions to the local solid volume fraction can

be expected from beads hypothetically centered in this interval. In this case

x+1

) = () [y -(x-yPle9) s  o0<x<2 (17
0

Both of the situations just discussed can be represented by a single expression of 1n(x), as

follows:

x+1

e =(m3) fay - (x-yP|e9) HGy) ; x>0 (18)

x-1

where H(y) is the Heaviside step function.

The equivalent expression
n(x)=(u)[ a5 (- O -Qullx-¢)-1] x>0 (19)

with constant integration limits, has been obtained by substitution of { = x —y in Equation

18.

10
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Although the distortion caused by the confining wall on the packing structure

propagates up to about ten-bead radius distance, the direct volume exclusion effect of the wall
on the beads resting against it does not affect the expression of 1(x)in terms of f (‘)(y) for
x 2 2. This situation is accounted for by Equation 19 because for x >2 and (-1<{< 1), we

always have [(x — )~ 1]> 0, and consequently, H [(x — C) — 1] = 1. Therefore, we have

n(x) = (mé)jdc(l—cz)f“’(x—c) ; x22 (20)

Equations 19 and 20 are integral relationships between the solid volume fraction and
the one particle distribution function. If f (‘)(x) is known the local solid volume fraction can

be calculated. Conversely, if 1(x) is known, Equations 19 and 20 are integral equations in the

unknown function f®(x).

General Features of a Model of the One-particle Distribution Function

A statistical model of randomly packed beds must put together the distinctive features
of this type of packing. In particular, the mathematical form of f (l)(x) must be consistent with

the physical picture summarily described as follows:

A lower bound greater than x, = 1 can be imposed on x, due to the fact that a spatial
configuration with x, close to one is considered very unlikely, given the compactness of the

first layer of a packing under practical conditions®® .

To estimate an upper bound for x,, we may consider the extreme situation in which
the beads in the first layer are at close packing conditions, where every bead is surrounded
and touched by other six beads of the same layer. Under these circumstances, the closest
position to the wall that the center of a bead in the second layer can reach is that which

corresponds to the bead resting on three beads belonging to the first layer.

11
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The centers of these four beads at contact with each other forms a regular tetrahedral.

If we call this distance x_,, then for looser structures the range of x, can be conservatively

cp?

estimated to be [1 <X, < xcpJ, noting that a bead in the second layer never reaches the lower

bound. From standard trigonometry calculations we find that x , =2.633.

The subsequent layers are less and less ordered. The wall effects on the particle
distribution weakens and it oscillates about its asymptotic value in a damped fashion until at

the core region between the slab boundaries the beads can be assumed uniformly distributed.

The mathematical form of f (‘)(x) must bring together the main aspects of the physical

picture just described. This picture can be sumnmarily phrased as follows:

e There is a highly ordered and fairly compact first layer with most of the beads resting
against the nearest wall®®. This is the most meaningful statistical event regarding this first
layer, and the one-bead distribution function must express the certainty that most of the

beads in this layer have their centers on a plane at x =1, parallel to the wall.

e Moving from the wall inwards a second layer, not so well defined as the first one, is
found. Most of the beads of this second layer rest on the ones of the first layer. Therefore,
there is a direct volume exclusion effect from beads in the first layer upon those of the
second one. The number of bead centers per unit volume corresponding to the second
layer starts building up only beyond a distance x, depending on the average bead
concentration. In the interval [l < x < x, 1, going from the plane of centers of the first bead

layer to the position x,, no bead centers can be found due to the exclusion effect already

discussed. From the statistical standpoint, this amounts to say that f (l)(x) must be zero in

the interval [1<x <x_].

* At x, the first few centers are found belonging to those beads in the second layer that
reach closer to the wall. At this point, the value of the one particle distribution function
and that of its derivative should equal zero, both increasing in a continuous fashion with

x in the vicinity of x, .

12
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e Subsequent layers are less and less ordered. The wall effects on the particle distribution
weakens and it oscillates about its asymptotic value in a damped fashion until, at the core

region between the slab boundaries, the beads can be assumed to be uniformly distributed.

On these grounds we conclude that there are two, mutually exclusive events to take
into account when modeling the one bead distribution function f®(x): the sample bead at
x either belongs to the first layer, in which case x =1, or to the subsequent, less ordered

layers with its center at x > X, .
We propose the following expression of f (‘)(x);
fO(x)=C8(x-1)+H(x-x,)o(x) ; I<x <x Q1)

The first term of Equation 21 corresponds to the probability density that a bead can be
found at the distance x =1 from the wall, which is a certain fact. Aside for the constant C
related to the compactness of the first layer, this term consist of the Dirac delta “function”
6(x —1) which is zero everywhere except at x =1, where it is unbounded. Among other

properties, the delta “function” has the following one

8(y-y.)h(y)=8(y-y.h(y.) (22)

where h(y) is an arbitrary function, continuous at y =y, .

The second term of Equation 21 is a product of the Heaviside step function H(x - xo)

times a continuous damped oscillating function (p(x). The step function models the direct

volume exclusion effect of the first layer on the next one. On the other hand, the damped
oscillating function is consistent with the physical picture in which the local concentration of
bead centers oscillates about its asymptotic value in a damped fashion as the wall effects on

the packing structure weakens, to finally approach a uniform distribution.

As it was discussed above, at x, the value of the one particle distribution function and

that of its derivative should be zero, therefore

13
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o(x.)=0 (23.a)
and
¢(x,)=0 (23.b)

From Equations 19 and 21, the corresponding expression of 1(x) in terms of ¢(x ) is

n(x) = C me} |1 - (x - 1] H2 - x) H(x) +
+r [dg(-¢2)olx - ©) H(x - §)- x.] (24)

Considering that experimental values of n(l) are widely reported in the literature for

the most frequent random loose packing conditions, the substitution of x =1 in Equation 24,

gives
C= (%)— ng (1—§2)(p(1—C) ; l<x, <2 (25.a)
C= (%J ; X, >2 (25.b)

Equations 25.a;b help to estimate the value of C for the purpose of the presentation of the

model, and also to check the consistency of our own experimental results to be presented in

the next paper of this series. Assuming the values x, = 2; n(1)=0.77 and I, =5.0x10*m

hold in our case, we find that C =1.96x10° beads/m’.

-

For x 2 (xo + 1) Equation 24 becomes

n(x)=mnr; ij(l—Cz)w(x—C) ;o x2(x,+1); 1<x, <X, (26)

because under these conditions H [(x ~{)-x.]=1 in the entire rangeof £, [-1< ¢ <1].

14
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At distant locations from either wall the packing structure tends to be uniform and

Equation 26 tends to the limit expression
i

n_=| e [dg(1-27) lo. = v,0. @
-1 )

By comparison of Equation 13 with Equation 27, we conclude that
0. =n, (28)

Equation 28 is an asymptotic condition that the function @ must satisfy in addition to the

constraints of Equations 23.a, b.
A Mathematical Model of the One Particle Distribution Function

From the physical analysis of the precedent section we conclude that the general
features that the one particle distribution must have are expressed in Equations 21 to 23. A
mathematical form should be proposed for the damped oscillating function ¢(x ), consistent
with the fact that the local concentration of bead centers oscillates about its asymptotic value
in a damped fashion with x, to finally approach a uniform distribution. We propose for (p(x)

the following expression
o(x) = nm{l +e[c, cos(ax) + c,sin(ax)] } ; (a,b)>0 (29)

where b is the damping coefficient, a is the frequency of the oscillation and ¢, and c, are

constants. The expression for (p(x) of Equation 29 satisfies the asymptotic condition of

Equation 28.

The mathematical form proposed for the function ¢ must also satisfy the constraints

of Equations 23.a, b. It is easy to show that these constraints can be expressed as follows

¢, cos(ax, ) + c,sinfax, ) = —e"™ ' (30.a)

15
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b
¢,sin(ax,) — ¢, cos(ax,) = —e™ (30.b)
a

where X, is the parameter defined in Equations 21 to 23.

Solving the system of Equations 30.a, b for ¢, and c,in terms of a,band x_, we obtain
bx b :
c,=e "[{— sm(axe)—cos(axo) (31.a)

a

c, =-e™ |:sin(ax°)+(chos(axc) (31.b)
Substitution of Equations 31.a, b in Equation 29, after a rearrangement, gives

o) =n_ - n&e-b<x-x»>{cos[a<x - (2 ol - x°>1}; k>x) o

a

The expression of @(x) in Equation 32 satisfies the constraints of Equations 23 and

28; and when replaced in Equation 21 completes the mathematical model of the one particle
distribution function. The result is shown in Figure 4 for a set of parameters taken from

literature”.

By substitution of Equation 32 in Equation 24 we obtain the expression of
n(x )consistent with the model proposed for f )(x). For values of x, in different intervals,
the resulting equation embodies all the particular situations encountered as the value of x
increases in the interval (1 <x< oo). All the situations arising in this process are thoroughly
discussed in Appendix I, supported on its complement Appendices II and III. The values of
n(x) as predicted by the model Equations 24 and 32 are shown in Figure 5 for the same

parameter values as those of Figure 4. The parameters in Equations 21 and 32 will be

determined by non-linear regression of tomography experimentsg.

The Radiation Field and the Two-Particle Distribution Function

16
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As it was discussed earlier in this work, the rate of photocatalytic reactions on a “test”
bead differential area will depend on the useful energy per unit time and unit area reaching a
reaction site either from the lamp or from neighboring beads. A statistical model of the
packed bed structure based on the probability of occurrence of pairs of beads is an
indispensable supporting tool for the simulation of the energy exchange between a test bead

and its surroundings.

The prevailing direct two-body energy exchange is a short-range phenomenon. This is

so because this mechanism involves the “test” particle at the generic position r, and those in

the shell of nearest neighbors, their position being collectively represented by r,.

This nearest couch of beads includes:

» Those beads at contact with the “test” particle, even if they fail to complete a surrounding

compact shell, and

¢ Those beads that, although not stricktly at contact with the “test” particle, still are close
enough to it so that its circular cross section can be seen from reaction sites on the central

bead surface.

This couch acts as a screen preventing radiation from those beads in outer shells to
have direct access to the surface of the “test” particle. As a consequence of this, all the
particles effectively participating in the direct energy exchange with a central “test” particle

have their centers inside a sphere of radius p,_., enclosing all surrounding beads which

participate in the radiation exchange with the central bead catalytic surface.

A conservative upper bound of p_ can be easily calculated if we assume that the beads

surrounding the central one were close packed. In this case, we may consider the arrangement
made of the central bead, together with three of the beads at contact with it and with each
other, and a fifth bead at contact with these last three beads. In this compact arrangement, the
fifth bead is the more distant one from the central bead that still can be seen from points on

the test particle surface, although mostly eclipsed by the beads at the intermediate positions.
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The five bead centers are the vertices of two regular tetrahedra with a common
triangular face. The distance between the two vertices farther apart in this arrangement is the
closest distance of approach of a particle in the second surrounding layer to the central one, .

under close packing conditions. From standard trigonometry calculations we find that this

distance is p,, =3.266. For looser arrangements, we have 2 <p <p, =3.266. The
radius p ,thus defined is a very conservative upper bound for the radius of the nearest

surrounding couch, p,. .

Beyond that distance, direct two-body radiation exchange contributions from beads

located farther away from particle 1 would be unduly taken into account. Therefore, both
f (Z)Ql,gz) and g(r;,r,) can be considered short-range functions assumed to be zero outside a

sphere of radius P

The Two-bead Correlation Function in Packings of Spherical Beads

The model adopted for the two-bead correlation function for loose-packed beads has
been thoroughly discussed elsewere’. Here, we are going to highlight the key arguments on

which the model is based.

e For a liquid of rigid spheres, the radial distribution function from statistical mechanics
shows the general mathematical form found for randomly packed spheres'®. But since the
results from statistical theories of classical fluids are not applicable without further
considerations to packing densities as high as those of a loose packed bed, quantitative

agreement cannot be expected.

e A large body of numerical simulations has given strong evidence for the adequacy, over
an extensive range of parameters, of various approximate integral equations for the pair
correlation function in classical fluids. The simplest of these, and on the basis of
comparisons against numerical simulations, the most satisfactory, is the approximate
Percus-Yevick (PY) theory1 g

® A close form of the pair correlation function g(p;n) for a homogeneous and isotropic

fluid of rigid spheres was obtained by Wertheim'? as the solution of the PY integral
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equation. The Wertheim (W) solution behaves satisfactorily beyond the range of 1 for

which the approximations on which the PY equation is based are considered valid, and is
able to approximate results of numerical simulations up to mass fractions close to that of

the liquid-solid transition of rigid spheres systems.

e Because of the volume exclusion effect of the central particle on its surroundings, the two-
particle correlation function must be zero in the interval (0<p< 2), irrespective on
whether the system is homogeneous and isotropic or not. Beyond p =2 the W analytic

solution for the case of an infinite, isotropic medium is expressed in the form
gosn) =2 g. (o) (33)
n=l

where the dependence of the pair correlation function on the uniform solid volume

fraction has been made explicit.

e A generic n-thterm, g_ (p;n), in Equation 33 behaves as follows

g.(mm)=0 ;p<2n or p>2n (34.2)
g.(mM)>0 ;2n<p<2n+2 (34.b)

these conditions were obtained for n = 1,2,....c. The interpretation of Equations 34.a,b is
that for a given p, only one term of Equation 33 is different from zero, namely the one.
whose label satisfies the condition 2n <p <2n+2, with n an integer number. As a result
of this, Equation 33 offers a description of g(p;n) in terms of concentric layers, each one

relieving the preceeding layer as p increases in the interval (2 <p< oo).

e Except for its core region free from wall effects, our packing differs from those systems
for which the pair correlation function has been derived, in that it is neither uniform nor
isotropic. Besides, the asymptotic solid volume fraction in this region is expected to be

1. =0.62, well inside the solid phase region of an isotropic and homogeneous system of

19



© 2004 American Chemical Society, Ind. Eng. Chem. Res., [razoqui ie020984w Supporting Info Page 21 -~

rigid spheres, and halfway between 1 ¢ and n,, which are the values of the solid volume

fraction at the liquid-to-solid transition, and at close packing, respectively.

e The W close expression of g(p;n) is not applicable as a predicting tool to packing
densities as high as those found in loose packed beds. Outside the range of n where the
theory is valid, the W mathematical form of the pair correlation will be used as a sensible
expression on which to lay a model of the first layer surrounding a central bead in the

narrow band (2.0 <P<P,. ), and for the dimensionless densities 1 of interest here.

e As part of our model, we will assume that the exclusion effect of the central bead on its
nearest neighbors propagates along each direction through its non-homogeneous

immediate surroundings, as it would have done in a hypothetical homogeneous and

isotropic medium with a solid volume fraction 1", different for each one of the directions

considered. The solid volume fraction 1" for every feasible direction will be chosen as the
local value of m in the structured medium, taken at the halfway position between the

center of the test bead, x,, and that of its closest neighbor, x, + pcos 8, along every 6

direction of search.

e With this choice, " will depend on the direction considered as follows
n*:n(xl+%pcosej ; 2<p<p,;0<0<m (35)

¢ In previous sections, we have argued that only those pairs of beads with distance between
centers, P, in the interval [2 <P <Py <Py = 3.266] are provisionally considered to
account for the bead-to-bead energy exchange mechanism. Therefore, for our purposes in
this work, only the first layer contribution to the W expression of g(p; n*) will be

retained,

glo:in’)=g,p:m") (36)
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o The expression of g,(p; n)according to the W solution is given elsewere’ and its profiles
for different values of 1} are shown in Figure 6. For the largest values of the parameter 11,

it may happen that the downward slope following the sharp peak at p = 2 is so steep that
g(pmin;n*) reaches a relatively small and negative value. This unphysical situation is

corrected by requiring that g(p; n) be always positive or zero.

With this model of the pair correlation function in the packed bead, and the symmetry

considerations made in previous paragraphs, Equation 9 may be written
£O(x,;x, + peos 8) = fO(x,) f(x, + pcos 6) g(p;n*) (37)
where 2<p<p,, and 0 <O < m.

The conditional probability distributionf (”‘)(xl + pcos G/xl) that bead 2 is at

X, = X, +pcos 0 given the certain fact that bead 1 is at the position x,, may also be written

in terms of g(p;n')
f(z/‘)(xz/x,)= f@(x, + pcos 0/x,) = fW(x, +pcos 0) g(p;n*) (38)

Equation 38 completes our model for the statistical description of the packed bed
structure based on the probability of occurrence of single beads and of pairs of beads. In the
following section, the structure of the packed bed in terms of pair of beads as the present

model predicts it will be discussed.

The Packing Structure in Terms of Pair of Beads. Analysis of Conditional Probability

Profiles.

The conditional probability f @ 1)(xl +p cos® / xl) as a function of 0 in the interval
(0 < 8 < m), for several constant values of the position of the central bead, X,, and of the

radial distance, p, can be represented in polar coordinates. The length of the radius vector in
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this representation is proportional to the value of the function f @) and the @ = 0 direction is

collinear with the x, axis.

Figure 7 corresponds to the arbitrary “test” particle (particle 1) resting against the

containing wall (i.e., x, =1). In this case, the conditional distribution function, f @M s zero

for values of @ in the interval [(n/ 2) < 0 < 7]. This is so because for X, =1 and for values of

0 in this interval, the distance of bead 2 to the wall,
X, =X, +pcos O (39)

will be, if not negative, smaller than unity, for any positive p. As we know, this is a situation

incompatible with the fact that beads can not be found at a distance to the wall shorter than

unity, when measured as multiple of one bead radius.

The factor f (l)(xz) in Equation 38, has the mathematical form given by Equation 21.

For x, <x,, it becomes

fO(x,)=Cd(x, 1) (40)
The substitution of Equation 40 in Equation 38, gives

£O(x, /x,) = C 8(x,—1) gloin’) @1

where 1" has been defined in Equation 35. The Dirac § “function” with argument (x2 —1)
will be zero everywhere, except at x, = 1, where it is unbounded. From Equation 39 it can be

seen that, for x, =1, this happens at 8, = /2 and, as a consequence, x, = x, = 1. This

result is shown in Figure 7 by means of spikes pointing at opposite directions as icons

representing the unbounded Dirac 8 “function”.

22




© 2004 American Chemical Society, Ind. Eng. Chem. Res., [razoqui ie020984w Supporting Info Page 24

From a physical standpoint, the meaning of this singularity of the conditional

probability at ©, = m/2 is that there are beads in the nearest couch surrounding the central

particle, which are precisely at a distance.x, =1 from the containing wall.

Always keeping the central particle at x, =1, we can see that the inequality
1<(x, =1+pcos 9)< (p+1) holds for values of 8 in the interval [0 <6< (n/2)] For
given values of p = 2, there will be some values of 6 for which the calculated location of the

surrounding bead, x,, is in the interval [1 <X, < xo], where no bead centers can be found.

Therefore, the f @ function should be zero for these values of © , as it can be seen in Figure

7.

If the chosen value of p is greater than (xc - 1), in the process of 6 going through
values from 6 = /2 to 6 =0, the distance of the surrounding bead to the wall, X,, begins to
be larger than x_ atan angle 0 = 0, and the f @ function begins to show non-zero values. In

Figure 7, the value of 0, corresponds to the slope of the straight line through the origin,

which also is a tangent to the considered p =constant profile.

For 6<0_, the conditional probability f @) increases with decreasing O, until a °

maximum is reached. Then it decreases to a minimum at 6=0.

The local maxima of £®"as a function of 6, correspond to the angular positions of
the surrounding particles in the most probable structure around the test particle at x, =1, i.e.,
that with surrounding beads at 6 =m/2, which are also resting against the wall, and other

surrounding beads at a 0= n/4 angle.

The model also accounts for the fact that not all the particles in the nearest
surrounding couch are at contact with the “test” particle (i.e., at a relative distance p=2), but
some of them are at distances a bit larger. The shrinking profiles of Figure 7 with p > 2

reflect this possibility, although the conditional probability associated to these events decays

sharply as p increases, revealing a rather thin layer.
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Figure 8 corresponds to cases where the “test” particle is located at different distances
from the wall. These positions were chosen within the interval [1 < X, < 3], and the profiles
correspond to situations where the bead “2” is at contact with the central bead (i.e., p= 2) The

corresponding most probable structures surrounding the central particle have been sketched

on the left half field of the same figure.

Although the details are different, the arguments used in the discussion of the profiles

of Figure 7 are applicable to the profiles of Figure 8.

In this case, the conditional distribution function, f */V, is zero for values of © in the
interval [(n/2)< 6, <6< n], with pcos 8, =(1-x,) and p =2. This is so because for

values of O in this interval, the distance of bead 2 to the wall calculated from Equation 39"

will be less than unity, which is an unphysical situation.

For 8=0,, x, =1 and the Dirac 8 “function” in Equation 41 becomes unbounded.
As before, this result is shown in Figure 8 by means of spikes tilted by an angle 0,, which is

different for each location of the' central bead.

Again, the physical interpretation of this result is that there are beads in the nearest -

couch surrounding the central particle, which are precisely at a distance x, =1 from the

containing wall, as long as x, <x, <3.

For O values a bit smaller than 0,, the distance of particle “2” to the wall, X,, as

given by Equation 39 will be in the range 1 < x, < x,, which is an unphysical situation. This

will happen as 6 decreases, until the value 8, is reached for which x_ =x, +pcos0_; i.e.

the position of particle “2” has just reached the innermost margin of the gap in the bead

centers distribution due to the volume exclusion effect of the beads resting against the wall.
For values of 0 lower than ©,, the conditional probability f @M assumes non-zero values,
with its local maxima corresponding to the most probable angular positions of bead “2” in the
immediate surroundings of particle “1”. The angles 0, and 0, are shown in Figures 8.a, b, c,

d.
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Figure 9 corresponds to the case where the “test” particle is located at a radial position
x, = 10, rather distant from the wall.

Considering the p=constant contours of Figure 9 we can conclude that local maxima
and minima are more evenly distributed with 0 than for positions closer to the wall,
approaching the limit circular shapes we expect to find in the homogeneous core region of the

packing.

The lack of symmetry of the contours about the 8 = 1/2 direction is due to the fact
that the perturbation introduced by the wall still affects the distribution of the spheres, even
though it decays as the distance from the wall becomes larger. This is the reason why the

“test” particle “sees” different structures along directions at supplementary values of 6. In
fact, the profiles are more structured for n/2 < 0 < 7, closer to the wall, than for their

suplementary counterparts in the range 0 < 6 < 7/2, closer to the core region.

Conclusions

A model of the one-bead distribution function has been proposed on the basis of a
large body of scientific results from literature. It offers a statistical description of the bed
structure in terms of single particles, which is consistent with the singular nature of the layer
of beads resting against the containing walls, as well as with the volume exclusion effect they
exert on neighboring bead layers. Farther from the wall, it reproduces the expected damped

oscillating behaviour until the uniform, random core region is reached.

When calculated in terms of the proposed one-bead distribution function, the solid
volume fraction increases in a quasi-parabolic fashion, starting from zero at the wall and
reaching a first local maximum at about one bead radius distance from the wall, while a sharp

minimum is attained at about two bead radius distance from it.

Once the model of the one-bead distribution has been adopted, proposing a model of
the two-particle distribution function is equivalent to propose a model of the pair correlation
function. For this, we have borrowed from statistical mechanics the close form of the pair
distribution function for a homogenous and isotropic system of rigid spheres obtained as the

solution of the integral Perckus-Yevick equation, tested valid for solid volume fractions up to
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0.47, corresponding to the liquid-solid transition. With some restrictions, in the non-
homogeneous packing this function is evaluated for the solid volume fraction found halfway

between the centers of the two particles.

The pair distribution function introduces naturally the mutual exclusion effect between
rigid particles, as well as the structure of the first shell of neighbors surrounding a given

particle and its dependence on the degree of compactness of the bed.

The model reproduces the expected bed structure at the surroundings of an arbitrarily

singled-out particle at different radial distances from the containing walls.

In a following paper, the model has been validated against results obtained with

tomography experiments.
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Nomenclature

a frequency factor, dimensionless

b damping coefficient, dimensionless

c, constant defined in Equation 31.a, dimensionless

c, constant defined in Equation 31.b, dimensionless

d(Z)Ai differential surface area at the positionr, , dimensionless

d(3)£i elementary volume at the positionr,, dimensionless

f(l)(ll) A probability distribution of one bead with its center at position 1, m>

£@(r,,r,) probability distribution of pair of beads, m?

g(r,,r,)  correlation function defined in Equation 7, dimensionless

H(x) Heaviside step function.

L useful length of the catalytic bed, m

n_ bead centers per unit packing volume in the core region, m”

R, external radius of annular bed (=D./2), m

R, internal radius of annular bed(=Dy/2), m

T average bead radius (= d, /2), m

T, position vector with components (xi Yoo zi) in a rectangular frame of reference

T, position of bead 2 relative to that of bead 1

Vo average bead volume, m’

X rectangular coordinate running along an axis perpendicular to the slab walls
and increasing from either inwards, measured as a multiple of the average bead
radius, dimensionless

X, distance from where the second layer starts, dimensionless

X ep distance from the wall to the perfectly ordered second layer under close-
packing conditions, dimensionless

X_ values of x in the region far from the walls and around the midpoint between
the slab boundaries, dimensionless

y generic position of the center of a bead, dimensionless

y. arbitrary displacement from (x, y,z) along they coordinate axis on a x=
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constant plane, dimensionless
z, arbitrary displacement from (x,y,z) along thez coordinate axis on a x=

constant plane, dimensionless

Greek Symbols
3(x) Dirac delta “function”
n(x) local solid volume fraction at the position x , dimensionless
N.. mass volume fraction in the uniform core region, dimensionless
N mass volume fraction of a close-packed homogeneous arrengement, dimensionless
Nis mass volume fraction at the liquid-to-solid transition, dimensionless
o(x) oscillating function defined in Equation 29.
£ variable of integration, dimensionless

(0,6,0) spherical coordinate system centered at (x,,¥,,2,), with its 8 = 0axis collinear to
the x axis of the rectangular system

P distance from the center of bead 1 to the center of bead 2 measured as a multiple of
the average bead radius, dimensionless

Pep distance from the center of the “test” particle to that of a bead in a second
surrounding layer under close packing conditions, dimensionless

P radius of the sphere enclosing the nearest couch of beads surrounding a central

particle, dimensionless.
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Appendix I:

The compact expression of n(x) consistent with the model proposed for f (l)(x):

nlx) = €l )t - (x - 1)) HE - x)H(x) +

rd [a- 2ol - O Hl(x - ) - x.]

-1

(L1)

embodies every particular situation that can be encountered as the value of x increases in the

interval [1 < x < oo].

The function @(x) appearing in Equations L1 is an analytic expression given in

Equation 32.

Based on the properties of the Heaviside step function, in this Appendix we will

unfold this general expression into the different forms it acquires over the feasible ranges of

x,and x.

From its definition

1; 0
H()’)={0, iio L2)

Therefore, we may conclude that the integral term in Equation 1.1 will be non-zero

only for those values of x such that (x —xc)> -1, for a given X, in the interval

[1 <X, <X, J Assuming that this condition is satisfied, the integral will effectively extend

from § = -1 toeither { = (x - x,) or { =1 as its upper limit, whichever occurs first as {

increases in the integration interval [-1< {<1].

In this Appendix, every particular form that Equation I.1 will be discussed.
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Case 1: For 0<x <2 and (x - xo) < -1, we have H(2 - x) H(x) =1 and the integral term

in Equation I.1 is zero. In this case, the expression of n(x) reduces to

n(x)=me Cli-(x -1 13)

Case 2: For 0 < x < 2and x and X, such that - 1< (x —x, ) <1, the integral of Equation .1
is non-zero and it extends from {=-1 to { = (x—x,). The corresponding expression of

n(x)is:
)= ch- (-1 em2 fatf-£)ots -0 a4

In this case, the maximum value that the integral upper limit, (x -X, ) , can have is unity.

Case 3: For x >2 and x_ such that —1<(x—xc)<l, we have H(2 - x) H{x) =0 and the

expression of n(x) is
nx) = [dci- ¢l - ) ‘ 5)

Case 4: Increasing the value of x beyond (1+x,)> 2, we have H(2-x)H(x)=0 -and

(x —x,)>1. The corresponding expression of n(x) is

n(x)=nr ij (I—Cz)w(x—é) (L6)

All these cases can be easily sorted out with the aid of logical program statements. The
integrals appearing in the different mathematical forms of n(x) corresponding to each one of

the cases discussed are closed, analytical expressions calculated in Appendices IT and III.
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Appendix II:

In the interval [— 1< (x - x,,) < 1], we have

(x-x.)

fac-2)olx - Hlkx-0)-x.]= [dCli-22)o(x - 1) (L1
for a given x, in the interval ll <X, < xcpJ.

Direct integration of Equation IL1, performed after substitution of the expression of ¢(x — ()

obtained from Equation 26, gives

Jath-ghot-g=nl 2o L2

3
] ; —l<(x-x,)<1 (IL.2)

e—z{c1 cos[a(x - X, )] + czsin[a(x - X, )]}
a(a2 + bz)
where
¢, = ¢y cos(a{) + clzsin(a) (I1.3.a)
¢, = C, cos(a)+ c,,sin(a) (IL3.b)
and
¢y = (=2a)|a® + b2)+ 2b)] (IL4.2)
¢, = 2|~ bla® + %)+ (a> - b?)| (IL4.b)
Cy =Cpp (IL4.c)
Cyp =—Cy (1I.4.d)

The expressions above have been worked out from the results obtained using the free-

access QuickMath Automatic Math Solutions (www.quickmath.com).

We are also interested on the integral

1-x,

:i‘dC_, (1 - Cz)(P(l - C) H[(l - C)— Xu] = | :[c)1§ (l - Cz)(p(l - C) (IL5)
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with — 1< (1 - X, ) < 1. The result of this integration can be obtained substituting

x =1 in Equation I1.2.

Appendix III:

We are interested on the integral

Jac-cJols - ) il 0)-x.)= fa - ot -0 o

for (x —x,)>1 and ll<xo <xcpJ.

Direct integration of Equation (IIL.1), with (p(x - Q)obtained from Equation 32, gives

idc b= 2ot -)=n_(4)-

3
e—b[l (x -X, )] )
d cos[a(x - x)] + dzsin[a(x - X, )] }+ (11.2)
Tala’ +b? )
e—b[H(x X )]
{d, cos[a(x - X )] + d4sin[a(x - x)]}

ala? + b2)
where
d, = d, cos(a)+ d,,sin(a) ; 1=1,23,4 (I11.3)
and
d,, = (- 2a)|(a® + b?)- 2b) (IIL.4.2)
d,, = 2bla® + b?)+ (a? - b2)] (IL4.b)
d, =-d, (I1L.4.c)
d, =d, (11L.4.d)
d,, = (2a)la® + b2) + 2b) (IL4.¢)
dy, = 2/ba? +b?)-(a* - b7} (IL4.f)
d, =dj, (1.4.g)
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d,, = —d,, (ITL.4.h)

This expression has been worked out from the results obtained using the free-access

QuickMath Automatic Math Solutions (www.quickmath.com).
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Figure Captions:
Figure 1: Reactor configuration

Figure 2: Contributions to the bead-to-bead exchange mechanism. Figure 2.a sketches the

contribution to the total energy reaching the differential surface area d(Z)A1 on the bead at the
position 1, after a reflection on a differential surface area d ? A, of a neighboring bead at the
position r,. Figure 2.b illustrates the contribution due to a beam refracted and partially

absorbed by the bead at the position r, before reaching the differential surface area d ®A, .

Figure 3: The feasible locations, y, of beads contributing to the solid volume fraction n(x).
Figure 3.a: when X is at a distance x > 2 from the nearest wall, beads located in the interval

[(x —1)< y < (x +1)] contribute. Figure 3.b: when x < 2, the contributing beads are located
in the interval [l <y< (x + 1)], since there are no beads in the packing at positions y <1.

Therefore f m(y) must be zero for 0 <y <1.

Figure 4: The one-bead distribution function f (')(x)as a multiple of n_according to the
proposed model (Equations 21, 31 and 32), with a = 3.85;b = 0.25;x, =1.8; C = 1.96x 10°

(beads/m3); and n_ =1.184x10° (beads/m3) as tentative values of the parameters.

Figure 5: The solid volume fraction 'r](x) resulting from the proposed model of f (')(x). The

values of the parameters are as in Figure 4.

Figure 6: The pair distribution function g(p;n) forn.=062 and 0<p<4.

Figure 7: The conditional probability f @) for x, =1, represented in polar coordinates as a
function of 6, for several constant values of p (p =2.00; 2.1; 2.2; and2.3). The length of the

radius vector is proportional to the dimensionless value (f @y nw) for each corresponding

pair (9, p). The values of the parameters are as in Figure 4.
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Figure 8: The conditional probability f @ for different “test” particle locations in the interval

(1< x, <3) and corresponding sketches of the most probable structure around the central

bead.

Figure 9: The conditional probability f @) represented in polar coordinates as a function of

0, for several constant values of p (p =2.00; 2.1; 2.2;and 2.3). The “test” particle has been

located at a radial position x, = 10..
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Figure 1
(Irazoqui et al. sup)
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Figure 2
(Irazoqui et al.
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(Irazoqui et al. sup.)




