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The self-interaction for a static point charge in the space-time of a thin-shell wormhole constructed

connecting two identical Schwarzschild geometries is calculated in a series expansion. The electrostatic

self-force is evaluated numerically. It is found to be attractive towards the throat except for some values of

the throat radius proximate to the value of the Schwarzschild horizon, for which the force is repulsive or

attractive depending on the position of the charge. The result differs from the self-force in the space-time

of the Schwarzschild black hole, where it is always repulsive from the center. Although these wormhole

and black hole geometries are locally indistinguishable, the different topologies of both backgrounds are

manifested in the electrostatic field of a point charge.
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I. INTRODUCTION

Electrodynamics in general relativity is described by
the Maxwell equations in curved space-time [1]. A freely
falling observer in such background would write the same
equations valid for Minkowski space-time; however, these
equations must have a different solution, because the
curved geometry imposes a different asymptotic behavior
than the flat one. In particular, the electric field around a
static point charge in a curved background is not spheri-
cally symmetric in general, and this has the consequence of
a so-called electrostatic self-force on the charge.

One of the earliest studies on the electrostatic self-force
on static charges induced by a curved background was
that on a black hole geometry. It was shown that the self-
force on a charge q is repulsive; i.e., it points outwards
from the black hole, and that it has the dependence

f�mq2

r3
; (1.1)

where m is the mass of the source and r is the
Schwarzschild radial coordinate of the charge. This result
was first obtained within the framework of linearized
general relativity [2], and was later recovered working
within the full theory [3]. After the publication of these
leading works, the study of the self-interaction of a charge
was extended to other geometries. A notable result was the
self-force on a charge in the vicinity of a straight cosmic
string arising from symmetry breaking in a system com-
posed of a complex scalar field coupled to a gauge field [4].
The associated geometry is locally flat but includes a
deficit angle determined by �, the mass per unit length
of the string [5]. The self-force in this case points outwards

from the cosmic string and is proportional to �=r2. This
non-null self-force in a locally flat background is of great
interest because it shows how the global properties of a
manifold (in this case, the existence of a deficit angle) are
revealed by the electromagnetic field of the charge. In fact,
these results, together with the calculation of the self-force
on a point charge in a wormhole space-time [6], which
turned out to be attractive, i.e., towards the wormhole
throat, suggested the possibility of detecting thin-shell
wormholes by means of electrostatics. Differing from
well-known wormholes of the Morris-Thorne type [7],
which are supported by nonlocalized exotic matter, thin-
shell wormhole geometries are supported by a shell of
exotic matter located at the wormhole throat [8]. The throat
connects two (equal or different) geometries which can
be those of other astrophysical objects. For example,
Schwarzschild thin-shell wormholes connect two exterior
(that is, beyond the horizon) noncharged black hole space-
times; hence the geometry at each side of the throat is
locally identical to the exterior of a black hole geometry.
However, the topology of the wormhole geometry is non-
trivial; thus, the global properties are essentially different
in each case. Our proposal is that global aspects, such as
the existence of a throat or not, can be revealed by electro-
dynamics, more precisely, by the electrostatic self-force on
a point charge. In our recent article [9], we developed this
proposal and applied it to the case of wormholes with a
cylindrical throat which are mathematically constructed by
removing the regions r < a of two gauge cosmic string
manifolds and pasting the two regions r � a. We obtained
the self-force on a charge in the cylindrical wormhole
geometry, and compared it with the self-force on a charge
in the vicinity of a gauge cosmic string. We showed that
the force in the wormhole case can be attractive or repul-
sive depending of the position of the charge; this result
would then allow an observer to distinguish between two
geometries which are locally equal.
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It is interesting to remark that there exist some works
related to these ideas. For instance, in [10], the authors
considered a minimally coupled scalar charge and an
electromagnetic charge when a Schwarzschild black hole
interior is replaced by a material body and found that the
leading term in a large-r expansion of the force was
independent of the central body type. Nevertheless, when
the scalar charge is not minimally coupled, the self-force is
dependent on the composition of the body. Another work in
the same line is [11], where a spherical ball of perfect fluid
in hydrostatic equilibrium with rest mass density and
pressure related by some polytropic equations of state is
considered. The authors found that the leading term of the
force is universal and does not distinguish the internal body
structure, but the next-to-leading order term is sensible to
the equation of state. Thus, the self-force distinguishes the
body composition. In the present work, we extend our
study by applying our proposal to the physically interesting
case of a Schwarzschild thin-shell wormhole: we consider
a static point charge in the topologically nontrivial space-
time constituted by two Schwarzschild geometries con-
nected by a wormhole throat (with the throat radius larger
than the Schwarzschild horizon radius), and we compare
the result with the self-force on a charge in the vicinity of a
noncharged black hole. While some aspects of the analysis
will be very similar to those in [9], we will see that the
different asymptotic behaviors presented by the cosmic
string and black hole geometries will be reflected in
some interesting differences in the results.

II. FIELD OFAN ELECTROSTATIC CHARGE IN
ATHIN-SHELL SCHWARZSCHILD WORMHOLE

In the following, the electrostatic potential of a static
charge in front of a Schwarzschild black hole will be
considered as a series expansion. The same expansion
will be used to calculate the potential of the charge in
the presence of a Schwarzschild thin-shell wormhole.
The metric for a black hole space-time in Schwarzschild
coordinates is given by the line element

ds2 ¼ �
�
1� 2m

r

�
dt2 þ

�
1� 2m

r

��1
dr2

þ r2ðd�2 þ sin 2�d’2Þ; (2.1)

with t taking values in ð�1;þ1Þ, � in ½0; �Þ, ’ in ½0; 2�Þ,
and r as the radial coordinate, which takes values in R>0.
The horizon of the black hole is located at r ¼ 2m. In order
to fix notations and conventions, we recall that the
Maxwell equations are given by

4�j� ¼ F��
;�; (2.2)

with the electromagnetic tensor given by F�� ¼ @�A� �
@�A�. For a point charge q held at rest at r ¼ a > 2m and

� ¼ 0 in the black hole space-time, the covariant timelike
component of the electromagnetic four-potential, At, will

represent an electrostatic potential which we will call
At ¼ Vbh. The Maxwell equations in this case reduce to

�4�� ¼ 1

r2
@rðr2@rVbhÞ

þ 1

r2 sin �

1

ð1� 2m=rÞ @�ðsin �@�V
bhÞ; (2.3)

where

� ¼ q
�ðr� aÞ�ð�Þ
2�r2 sin �

(2.4)

is the timelike component of the four-current j�. The other
components are Ai ¼ 0 for i ¼ r, �, ’. With the previous
definitions, the electrostatic field is calculated as

ð ~EÞi � �Fti ¼ �gttgiiFti ¼ gttgii@iAt: (2.5)

Since we are working in spherical coordinates, the
potential can be expanded as

Vbh ¼ X1
l¼0

RlðrÞPlðcos�Þ; (2.6)

where Plðcos �Þ are the standard Legendre polyno-
mials and the radial functions RlðrÞ are solutions of the
homogeneous equation�

1� 2m

r

�
d

dr

�
r2

dRl

dr

�
� lðlþ 1ÞRl ¼ 0: (2.7)

The two independent solutions of (2.7) are [12]

flðrÞ ¼ � ð2lþ 1Þ!
2lðlþ 1Þ!l!mlþ1

ðr� 2mÞ dQl

dr

�
r

m
� 1

�
;

glðrÞ ¼
8<
:
1; for l ¼ 0:

2ll!ðl�1Þ!ml

ð2lÞ! ðr� 2mÞ dPl

dr

�
r
m � 1

�
; for l � 0:

(2.8)

Here PlðxÞ and QlðxÞ are the two types of Legendre
functions. These solutions possess the following asymp-
totic behavior when r ! 1:

glðrÞ ! rl; flðrÞ ! 1=rlþ1: (2.9)

These limits correspond to the solutions of a standard
problem of electrostatics in flat backgrounds [13], which
is plausible since the effect of the black hole is washed out
at large distances. On the other hand, as r ! 2m; flðrÞ !
finite constant, f0lðrÞ � log ð1� 2m=rÞ for l � 0, and

glðrÞ ! 0 while g0lðrÞ ! constant. Note that f0 ¼ r�1

and g0 ¼ 1.
The electrostatic potential in series expansion corre-

sponding to the black hole geometry was calculated by
Cohen and Wald in [14] and is given by1

1We have defined Maxwell equations with the sign given in
(2.2) to obtain the same expansion, (2.10), as in [14] with the
functions (2.8).
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Vbh ¼
� qP1

l¼0 glðaÞflðrÞPlðcos�Þ; for r � a;

q
P1

l¼0 glðrÞflðaÞPlðcos�Þ; for r � a:
(2.10)

Let us turn now our attention in computing the electrostatic
potential of the same charge q in the space-time of a
thin-shell Schwarzschild wormhole. This wormhole is
constructed by taking two copies of the Schwarzschild
geometry and removing from them the four-dimensional
regions described by

�1;2 ¼ fr1;2 � c j c > 2mg: (2.11)

One is left with two identical geodesically incomplete
manifolds with boundaries given by the timelike hyper-
surfaces:

@�1;2 ¼ fr1;2 ¼ c j c > 2mg: (2.12)

Identifying these two hypersurfaces (i.e., @�1 ¼ @�2) of
each copy, the resulting space-time is complete and pos-
sesses two asymptotically flat regions connected by a

wormhole [8]. Note that the condition c > 2m is necessary
to prevent the formation of the event horizon. At the throat
of the wormhole, @�, the stress-energy tensor is propor-
tional to a delta function representing a thin layer of exotic
matter. This thin-shell wormhole mathematical construc-
tion is based on the junction condition formalism, which is
one of the major tools for studying traversable wormholes.
The metric for this thin-shell Schwarzschild wormhole is
given by the line element:

ds2 ¼ �
�
1� 2m

r1;2

�
dt2 þ

�
1� 2m

r1;2

��1
dr21;2

þ r21;2ðd�2 þ sin 2�d’2Þ; (2.13)

with r1, r2 � c > 2m and the other coordinates defined as
before. The potential for a static charge q located at r1 ¼ a
and � ¼ 0 in this space-time has a spherical expansion as
in (2.6) with azimuthal symmetry. The general form which
is not divergent at either of both infinite regions is given by

Vwh
1;2 ¼

8>>><
>>>:
Vwh
1 ¼

(P1
l¼0 Alflðr1ÞPlðcos�Þ; for r1 � a;P1
l¼0ðClflðr1Þ þDlglðr1ÞÞPlðcos�Þ; for c � r1 � a;

Vwh
2 ¼ P1

l¼0 Elflðr2ÞPlðcos �Þ; for r2 � c:

(2.14)

The subindex 1 refers to the region of the wormhole where
the charge is located at r1 ¼ a and the subindex 2 to the
complementary copy (the other, empty, Schwarzschild
geometry). In each region the radial coordinates, r1 and
r2, respectively, extend from ½c;þ1� and if there is no
confusion they will be referred to as r. The potential is
defined, up to an irrelevant constant, by the following
boundary conditions:

Vwh
1 ðr1!a�;�Þ¼Vwh

1 ðr1!aþ;�Þ¼Vwh
1 ða;�Þ; (2.15)

dVwh
1

dr
ðr1 ! a�; �Þ � dVwh

1

dr
ðr1 ! aþ; �Þ

¼ 4�
q�ð�Þ

2�a2 sin �
; (2.16)

Vwh
1 ðr1!cþ;�Þ¼Vwh

2 ðr2!cþ;�;’Þ¼Vwh
1;2ðc;�Þ; (2.17)

dVwh
1

dr1
ðr1 ! cþ; �Þ ¼ �dVwh

2

dr2
ðr2 ! cþ; �Þ: (2.18)

These conditions are simply the continuity of the poten-
tial at the radial location of the charge (2.15) and at the
throat (2.17), together with the requirement that the
discontinuity of the electric field when crossing
the charge’s radial location be proportional to q�ð�Þ

2�a2sin 2�
,

the surface charge density at r1 ¼ a due to the point
charge, (2.16). Additionally, in (2.18), the field is required
to be continuous at the throat.

The first boundary condition (2.15) implies that

AlflðaÞ ¼ ClflðaÞ þDlglðaÞ: (2.19)

In addition, multiplying the second, (2.16), by Plðcos�Þ
and integrating using the orthogonality relationZ 1

0
PlðxÞPkðxÞdx ¼ 2

2lþ 1
�kl; (2.20)

it is obtained that

q
ð2lþ 1Þ

a2
¼ Clf

0
lðaÞ þDlg

0
lðaÞ � Alf

0
lðaÞ: (2.21)

By taking into account (2.19), the last expression may be
transformed to

q
ð2lþ 1Þ

a2
flðaÞ ¼ DlðflðaÞg0lðaÞ � glðaÞf0lðaÞÞ: (2.22)

This quantity can be evaluated by noticing that the right-
hand side is proportional to the Wronskian between gl and
fl, whose value is known to be [14]

WðglðaÞ; flðaÞ; aÞ ¼ glðaÞf0lðaÞ � flðaÞg0lðaÞ

¼ � ð2lþ 1Þ
a2

:

Therefore,

Dl ¼ qflðaÞ: (2.23)

The last equality, combined with (2.19), implies that
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Al ¼ Cl þ qglðaÞ: (2.24)

In addition, the boundary conditions (2.17) and (2.18)
constitute a simple linear algebraic system for Cl and El;
the solution is given by

Cl ¼ �q
flðaÞ

flðcÞf0lðcÞ
�ð2lþ 1Þ

2c2
þ f0lðcÞglðcÞ

�
; (2.25)

El ¼ �q
flðaÞð2lþ 1Þ
2c2flðcÞf0lðcÞ

; (2.26)

where the Wronskian value WðglðcÞ;flðcÞ;cÞ¼�ð2lþ1Þ=
c2 was taken into account to derive these expressions. The
last result, combined with (2.24), shows that

Al ¼ �q
flðaÞ

flðcÞf0lðcÞ
�ð2lþ 1Þ

2c2
þ f0lðcÞglðcÞ

�
þ qglðaÞ:

(2.27)

Finally, the electrostatic potential (2.14) for the probe
charge in the wormhole geometry is explicitly given by

Vwh
1;2 ¼

8>>>>>><
>>>>>>:
Vwh
1 ¼

8><
>:
q
P1

l¼0

�
glðaÞ �

�
ð2lþ1Þ
2c2f0

l
ðcÞ þ glðcÞ

�
flðaÞ
flðcÞ

�
flðrÞPlðcos �Þ; r1 � a;

q
P1

l¼0

�
flðaÞglðrÞ �

�
ð2lþ1Þ
2c2f0

l
ðcÞ þ glðcÞ

�
flðaÞ
flðcÞ flðrÞ

�
Plðcos�Þ; c � r1 � a;

Vwh
2 ¼ �q

P1
l¼0

ð2lþ1Þ
2c2f0

l
ðcÞ

flðaÞ
flðcÞ flðrÞPlðcos�Þ; r2 � c:

(2.28)

It is interesting to check the Gauss law for this solution.
To this end, one should consider observation points r
sufficiently far from the charge’s position and the worm-
hole throat; that is, r ! 1 in both sides of the space-time
of the wormhole. The Gauss theorem reads

4�q ¼
ZZ

S1

~E1n̂1dS1 þ
ZZ

S2

~E2n̂2dS2; (2.29)

where ~Ej is the electrostatic field and Sj is a surface enclos-
ing the throat with exterior three-dimensional normal vector
n̂j pointing towards the asymptotic infinity corresponding to
the coordinate rj. Therefore, when taking the limit rj ! 1
(for j ¼ 1, 2), by virtue of the asymptotic behavior of the
functions flðrÞ mentioned in (2.9), only the first term l ¼ 0
of the electric field series survives. This represents the
monopole term of the electric field in each region:

ð ~E1Þr ¼ �@rV
wh
1 � q

�
1� c

2a

�
1

r2

ð ~E2Þr ¼ �@rV
wh
2 � q

�
c

2a

�
1

r2
:

(2.30)

When these fields are introduced in (2.29), the Gauss
theorem is exactly satisfied. The expressions (2.30) repre-
sent the electric field flux density flowing to both infinities
of the space-time as a function of the throat radius, c, and
the position of the charge, a. Note that the flux is equally
distributed when the charge is placed at the throat. This
gives us confidence that the solution found is indeed the
correct one, as it satisfies the desired boundary condition
for the electric field at infinity.
We now turn our attention to the problem of calculating

the self-force experienced by the static charge due to its
own electrostatic field.

III. CALCULATION OF THE ELECTROSTATIC
SELF-FORCE IN THE WORMHOLE GEOMETRY

The expression (2.28) found above is clearly the sum of
the terms in (2.10) plus contributions that arise due to the
wormhole topology. The Schwarzschild part (2.10) can be
summed to give (see the Appendix)

Vbh ¼ VC þ VL ¼ q

ar

ðr�mÞða�mÞ �m2 cos �

½ðr�mÞ2 þ ða�mÞ2 � 2ðr�mÞða�mÞ cos��m2sin 2��1=2 þ
qm

ar
: (3.1)

The first term, VC, was derived by Copson in [15]
following Hadamard’s theory of elementary solutions
for partial differential equations [16]. Copson’s potential
is a local construction and provides an exact solution to
the field equations for the electrostatic potential sourced
by the particle in Schwarzschild geometry which is
singular at the position of the charge. It is also divergent
in the limit r ! 0, a pathological consequence of the

metric which would not be a problem if the correct
boundary conditions were satisfied. The second term,
VL, was added by Linet [17] and is a homogeneous
solution which ensures that the boundary conditions at
infinity for the electric field derived from Vbh are ful-
filled. In these terms, assuming the convergence of the
series in (2.28), the electrostatic potential in the region
of the wormhole where the charge is located is given by

RUBÍN DE CELIS, SANTILLÁN, AND SIMEONE PHYSICAL REVIEW D 88, 124012 (2013)

124012-4



Vwh
1 ¼ Vbh � q

X1
l¼0

�ð2lþ 1Þ
2c2f0lðcÞ

þ glðcÞ
�

� flðaÞ
flðcÞ flðrÞPlðcos �Þ: (3.2)

When this expression is evaluated at the position of the
charge, the potential diverges. The singular part is known
to depend only on the local properties of the geometry in a
neighborhood of the charge’s position. In other words, we
can say that the singular part of the wormhole’s potential
is the same as the one in the black hole case. Removing
this singular potential at the position of the charge reveals
a regular homogeneous solution from which the self-
interaction can be computed. Several renormalization pro-
cedures have been used in the past in order to remove
singular potentials. The renormalization method that en-
joys the best justification is that of Detweiler and Whiting,
which is based in a four-dimensional singular Green func-
tion [18]. Recently in [19], the authors showed the equiva-
lence between this procedure in the case of a static particle
in a static space-time and Hadamard’s two-point function
in three dimensions for the computation of electrostatic
self-forces.2 An alternative approach to renormaliza-
tion, which is also suitable for charged particles at rest
in general static curved space-times, is the DeWitt-
Schwinger asymptotic expansion of the three-dimensional
Green function, which was considered recently in [20]. In
either of these formalisms, the renormalized potential at
the position of the charge is given by

Vwh
renðxi0 Þ ¼ lim

xi!xi
0
ðVwh � VsingÞ: (3.3)

In the last equation, the coincidence limit takes the coor-
dinate spatial components xi to the charge’s position xi

0

along the shortest geodesic connecting them. The singular
term in this definition is

Vsing ¼ ffiffiffiffiffiffiffiffiffiffiffiffi�gt0t0
p

Gs
3ðxi; xi0 Þ; (3.4)

where Gs
3ðxi; xi0 Þ is the singular Green function in three

dimensions, and the primed indices refer to the position of
the source charge. The Green function must have the same
singularity structure as the particle’s actual field and exert
no force on the particle. The three methods mentioned
above agree in the following expansion for the singular
Green function [16,18–20]:

Gs
3ðxi; xi0 Þ ¼

qffiffiffiffiffiffiffi
2�

p
�
1� gt0t0;i0�

;i0

4gt0t0
þOð�Þ

�
; (3.5)

where � ¼ �ðxi; xi0 Þ is half the squared geodesic distance
between xi and xi

0
as measured in the purely spatial

sections of the space-time and �;i0 ¼ gi
0j0@�=@xj

0
(see

Ref. [19] or [20] for a full derivation3). In the expansion
(3.5), the terms of order Oð�Þ= ffiffiffiffiffiffiffi

2�
p

are irrelevant for the
renormalization of the potential field since they vanish in
the coincidence limit taken in (3.3).
To calculate (3.3), we can evaluate at coincidence angles

in advance, i.e., � ¼ 0, and take the limit as r approaches a
from the right using (3.1) to express Vwh

1 for r � a:

Vwh ¼ Vwh
1 ðr � a; � ¼ 0Þ

¼ q

jr� aj
�
1� 2m

r

�

� q
X1
l¼0

�ð2lþ 1Þ
2c2f0lðcÞ

þ glðcÞ
�
flðaÞ
flðcÞ flðrÞ: (3.6)

When xr
0 ¼ a and x�

0 ¼ 0, � is one half of the squared
radial geodesic distance between r and a,

�ðr; aÞ ¼ 1

2

0
@Z a

r

dr0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2m

r0

q
1
A2

; (3.7)

which is completely defined in terms of the local properties
of the Schwarzschild metric. Using (3.6) and (3.7) to
compute explicitly (3.3) by taking the limit r ! aþ, the
renormalized potential at the position of the charge is
obtained:

Vwh
renðaÞ ¼ qm

a2
� q

X1
l¼0

�ð2lþ 1Þ
2c2f0lðcÞ

þ glðcÞ
�
flðaÞ2
flðcÞ : (3.8)

Observe that this result can be directly picked up from (3.2)
removing Copson’s solution, VC, from Vbh and evaluating
in the position of the charge. What we had checked out in
this calculation is that

lim
xi!xi

0
ðVC � VsingÞ ¼ 0; (3.9)

so the general singular Green function for the point
charged particle at rest in this static geometry removes
the singular part of the potential and exerts no force as
expected. In other words, Hadamard’s elementary solution
constructed by Copson coincides with the Green function.
To calculate the self-force we must consider the regular

potential,

Vwh
ren ¼ qm

ar
� q

X1
l¼0

�ð2lþ 1Þ
2c2f0lðcÞ

þ glðcÞ
�
flðaÞ
flðcÞ flðrÞPlðcos �Þ:

(3.10)

The desired electrostatic self-force can be computed as that
observed by a static observer at the position of the charge.
This corresponds to the contravariant tetrad component of

2The equivalence is guaranteed up to certain order in the
Green function expansion and conjectured to all orders. Only
the first terms are needed to compute the self-force, as shown in
(3.5), so they are said to be equivalent for this type of calculation.

3In (3.5), there is an overall sign difference with respect to the
usual literature arising from the convention taken for the
Maxwell equations, (2.2).
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the force calculated with the renormalized potential Vwh
ren.

Taking into account the definition of the electrostatic field
(2.5), we have

ðfselfÞðrÞ ¼ �qFðrÞ
ðtÞu

ðtÞ ¼ �qðeðrÞÞrFr
tu

t

¼ �q
ffiffiffiffiffiffiffi
grr

p
grrFrt

1ffiffiffiffiffiffiffiffiffiffi�gtt
p ¼ �q@rV

wh
ren; (3.11)

where eðrÞ is the standard radial tetrad one-form, and the
final result must be evaluated at the charge’s position. One
usually defines the electrostatic self-energy of the charge
through the standard procedure

Uself ¼ q

2
Vwh
renðaÞ; (3.12)

in order to obtain the force by

ðfselfÞðrÞ ¼ �@aU
self ; (3.13)

which justifies the definition (3.12) for the self-energy.
In the wormhole case, the electrostatic self-energy at a
general position of the charge with radial coordinate r is

Uself ¼ e2m

2r2
� e2

2

X1
l¼0

�ð2lþ 1Þ
2c2f0lðcÞ

þ glðcÞ
�
flðrÞ2
flðcÞ ; (3.14)

and the resulting electrostatic self-force is

ðfselfÞðrÞ ¼ q2m

r3
þ q2

X
l

f0lðrÞ
flðrÞ
flðcÞ

�
2lþ 1

2c2f0lðcÞ
þ glðcÞ

�
:

(3.15)

The first term q2m=r3 is the self-force of the charge in
Schwarzschild’s black hole, while the remaining part is the
correction due to the wormhole’s nontrivial topology. The
renormalization procedure had dealt with the divergent
part which appeared only in the black hole term of the
potential (3.2), resulting in the known self-force q2m=r3,
which was derived first in [3] and considered by several
other authors for the Schwarzschild black hole (for in-
stance, in [20,21]). The result (3.15) for the thin-shell
Schwarzschild wormhole is illustrated in the following
figures. The numerical analysis shows that the electrostatic
self-force is always attractive towards the throat if the
parameter c of the wormhole throat radius is greater than
3m (Figs. 1 and 2). When 2m< c < 3m, the self-force may
become repulsive if the charge is sufficiently proximate to
the throat. This last observation is reflected in Figs. 3 and 4.

An important test for the correctness of the result is to
take the limitm ! 0. In this situation, the wormhole space-
time is flat everywhere except at the throat at r ¼ c. This is
the case of an infinitely short throat. Taking into account
the limiting behavior of the radial independent functions,

glðrÞ !m!0
rl and flðrÞ !m!0

1=rlþ1; (3.16)

the self-force (3.15) for the flat wormhole with infinitely
short throat is obtained:

fself !m!0
q2

X1
l¼0

�ðlþ 1Þ
rlþ2

clþ1

rlþ1

�ð2lþ 1Þclþ2

�2ðlþ 1Þc2 þ cl
�

¼ q2c

r3

X1
l¼0

�ðlþ 1Þ c
l

r2l

� �cl

�2ðlþ 1Þ
�

¼ � q2c

2r3

X1
l¼0

��
c

r

�
2
�
l ¼ �q2c

2r3

�
1

1� ðc=rÞ2
�
: (3.17)

The self-force is attractive towards the throat everywhere
in the flat space-time, and gets infinitely large in the
neighborhood of the throat where the curvature diverges.
This result coincides with that of [6] and gives us confi-
dence about the correctness of our solution. Similarly, if r,
c � 2m, the leading term is

FIG. 1 (color online). Dimensionless radial self-force
[ðfselfÞ m2

q2
] as a function of the dimensionless coordinate

r=m of a charge q when the throat radius is at c ¼ 4m. The
graph represents values for the position r in the range (c ¼ 4m,
10m). Only attractive electrostatic self-force is possible in this
case.

FIG. 2 (color online). Dimensionless radial self-force
[ðfselfÞ m2

q2
] as a function of the dimensionless coordinate r=m

of a charge q when the throat radius is at c ¼ 3:1m. The graph
represents values for the position r in the range (c ¼ 3:1m, 10m).
Only attractive electrostatic self-force is possible in this case
despite its throat being very close to 2m.
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fself ��q2c

2r3

�
1

1� ðc=rÞ2 þO
�
m

c
þm

r

��
: (3.18)

On the other hand, the asymptotic behavior (r ! 1) is
given by

fself �� q2c

2r3

�
1� 2m

c

�
þOðr�5Þ: (3.19)

This expansion shows that the difference between the black
hole and wormhole self-forces is manifested at leading
order, which is in contrast with other computations where
the Schwarzschild black hole interior is replaced by a
material body [10]. Observe that in (3.19) the leading order
term vanishes as c ! 2m, and the same happens at every
order when the throat approaches the Schwarzschild ra-
dius. One might be tempted to say that there is no self-force
induced for this value of throat radius, but in fact there is no

consistent electrostatic field solution for one point charged
particle when the throat is at c ¼ 2m. The results obtained
above are only valid for throats which do not extend to the
event horizon.4 The reason is that the only electrostatic
field on a Schwarzschild background which is well be-
haved for 2m � r <1 is spherically symmetric [12]. This
means that the electrovacuum part of the wormhole
(i.e., region 2 in our notation, free of charge) can never
adjust its potential, Vwh

2 , to the boundary conditions at the

throat imposed by the presence of the charge in the other
region. The charged particle generates an equipotential
surface at c ¼ 2m which seems suitable, but the angular
distribution of the electric field at the throat cannot be
fulfilled by the spherically symmetric solution in the
vacuum region. The only possibility to have consistent
solutions in the case c ¼ 2m would be the appearance of
another charge in the free region, or work only with
spherically symmetric distributions.

IV. SUMMARY

A spherically symmetric thin-shell wormhole connect-
ing two identical exterior Schwarzschild geometries is
locally indistinguishable from a Schwarzschild black
hole geometry. However, because the wormhole space-
time presents a throat, there is an essential topological
difference between both space-times which makes them
globally very different. Following the proposal of our
preceding work [9], i.e., that the electrostatic self-force
on a point charge could be used to probe the global aspects
of a geometry, we have evaluated this force in both the
black hole and the wormhole backgrounds. It was already
known that the force on a charge in the vicinity of a
Schwarzschild black hole pushes it away, for any position
of the charge. In the case of a charge near the wormhole
throat, we have obtained an analytical expression of the
self-force in the form of a series, which we have evaluated
numerically. The results show that for a certain range of the
parameters of the system, the self-force is always attrac-
tive; that is, it points towards the wormhole throat for any
position of the charge, while for another range of the
parameters it can be attractive or repulsive depending on
the position of the charge. The repulsive force only appears
for a throat radius below 3m, and for a charge placed very
near to the wormhole throat. As the charge is placed far
away, for any throat radius, the self-force is always attrac-
tive. This can be observed directly from the asymptotic
expansion (3.19). Thus, the electrostatics of a point charge
would allow us to decide whether the background geome-
try presents a throat or not. A detail to be noted is that now,
in the case of a charge in a spherical wormhole geometry,FIG. 4 (color online). Dimensionless radial self-force

[ðfselfÞ m2

q2
] as a function of the dimensionless coordinate r=m

of a charge q when the throat radius is at c ¼ 2:9m. The graph
represents values for the position r in the range (c ¼ 2:9m, 10m).
This throat value is very close to the transition one, c ¼ 3m,
beyond which only the attractive regime is observed.

FIG. 3 (color online). Dimensionless radial self-force
[ðfselfÞ m2

q2
] as a function of the dimensionless coordinate r=m

of a charge q when the throat radius is at c ¼ 2:5m. The graph
represents values for the position r in the range (c ¼ 2:5m, 10m).
Both regimes, repulsive and attractive, of the electrostatic
self-force are observed in this case.

4Note that at r ¼ 2m the independent radial functions glðrÞ
and f0lðrÞ vanish and diverge, respectively (for l � 0); that is why
many of the identities used to obtain the explicit potential
expansion would not hold in the case c ¼ 2m.
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the self-force on a charge placed far from the throat is
always attractive, while in the case studied in [9], the self-
force on a charge very far from the throat of a cylindrical
wormhole with a deficit angle was always repulsive. This
can be understood as a consequence of the different asymp-
totic behaviors of the Schwarzschild and cosmic string
geometries. While the Schwarzschild space-time is asymp-
totically flat (as r ! 1 the metric becomes Minkowski),
the angle deficit associated to a gauge cosmic string is
constant. Then, very far from the throat of a cylindrical
wormhole, the dominant effect on the electric field lines
is that of the deficit angle which induces a repulsive force.
In the spherically symmetric wormhole connecting two
Schwarzschild geometries, instead, this effect is not
present as the metric tends to that of a flat background.
Near the throat, for the cylindrical wormhole associated to
a cosmic string, the attractive effect of the throat reverses
the repulsive deficit angle effect deriving in a force towards
the hole. For the thin-shell Schwarzschild wormhole, the
intense repulsive effect in the exterior neighboring geome-
try of a black hole horizon may reverse the attractive
contribution of the wormhole.
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APPENDIX

In this appendix it will be shown that the expansion
(2.10) is equivalent to the electrostatic potential (3.1) for
a Schwarzschild black hole. The arguments are analogous
to those in [15]; the main difference is that the electrostatic
potential of that reference does not fit the correct boundary
conditions at infinity. For this purpose it may be convenient
to introduce the so-called isotropic radial coordinate �
given in terms of the Schwarzschild one r by the following
formula:

� ¼ r�mþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rðr� 2mÞp
2

; r > 2m: (A1)

Note that this coordinate does not completely cover the
black hole space-time. It only covers the outer region of
the horizon at r ¼ 2m. The previous expression may be
inverted to give

r ¼ �

�
1þ m

2�

�
2
; 2� >m: (A2)

The Schwarzschild distance element in isotropic coordi-
nates takes the following form:

g4 ¼ �½1� ðm=2�Þ�2
½1þ ðm=2�Þ�2 dt

2 þ
�
1þ m

2�

�
4ðd�2 þ �2d�2 þ �2sin 2�d’2Þ: (A3)

The electrostatic potential for a point charge in the black hole, (3.1), is expressed in isotropic coordinates as

Vbh ¼ q

½1þ ðm=2bÞ�2�½1þ ðm=2�Þ�2
2
4 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2 þ b21 � 2b1� cos �

�2 þ b2 � 2b� cos�

s
þ m2

4b2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ b2 � 2b� cos�

�2 þ b21 � 2b1� cos�

s 3
5

þ qm

b

1

½1þ ðm=2bÞ�2
1

�½1þ ðm=2�Þ�2 ; (A4)

with b ¼ a�mþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aða�2mÞ

p
2 and b1 ¼ m2

4b . The task is to show that the expansion of this potential in the independent functions
(2.8) is exactly (2.10). By further defining the dimensionless coordinate 	 ¼ 2�=m and the dimensionless position of the
charge as 
 ¼ 2b=m, the potential reads as follows:

Vbh ¼ 4q	


2m½1þ 	�2½1þ 
�2
2
4 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

	2 þ 
2 � 2
	 cos �


2	2 þ 1� 2
	 cos �

s
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2	2 þ 1� 2
	 cos �

	2 þ 
2 � 2
	 cos �

s 3
5þ 4q
	

m½1þ 	�2½1þ 
�2 : (A5)

At � ¼ 0 and r > a this expression reduces to

Vbh ¼ Vbh
1 þ Vbh

2 ¼ 4q	


2m½1þ 	�2½1þ 
�2
�
	� 



	� 1
þ 
	� 1

	� 


�
þ 4q
	

m½1þ 	�2½1þ 
�2 : (A6)

The first term of (A6) can be worked out in terms of the geometric series as follows:
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Vbh
1 ¼ 2q


mð
þ 1Þ2
	� 1

	þ 1

	

1� 	2

�
1




�
1� 


	

��
1� 1


	

��1 þ 1




�
1� 1


	

��
1� 


	

��1
�

¼ 2q


mð
þ 1Þ2
	� 1

	þ 1

1

	

�
1þ 1

	2
þ 1

	4
þ ::

���

þ 1




�
þ

�

2 � 2þ 1


2

�
1

	
þ ::

�

¼ 2q


mð
þ 1Þ2
	� 1

	þ 1

��

þ 1




�
1

	
þ

�

2 � 2þ 1


2

�
1

	2
þ

�

3 þ 1


3

�
1

	3
þ

�

4 � 2þ 1


4

�
1

	4
þ ::

�
: (A7)

Now, in order to connect this with the Legendre functions Pl and Ql, the following three identities will be useful:

1

ðxþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1

p
Þn ¼ �n

X1
m¼0

ð4mþ 2n� 1Þ
4�

�ðm� 1=2Þ�ðmþ n� 1=2Þ
m!ðmþ nÞ! Q2mþn�1ðxÞ; (A8)

�

2 þ 2� 1


2

�
P0
2n

�
1

2

�

þ 1




��
¼ � 2nð2nþ 1Þ

�

X1
k¼0

�

2n�2kþ1 þ 1


2n�2kþ1

�
�ðk� 1

2Þ�ð2n� kþ 1
2Þ

k!ð2n� kþ 1Þ! ; (A9)

�

2þ2� 1


2

�
P0
2nþ1

�
1

2

�

þ 1




��
¼�ð2nþ1Þð2nþ2Þ

�

X1
k¼0

�

2n�2kþ2�2þ 1


2n�2kþ2

�
�ðk� 1

2Þ�ð2n�kþ 3
2Þ

k!ð2n�kþ2Þ! : (A10)

In addition, by taking the derivative with respect to x of (A8), it follows that

1

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1

p
Þðxþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1

p
Þn ¼ �n

X1
m¼0

ð4mþ 2n� 1Þ
4�

�ðm� 1=2Þ�ðmþ n� 1=2Þ
m!ðmþ nÞ! Q0

2mþn�1ðxÞ: (A11)

These identities can be implemented in (A7) by evaluating

x ¼ 	2 þ 1

2	
; (A12)

in (A11). By comparing with (A7), it follows that

Vbh
1 ¼ q
ð	� 1Þ2

2m	ð
þ 1Þ2
�X1
m¼0

X1
p¼0

ð4mþ 4pþ 1Þ
4�

�

2mþ1 þ 1


2mþ1

�
�ðp� 1

2Þ�ð2mþ pþ 1
2Þ

p!ð2mþ pþ 1Þ! Q0
2mþ2p

�
	2 þ 1

2	

�

þ X1
m¼0

X1
p¼0

ð4mþ 4pþ 3Þ
4�

�

2mþ2 � 2þ 1


2mþ2

�
�ðp� 1

2Þ�ð2mþ pþ 3
2Þ

p!ð2mþ pþ 1Þ! Q0
2mþ2pþ1

�
	2 þ 1

2	

��

¼ e


mð
þ 1Þ2
ð	� 1Þ2

2	

�X1
n¼0

Xn
t¼0

ð4nþ 3Þ
4�

�

2ðn�tÞþ1 þ 1


2ðn�tÞþ1

�
�ðt� 1

2Þ�ð2n� tþ 3
2Þ

t!ð2n� tþ 2Þ! Q0
2nþ1

�
	2 þ 1

2	

�

þ X1
n¼0

Xn
t¼0

ð4nþ 1Þ
4�

�

2ðn�tþ1Þ � 2þ 1


2ðn�tþ1Þ

�
�ðt� 1

2Þ�ð2n� tþ 1
2Þ

t!ð2n� tþ 1Þ! Q0
2n

�
	2 þ 1

2	

�
� 1

2

�

þ 1




�
Q0

0

�
	2 þ 1

2	

��
:

(A13)

The last expression can be worked out further by use of (A9) and (A10) to give

Vbh
1 ¼ q


mð
þ 1Þ2
ð	� 1Þ2

4	

��

þ 1




�
Q0

0

�
	2 þ 1

2	

�
þ 1

2

X1
n¼1

2nþ 1

nðnþ 1Þ
�

2 � 2þ 1


2

�
P0
nð
ÞQ0

n

�
	2 þ 1

2	

��
: (A14)

By expressing (A14) in terms of the Schwarzschild coordinates r and a, it follows that

Vbh
1 ¼ qðr� 2mÞ

am
Q0

0

�
r

m
� 1

�
� q

�ðr� 2mÞ
m2

Q0
0

�
r

m
� 1

�
þ 1

m3

X1
n¼1

2nþ 1

nðnþ 1Þ ða� 2mÞP0
n

�
a

m
� 1

�
ðr� 2mÞQ0

n

�
r

m
� 1

��
:

(A15)
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As we pointed out earlier, the Legendre functions which
appear in this section are differentiated in their argument
and then evaluated in the specified value, so that the
elementary identity

Q0
0

�
r

m
� 1

�
¼ dQ0

dx

								ð rm�1Þ
¼ � m2

rðr� 2mÞ ; (A16)

together with the definitions (2.8), shows that

Vbh
1 ¼ �qm

ar
þ q

X1
l¼0

glðaÞflðrÞ: (A17)

On the other hand, the expression of the potential Vbh
2 in

(A7) in Schwarzschild coordinates is

Vbh
2 ¼ qm

ar
; (A18)

and therefore

Vbh ¼ Vbh
1 þ Vbh

2 ¼ q
X1
l¼0

glðaÞflðrÞ: (A19)

This is the electrostatic potential evaluated at the surface
� ¼ 0. Since we know that for � � 0 the expression should
be an expansion of the form

Vðr; �Þ ¼ q
X1
l¼0

FlðrÞPlðcos �Þ; (A20)

with FlðrÞ as radial functions, labeled by l, that are
solutions of (2.7). This expression should reduce to (A19)
when � ¼ 0, or equivalently for Plð1Þ ¼ 1. From this it
follows that the full expression for the potential should be

Vbh ¼ Vbh
1 þ Vbh

2 ¼ q
X1
l¼0

glðaÞflðrÞPlðcos �Þ; (A21)

which is the formula (2.10) described in the text for r > a.
The corresponding expression for r < a is completely
analogous and we just omit it. Therefore, we have seen
that the expansion (2.10) is the same as the potential (3.1),
which is what we wanted to show.
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