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Abstract

The two-"eld model (2-F) for natural convection in porous media is studied in relation to the one-"eld model (1-F), which is the
result of the local thermal equilibrium assumption. These models are used to evaluate heat transfer through a porous medium of
relatively high permeability contained in a vertical annulus. The conceptual di!erences between 2- and 1-F models are shown within
the context of the theory of mixtures of continuum mechanics. Criteria are generated to determine when the 1-F model can be applied
in practical situations as a good approximation, and without introducing errors in the evaluation of the temperature "eld and wall
heat #uxes. This study includes a comparison between the Nusselt numbers obtained from these two models, and also the analysis of
local di!erences between #uid and solid temperatures within the porous cavity. Numerical calculations are carried out for variable
porosity, which is modeled either with exponential decaying and damped oscillating functions involving normal distance from the
annulus walls. Di!erent correlations for the heat transfer coe$cient between solid and #uid phases are analyzed in relation to the 2-F
model. ( 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The #ow and heat transfer in porous media is a subject
of technological interest for the design of industrial
equipments. Typical examples are catalytic reactors, en-
ergy storage units, heat exchangers, thermal insulations,
grain storage and solar receiver devices. In addition,
there are natural systems formed by di!erent porous
media, which are important sources of energy, like
geothermal and oil}gas reservoirs. All these systems, and
many others, have in common the need of modeling
appropriately the #ow and heat transfer of Newtonian
#uids in a porous medium which, depending on the
porosity and permeability values, will show di!erent
phenomena. In this sense, several models assigning a
temperature "eld alone to the mixture composed by the
interstitial #uid and the solid matrix were proposed and
discussed in the literature (see, for example, Cheng, 1978;
Whitaker, 1986). These theoretical proposals are desig-

nated 1-F models throughout this work and they have
been widely used in the literature in the past decade. On
the other hand, a few authors used 2-F models where two
"elds of temperature were required to describe appro-
priately the heat transfer between solid and liquid phases.
For example, Vortmeyer and Schaefer (1974) proposed
a one-directional 2-F model for gas #owing by forced
convection in a porous medium. To solve this problem,
these authors considered that the heat capacity of the gas
was negligible against that of the solid and that the
second derivative of the solid and #uid temperature "elds
were equal. They found that under this speci"c hypothe-
sis, the model was reduced to only one energy balance.
This result allowed them to obtain the solid temperature
while the gas temperature was calculated through
a simple algebraic equation related to the solid temper-
ature "eld. In a similar context of analysis, Riaz (1977)
found an analytic solution of a 2-F model for a one-
directional #ow. Although simplifying assumptions were
introduced in these works, it was found that the solid and
#uid temperature "elds were in general di!erent from one
another, unless speci"c physical conditions were im-
posed, like the case in which the heat transfer coe$cient
between both phases became very high. Later Spiga and
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Fig. 1. Annular porous cavity: scales and coordinate system.

Spiga (1981) presented analytic solutions to the transient
problem for di!erent initial conditions, with less restrict-
ive hypothesis than those imposed in the work of Riaz
(1977). Once more, it was found that the solid and #uid
phases had associated di!erent temperature "elds in
a typical phenomenological situations.

The theoretical progress on this subject was accom-
panied by a few experimental programs where the local
temperature "elds were determined in the porous me-
dium. Thus, Wong and Dybbs (1976) carried out temper-
ature measurements with thermocouples at di!erent
positions in a porous medium constituted by spheres of
uniform diameter, while water was #owing through the
interstices. Since the experimental measurements were
reported for relatively low #uid velocities, di!erences
between the solid and #uid temperatures were not detec-
ted, and hence, these authors concluded that the local
thermal equilibrium (LTE) assumption, de"ned as equal
solid and #uid temperatures everywhere in the porous
matrix, was rather appropriate for their system.

Although the hypothesis of LTE is good for many
applications, it cannot be used in some particular situ-
ations that will be analyzed in this work. In fact, other
authors carried out studies to show that under certain
physical conditions, the solid and temperature "elds can
di!er substantially in speci"c zones of the porous matrix.
In this sense, one has to describe appropriately the heat
exchange between the solid and #uid (see, for example,
Wakao & Kaguei, 1982; Martin, 1978) which must ap-
pear as an extra term in the energy balances of the 2-F
model types.

In this context of analysis, Amiri and Vafai (1994)
presented a 2-F model for the one-directional #ow in
a conduit "lled with a porous medium. In their model,
the balance of momentum included Darcy, Brinkman,
Forchheimer, inertial terms (see also, Chen, Chen,
Minkowycz, & Gill, 1992; Vafai & Kim, 1995) and the
porosity variation near the tube walls (Vafai, 1984). In
addition, the energy balances for each phase involved the
heat exchange between solid and interstitial #uid. This
e!ect was modeled with the external heat transfer coe$c-
ient, which was described with a correlation that com-
prised the Prandtl and Reynolds numbers. Thus, the
internal heat transfer coe$cient in the solid was con-
sidered negligible. After solving this model numerically
with "nite di!erences, the authors obtained a relevant
conclusion indicating that the LTE assumption was valid
for certain values of dimensionless parameters, which
were additionally calculated from the thermophysical
properties of the #uid and the morphological character-
istics of the porous medium. More recently, a similar
problem was solved by Kuznetsov (1997) by means of
a perturbation analysis, where the small parameter was
the di!erence between solid and #uid temperatures. In
fact, since the asymptotic LTE was valid when these
temperatures became very close, the author assumed that

this di!erence was proportional to the #uid velocity and
inversely proportional to the heat transfer coe$cient
between phases.

When the heat transfer is considered in a porous me-
dium where the #uid moves by natural convection, one
"nds that classical models reported in the literature use
the temperature "eld of the #uid}solid mixture with the
LTE assumption. Under certain conditions of the porous
medium to be analyzed later, this proposal is a good
approximation to the evidences discussed above, al-
though results show that the way to describe more pre-
cisely this type of heterogeneous heat transfer
phenomenon is through a 2-F model. This was analyzed
in part in the pioneering work of Combarnous and
Bories (1975) involving natural convection in a geother-
mal reservoir. Therefore, the target of our work is to
demonstrate quantitatively in the elementary context of
the theory of mixtures (Truesdell, 1969; Bowen, 1976) the
importance of considering the 2-F model in natural con-
vection, mainly when the permeability of the porous
medium is relatively high, and also to show agreements
and conceptual di!erences between 2- and 1-F models.
These models are used to evaluate the heat transfer
through a porous medium of relatively high permeability
contained in a vertical annulus (see Fig. 1).

We show here that the 2-F model can be reduced for
many practical situations to the 1-F model. Therefore,
conditions at which the LTE assumption is satis"ed are
presented. The most important di!erences between mod-
els are in fact found in those terms that involve the
temperatures of the #uid and solid phases. These terms
can be visualized clearly when the compatibility condi-
tions of the theory of mixtures are applied to obtain from
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the balances of species, the balance equations of the
mixture as a whole (Truesdell, 1969). Proceeding in this
way, criteria are generated to determine when a 1-F
model can be applied in practical situations as a good
approximation, and without introducing errors in the
evaluation of the temperature "eld and wall heat #uxes.
This local aspect of the problem is important to be
analyzed in general, because the precise knowledge of the
temperature "eld of the solid phase is required in indus-
trial devices where chemical reactions take place within
a bed of particles of relatively high permeability.

In this work, a crucial problem also becomes evident in
relation to the formulation of the momentum balance of
the #uid phase in the porous medium, when the #ow "eld
is obtained from either the 2- and 1-F theoretical frame-
work. In fact, for the 1-F model, the driving force of
natural convection is proportional to the di!erence be-
tween the #uid temperature that is assumed equal to the
solid temperature, and the reference temperature ¹

r
,

used to expand the #uid density as function of (¹!¹
r
).

Here, ¹
r
is chosen as the arithmetic average between the

hot ¹
h

and cold ¹
c

wall temperatures. On the other
hand, in the 2-F model, this driving force involves the
di!erence between the true #uid temperature ¹

f
and the

reference temperature ¹
r
. Therefore, when the LTE as-

sumption is valid, the consistency between 1- and 2-F
models is readily obtained and the numerical results
validate that either the #uid or solid temperature can be
used in the driving force term of the natural convection.
This is not the case, when the LTE assumption cannot be
applied. In fact, for this particular case, the velocity "elds
obtained by solving 1- and 2-F models are di!erent from
one another, because the driving body forces in each
model are, of course, also di!erent. Since the #ow "eld
shall be the same for the two models, it is clear that this
subject requires still further research to elucidate this
physical aspect. In this work, therefore, we propose to
study and discuss this problem to "nd the conceptual
relationship between the two ways of modeling natural
convection in porous media. This task has to be done
taking into account a speci"c theory as a reference frame-
work to avoid excessive heuristic considerations. There-
fore, for this purpose, the theoretical approach and the
porous medium considered here are those of our pre-
vious work (Deiber & Bortolozzi, 1998) where the 2-F
model has already been presented and discussed by using
the theory of mixtures (see also Fig. 1).

Throughout this work importance is given to the anal-
ysis of numerical calculations carried out for variable
porosity, which is modeled either with exponential
decaying (Vafai, 1984) and damped oscillating (Martin,
1978) functions involving normal distance from the an-
nulus walls. Since the 2-F model requires to quantify the
heat exchange between solid and #uid phases, three
di!erent correlations for the interfacial heat transfer
coe$cient are also analyzed.

2. Framework within the theory of mixtures

The theory of mixtures considers N species, the pro-
perties of which are designated with a subscript a"
1,2,N (Truesdell, 1969; Bowen, 1976). Therefore mass,
momentum and internal energy of species satisfy local
balances as follows:

da
dt

oa#oa+ ) va"0, (1)

oa
da
dt

va"!+ )Ta#oag#ma , (2)

oa
da
dt
;a"!+ ) qa!Ta :+va!ma ) va#eTa , (3)

where density oa , velocity va , internal energy ;a and
stress tensor Ta of species a are included. This tensor is
assumed to be symmetric here. The only volumetric force
is gravity g. In Eqs. (1)}(3), da( ) )/dt"L( ) )/Lt#va )+( ) ) is
the species time derivative. Further details are described
in the original works. In Eq. (3), qa is the #ux by heat
conduction of species a. In writing Eqs. (1)}(3), it is
assumed that chemical reaction and volumetric heat
transfer do not occur in the system.

This theory considers the exchanges of momentum
ma and total energy eTa (kinetic plus internal energies)
between species with the constraint that the local equa-
tions of the mixture are recovered when Eqs. (1)}(3) are
summed on a, in order to be consistent with the behavior
of the mixture as a whole (see also the basic postulates of
the theory of mixtures according to Truesdell, 1969).
Therefore, the following compatibility conditions shall be
required among the mixture and species properties:

o"
N
+
a/1

oa , (4)

v"
1

o
N
+
a/1

oava , (5)

T"

N
+
a/1

(Ta#oauaua), (6)

q"
N
+
a/1
Cqa#Ta ) ua#oa (;a#

1

2
u2a )uaD, (7)

;"

1

o
N
+
a/1
Aoa;a#

1

2
oau2aB, (8)

where o, v, T, q and ; are the density, velocity, stress
tensor, heat #ux and internal energy of the mixture,
respectively. In the above equations, ua"va!v is the
drift velocity of each uniform phase when heterogeneous
systems are considered. ua is also designated di!usion
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velocity of each species a when a miscible mixture is
under analysis.

Also, the following constraints must be satis"ed to
obtain the local balances of the mixture:

N
+
a/1

ma"0,
N
+
a/1

eTa"0 (9)

indicating that the momentum and total energy of the
whole mixture are neither created nor destroyed in the
exchange of these properties among species.

3. 2-F model for the porous medium

Eqs. (1)}(9) can be used to describe the #ow and heat
transfer of a Newtonian #uid in an undeformable and
saturated porous medium by taking a"f, s where f refers
to the #uid and s stands for the solid. Thus, o

f
"oo

f
e and

o
s
"oo

s
(1!e), where e is the local porosity. Throughout

this work, superscript o indicates that properties corres-
pond to pure species.

Several additional de"nitions are next required. Den-
sity depends on #uid temperature ¹

f
through oo

f
"

oo
fr

[1!b(¹
f
!¹

r
)], where b is the isobaric thermal

expansion coe$cient. Since the #uid is Newtonian, the
stress tensor is expressed T

f
"po

f
eI!ko

f
e(+v

f
#+v

f
T).

Also, we consider that the other thermophysical proper-
ties of #uid and solid are constant, which is a good
hypothesis for the porous cavity described in Fig. 1
(Deiber & Bortolozzi, 1998).

The heat #uxes of species in the mixture are de"ned as

q
s
"!k

s
+¹

s
, (10)

q
f
"!(k

f
I#k

d
) )+¹

f
, (11)

where k
s
and k

f
are the partial thermal conductivities of

solid and #uid in the mixture de"ned as thermodynamic
partial properties (for the basic concept see, for example,
Glasstone, 1947) and they shall be functions of thermal
conductivities of the pure species as well as bed porosity.
Thus, when the mixture is considered ideal these proper-
ties are k

s
"ko

s
(1!e) and k

f
"ko

f
e, where ko

s
and ko

f
are

the thermal conductivities of solid and #uid as pure
species. The sum of these #uxes is a part of the total #ux
q, which is calculated from Eq. (7). In the framework of
1-F models, several semiempirical expressions for the
e!ective stagnant thermal conductivity of porous media
are available in the literature (Nield, 1991; Prasad,
Kladias, Bandyopadhaya, & Tian, 1989) which allow us
to de"ned k

s
and k

f
. In particular, the correlation of

Kunii and Smith (1960) has been found useful in practice.
Therefore, one can readily propose for this case, k

f
"ko

f
e

and k
s
"ko

s
(1!e) f

c
, where f

c
"(2/3#a

1
/r

c
)~1 so that

the sum of these expressions satis"es the e!ective stag-
nant thermal conductivity proposed by these authors.

The equation for f
c

involves the empirical constant
a
1
, which is calculated through the relation a

1
"

4.63(e!0.26)(u
1
!u

2
)#u

2
, where u

1
and u

2
can

be obtained as function of the conductivity ratio r
c
"

ko
f
/ko

s
, from a plot presented in Kunii and Smith's work.

Of course, for the ideal mixture used in our previous
work, one gets a stagnant thermal conductivity
k
m
"ko

s
(1!e)#ko

f
e with f

c
"1. In this work, the cor-

relation of Kunii and Smith is used as suggested in
Nield's work. Nevertheless, in systems where the thermal
conductivities of the pure species are relatively close, like
the case of water}glass system, the value of k

m
obtained

with the correlation mentioned above is similar to that of
the ideal mixture.

In Eq. (11), k
d

is the thermal dispersion tensor gener-
ated by the #uid convective #uctuation in the interstices
(Georgiadis & Catton, 1988). This tensor is expressed (see
Mercer, Faust, Miller, & Pearson, 1982; Amiri & Vafai,
1994; Howle & Georgiadis, 1994),

k
d
"oo

f
Co

pf
d
p
l(n)a:

e(v
f
v
f
)

Dv
f
D

. (12)

Since the porous media is considered isotropic, the tensor
a has symmetric properties as described by Scheidegger
(1974); thus, a

iiii
"a

l
, a

iijj
"a

t
, a

ijij
"a

ijji
"1

2
(a

l
!a

t
)

for all possible permutations when i"r, z in a cylindrical
coordinate system (Fig. 1); otherwise, components of
a are zero. In Eq. (12), Co

pf
is the #uid heat capacity at

constant pressure and d
p

is the particle diameter. Also,
l(n) is the Van Driest function (Cheng & Hsu, 1986) which
considers the damping of #uid #uctuations near the walls
and is expressed as

l(n)"1!expA
n

ud
p
B, (13)

where n is the perpendicular distance from any wall of the
porous cavity and u is an empirical constant (Cheng
& Zhu, 1987).

In relation to Eq. (12) another consideration is useful.
In fact, since for the purposes of this work the thermal
conductivity ratio r

c
and the Darcy number Da were

changed within a wide range of values, the Rayleigh
number Ra obtained never became greater than
3.5]104, to avoid unphysical *¹"¹

h
!¹

c
. This par-

ticular situation allowed us to use Eq. (12) with the same
value for the longitudinal and transversal components of
the dispersivity tensor (a

l
"a

t
"a), i.e. the dispersion

e!ect can be considered isotropic (Bortolozzi & Deiber,
1998). This consideration is applied throughout this
work reducing Eq. (12) to the scalar form k

d
"

oo
f
Co

pf
d
p
l(n)aeDv

f
D.

The internal energy exchange between species, ea"
eTa!ma ) va , is de"ned (see, for example, Combarnous
& Bories, 1975; Amiri & Vafai, 1994),

e
s
"!e

f
"h

sf
a
v
(¹

f
!¹

s
), (14)
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where a
v

is the speci"c surface of the porous medium
evaluated from a

v
"6(1!e)/d

p
. This last expression is

deduced from geometric considerations (see, for example,
Bird, Stewart, & Lightfoot, 1960).

The heat exchange between the interstitial #uid and
the particles in the porous medium is still a subject of
research and has not been fully elucidated yet (see, for
example, Kaviany, 1995). In fact, a single particle in
a typical cell of the porous medium exchanges heat with
the moving surrounding #uid and also with the neighbor-
ing particles that are in direct contact. A simple approach
to this problem is to assume that the total heat transfer
coe$cient describing the heat exchange between phases
has associated two resistances (internal and external to
the particle). Thus, Eq. (14) involves the heat transfer
coe$cient h

sf
, which in this work is evaluated with the

following expression (Kuznetsov, 1998) as

1

h
sf

"

1

h
f

#

l
c

ko
s

. (15)

In Eq. (15), the value of h
f

can depend on the #uid
velocity and thermophysical properties according to the
following generalized expression:

h
f
"t

ko
f

d
p
C2#cPrm

fA
Re

p
s B

q

D , (16)

where Re
p
"oo

fr
eDv

f
Dd

p
/ko

f
is the particle Reynolds num-

ber and Pr
f
"Co

pf
ko
f
/ko

f
is the #uid Prandtl number. The

widely accepted equation of Wakao, Kaguei, and
Funazkri (1979) (designated Correlation (a) throughout
this work) is obtained from Eq. (16) when t"1, c"1.1,
m"1

3
, q"0.6 and s"1; we adopt this correlation to

generate our numerical results. Nevertheless, to validate
this choice, in the discussion section the numerical pre-
dictions involving Correlation (a) are compared with
those obtained with Correlation (b) which results by
taking t"1, c"0.6, m"1

3
, q"0.5 and s"1 in Eq. (16)

(see Bird et al., 1960). In a similar context one can use
Correlation (c) suggested by Martin (1978) with
t"1#[1.5(1!e)], c"0.6, m"1

3
, q"0.5 and s"e.

In Eq. (16), the internal heat transfer coe$cient, which
involves pure conduction, is treated as a lumped para-
meter including a characteristic length l

c
. This length is

estimated to be around d
p
/10 for spheres (Dixon &

Cresswell, 1979; Stuke, 1948). In our previous work
(Deiber & Bortolozzi, 1998) h

sf
+ h

f
was considered as

a "rst approximation for the water}glass system. At the
present time, researches are being carried out considering
a typical cell of the porous medium in order to investi-
gate, in particular, this problem (Kaviany, 1995).

Darcy and Forchheimer terms are interpreted in this
work as the momentum exchange between solid and #uid
as follows (see, in general, Bowen, 1976, and in particular

Deiber & Bortolozzi, 1998),

m
f
"!m

s
"!

ko
f

K
e2v

f
!

boo
f

K
e3Dv

f
Dv
f
#po

f
+e, (17)

where the permeability K(e)"d2
p
e3/180(1!e)2 and the

empirical Forchheimer factor b(e)"1.8d
p
/180(1!e)

have been included (Prasad, Kulacki, & Keyhani, 1985;
David, Lauriat, & Prasad, 1989).

Since porosity varies near the cavity walls (Benenati
& Brosilow, 1962) an exponential decay of e with the
normal distance n is proposed as a "rst approximation,

e"e
=C1#A expA!

Bn

d
p
BD , (18)

where A and B are empirical constants, and subscript
R indicates that porosity is evaluated far from walls.
The values assigned to them in this work are 0.3 and 7.5,
respectively. Following Vafai (1984), in Eq. (18) the ex-
ponential decay of porosity from the wall is taken into
account by neglecting any spatial oscillations, which are
considered to be a secondary e!ect.

Although a common practice is to use Eq. (18) to
model approximately the porosity variation, a more rig-
orous description of this phenomenon involves an oscil-
latory damped porosity expressed (Martin, 1978;
Mueller, 1991) as

e"e
.*/

#(1!e
.*/

)m2, !1)m)0 (19)

and

e"e
=
#(e

.*/
!e

=
) exp(!0.25m) cos(3.51m),

m'0, (20)

where m"2(n/d
p
)!1 and e

.*/
"0.23 is the minimum

value of porosity.
Combining Eqs. (2) and (17), and including the consti-

tutive equation for the stress tensor, the #uid momentum
balance for the steady state is obtained. Additionally, the
energy balances for #uid and solid phases result from
Eqs. (3), (10), (11) and (14). In particular, the energy
balance for the #uid is obtained from Eq. (3), where the
internal energy is expressed ;

f
"H

f
!p

f
/o

f
. Here,

H
f

is the enthalpy per unit of mass, and is a function of
¹

f
and p

f
. Therefore, the following model is obtained:

f Continuity:

+ ) (oo
f
ev

f
)"0. (21)

f Momentum balance of yuid:

oo
f
v
f
)+v

f
"!+po

f
#oo

f
g#ko

f
+2v

f
!

ko
f

K
ev

f

!

boo
f
Dv
f
D

K
e2v

f
. (22)
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f Energy balance of yuid:

oo
f
Co

pf
ev

f
)+¹

f

"+ ) [(k
f
I#k

d
) )+¹

f
]

!h
sf

a
v
(¹

f
!¹

s
)#U#b¹

f
ev

f
)+po

f
. (23)

f Energy balance of solid:

+ ) (k
s
+¹

s
)#h

sf
a
v
(¹

f
!¹

s
)"0. (24)

Eqs. (22) and (23) have been obtained by neglecting
porosity gradients as suggested in the conclusions of our
previous work (Deiber & Bortolozzi, 1998), which is also
an assumption used and validated in most of the works
considering this subject. In Eq. (23), U"!s

f
:+v

f
is the

viscous dissipation term, which can be neglected under
the situation described below.

For a consistent interpretation of the numerical results
reported in the discussion section, the two models (the
2-F above and the 1-F described below) are written in the
following dimensionless variables: super"cial velocity
V"ev

f
D/a

m=
; #uid pressure po"po

f
K

=
/ko

f
a
m=

, where
a
m=

"k
m=

/oo
fr

Co
pf

; radial coordinate R"r/D and axial
coordinate Z"z/D. The #uid and solid dimensionless
temperatures are H

f
"(¹

f
!¹

r
)/*¹ and H

s
"

(¹
s
!¹

r
)/*¹, respectively. The characteristic scale for

thermal conductivities is k
m=

"ko
f
e
=
#ko

s
(1!e

=
) f

c=
.

This procedure generates the Rayleigh, Darcy, For-
chheimer and Prandtl numbers, respectively, as follows:

Ra"
oo
fr

gbK
=

D*¹

ko
f
a
m=

, Da"
K

=
D2

,

Fs"
b
=
D

, Pr
f
"

Co
pf

ko
f

ko
f

.

An important relation useful for the discussion section is
the #uid Rayleigh number Ra

f
"Ra/Daj which involves

#uid properties only. In this expression, j"ko
f
/k

m=
.

Additionally, the following dimensionless functions are
generated:

/
0
"

oo
f

oo
fr

, /
1
"

K(e)
K

=

, /
2
"

b(e)
b
=

,

kH
d
"

k
d

k
m=

, H"

6(1!e)
d
p

h
sf

D2

k
m=

.

It is appropriate to point out here that in the proced-
ure of writing the model in dimensionless form, the terms
U and b¹

f
ev

f
)+po

f
in Eq. (23) scale according to the

following dimensionless numbers:

N
1
"

2ko
f
k
m=

*¹(e
=

oo
fr

Co
pf

D)2
, N

2
"

bgD

Co
pf

.

Simple calculations indicate that these numbers are typi-
cally of the order of 10~15 and 10~7, respectively, and

hence, it is practical to neglect these terms in the model as
far as the #uid has a viscosity of order of that of water (see
also Section 7 and Deiber & Bortolozzi, 1998, for further
details of the dimensional analysis presented above).

4. 1-F model for the porous medium

Case 1: Local thermal equilibrium
The 1-F model can be obtained from the 2-F model

when ¹
f
"¹

s
"¹, which is the LTE assumption

according to, for example, Amiri and Vafai (1994).
Therefore, after summing equations (23) and (24) and
neglecting the terms U and b¹

f
ev

f
)+po

f
since N

1
and

N
2

are very small, the energy balance is reduced to

oo
f
Co

pf
ev

f
)+¹"+ ) [(k

m
I#k

d
) )+¹], (25)

where k
m
"eko

f
#(1!e)ko

s
for the ideal mixture and

k
m
"eko

f
#(1!e)ko

s
f
c
when the Kunii and Smith's non-

ideal expression for the stagnant thermal conductivity is
used. Eq. (25) must be solved, of course, with Eqs. (21)
and (22). It is also appropriate to mention here that
Whitaker (1986) considered a temperature "eld ¹ of the
solid}#uid mixture before introducing the LTE assump-
tion. In fact, this author analyzed in detail the constraints
required to satisfy the LTE. This interesting theoretical
aspect is also considered below, within the framework of
the theory of mixtures for the non-local thermal equilib-
rium situation.

Case 2: Non-local thermal equilibrium
Although the LTE assumption can be used as a good

approximation in many practical situations, it is recom-
mended to carry out calculations with the 2-F model
when ¹

f
is substantially di!erent from ¹

s
. In these cases,

the mixture properties are obtained from Eqs. (4) to (8) as
described by the theory of mixtures. Therefore, one must
evaluate o, v, T, q and ;, which are the practical values
required to characterize the mixture, from the 2-F model.
Furthermore, it is clear that to obtain a 1-F model when
the LTE assumption is not valid, an additional con-
straint that relates the values of ¹

f
and ¹

s
is required to

achieve a closed mathematical problem (Whitaker, 1986).
In this sense, one can also solve the 2-F model and then
obtain the mixture properties.

Next, we present the framework to compare the pre-
dictions of the mixture properties calculated under the
LTE assumption through the 1-F model * an approxi-
mation * with those obtained with the 2-F model and
Eqs. (4) and (8) within the context of the theory of
mixtures. This aspect is important to determine the LTE
assumption should not be used as it is described in the
physical conditions at which discussion section (see also
Amiri & Vafai (1994) to visualize the importance of
having criteria to establish these limits).
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To proceed in this way, the Gibbs internal energy; of
the mixture is assumed a function of temperature ¹ and
speci"c volume v( ; thus;";(¹,v( ), which is an appropri-
ate constitutive expression for the mixture of water and
rigid particles. Neglecting the small e!ects produced by
changes of the speci"c volume on the evaluation of the
internal energy (N

2
@1), we consider;+;(¹) as a good

approximation. This also indicates that the heat capa-
cities at constant pressure and volume have similar
values, for practical purposes. Therefore, the expression
o;"oC

pm
(¹!¹

r
) obtained with these considerations

is combined with Eq. (8) to yield,

¹"

1

oC
pm
Aof

Co
pf

¹
f
#o

s
Co

ps
¹

s
#

1

2
o
f
u2
f
#

1

2
o
s
u2
sB,

(26)

where

oC
pm

"oo
f
eCo

pf
#oo

s
(1!e)Co

ps
. (27)

Thus, the theory of mixtures gives a temperature ¹ in Eq.
(26) that is composed of two parts. One involves the solid
and #uid temperatures averaged through the weighting
factors oaCo

pa/oC
pm

for a"f, s, while the other is asso-
ciated to the phase drift velocities, the importance of
which shall be determined numerically below.

5. Nusselt numbers

5.1. 2-F model

The momentum and energy balances, Eqs. (22)}(24)
are solved using a "nite-di!erence scheme, which is ex-
plained brie#y in the next section. Once the #ow and
temperature "elds are obtained numerically, the Nusselt
numbers can be calculated as follows:

Nu
h
"!P

1

0
Aje

LH
f

LR
#l(1!e) f

c

LH
s

LR BdZ at R"

r
i

D

(28)

and

Nu
c
"!P

1

0
Aje

LH
f

LR
#l(1!e) f

c

LH
s

LR BdZ at R"

r
o

D
,

(29)

which are evaluated at the hot and cold walls, respective-
ly. In these equations l"ko

s
/k

m=
.

The dimensionless numbers Nu
h

and Nu
c
must satisfy

the relation

Nu
h
"iNu

c
, (30)

where i"r
o
/r

i
is the radius ratio (see also Prasad

& Kulacki, 1984). Eq. (30) indicates that the heat entering

the cavity through the hot wall has to be equal to the heat
leaving the cavity at the cold wall for steady heat transfer.

We carried out, in addition, a more rigorous cross-
checking of numerical results through a macroscopic
balance of energy in a volume fraction of the porous
cavity comprised between the hot wall and any vertical
cut placed at a radius between r

i
and r

o
. Thus, placing the

cavity cut at (r
i
#r

o
)/2, numerical results shall satisfy, in

addition to Eq. (28), the following expression:

Nu
h
"

(i#1)

2 P
1

0
C!(je#kH

d
)
LH

f
LR

!l(1!e) f
c

LH
s

LR
#<

r
H

fDdZ, (31)

where <
r

is the radial component of velocity V and
kH
d
"cl(n)aDVD (see Eqs. (12) and (13)) is the isotropic

dispersive thermal conductivity in dimensionless form. In
Eq. (31), the integral term represents the Nusselt number
evaluated at R"(r

i
#r

o
)/2D; this value multiplied by

(i#1)/2 gives the Nusselt number at the hot wall.

5.2. 1-F model

When the 1-F model with the LTE assumption is
solved, the temperature "eld obtained allows us to evalu-
ate the Nusselt number in both vertical walls. In fact, for
this case Eqs. (28) and (29) reduce to,

Nu
h
"!P

1

0

kH
m

LH

LR
dZ at R"

r
i

D
(32)

and

Nu
c
"!P

1

0

kH
m

LH

LR
dZ at R"

r
o

D
, (33)

where kH
m
"k

m
/k

m=
and H"(¹!¹

r
)/*¹, so that

¹"¹
f
"¹

s
.

A similar result to that expressed by Eq. (31) can be
also obtained for the 1-F model as follows:

Nu
h
"

(i#1)

2 P
1

0
C!(kH

m
#kH

d
)
LH
LR

#<
r
HDdZ, (34)

where the integral term is the Nusselt number evaluated
at R"(r

i
#r

o
)/2D.

From Eqs. (31) and (34), it is clear that the Nusselt
numbers for the 2- and 1-F models present di!erent
terms associated to conduction and convection of heat in
the cylindrical surface placed, for example, at (r

i
#r

o
)/2

when the LTE assumption is not valid. In this particular
situation, the velocity pro"le <

r
of the 2-F model is
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Fig. 2. Fluid Nusselt number Nu
hf

obtained from 1- and 2-F models as
function of Darcy number for di!erent values of the conductivity ratio
r
c

and Ra
f
"2.1]109. Other parameters are: Pr

f
"4.60, ¸/D"1,

e
=
"0.40, A"0.35, B"7.5, a

l
"a

t
"0.1, u"2.5.

di!erent from that of the 1-F model (see also Fig. 5).
Thus, the value of Nu

h
obtained from Eq. (31) cannot be

equal to Eq. (34) unless the LTE is satis"ed.
Before ending this section, it is useful to de"ne the #uid

Nusselt number at the hot wall Nu
hf

in terms of the
Nusselt number Nu

h
(see Eqs. (28) and (32)) to account

properly the e!ect of a variable r
c
. Thus, Nu

hf
"Nu

h
/j.

6. Numerical method

Eqs. (21) and (22) used in both the 2- and 1-F models
are rewritten using the vorticity-stream function scheme.
The resulting models (Eqs. (21)}(24) for the 2-F model
and Eqs. (21), (22) and (25) for the 1-F model) are ex-
pressed in "nite di!erences as follows: (1) Convective
terms are discretized with the second upwind technique
(Roache, 1972). (2) Central di!erences are used for second
derivatives. (3) Heat conduction terms with variable ef-
fective conductivities on the right-hand side of Eqs. (23)
and (25) are discretized according to the procedure de-
scribed by Peaceman (1977). The discrete equations are
solved using the relaxation method through successive
iterations as it was described in the work of Peirotti,
Giavedoni, and Deiber (1987). The iteration procedure is
continued until a convergence criterion is satis"ed as
follows:

+
ij

D sk`1
ij

!sk
ij
D

+
ij

D sk
ij
D

)p, (35)

where s
ij

is the dependent variable that is being numer-
ically calculated (vorticity, stream function and temper-
atures of #uid and solid). The subscripts i and j imply

spatial position in the computational mesh, and k refers
to the iteration number. In this work, the value assigned
to p is 10~6.

Since high values of Ra generate thermal and mo-
mentum boundary layers near the cavity walls, it is
highly recommended to carry out a coordinate trans-
formation so that grid intervals are very small (of the
order of 10~3) near these walls. In this work, the coordi-
nate transformation proposed by KaH lnay de Rivas (1972)
is used (for details, see Deiber & Bortolozzi, 1998). On the
other hand, this transformation yields a coarse mesh at
the cavity center. This interplay between mesh sizes and
cavity zones requires a careful veri"cation of consistency
between numerical evaluations and macroscopic energy
balance. Therefore, in order to control the consistency of
computational calculations, a numerical parameter is
de"ned as follows:

s"
Nu

h
iNu

c

. (36)

Thus, the numerical procedure is giving consistent results
when sP1. This requirement is a severe test for the
accuracy of results, and this limit is only attained with an
appropriate combination of small grid intervals and
rather small values of p.

7. Results and discussion

This section presents our results from two points of
view. One includes most of the calculations considering
the variable porosity given by Eq. (18), which is a good
approximation for applications. The second one analyzes
numerical results with Eqs. (19) and (20) to elucidate how
the spatially damped oscillations of porosity (validated
experimentally in the literature) a!ect both the Nusselt
number and the #ow "eld predicted with these models.

Thus, "rst numerical studies were carried out with Eq.
(18) to compare the 2- and the 1-F models, the second
one being formulated with the LTE assumption. Results
demonstrate that the Nusselt numbers and the velocity
pro"les predicted from these two models are not the
same, when ¹

f
O¹

s
in the porous matrix, in the context

of the 2-F model. The opposite is also true when the LTE
assumption is attained and physically approximated in
the whole bed. Therefore, to visualize better these phys-
ical aspects under analysis, the LTE situation shall be
violated by changing the Darcy number and the conduct-
ivity ratio. We discuss these e!ects separately below.

To quantify the in#uence of the Darcy number while
the other dimensionless numbers are kept constant, the
particle diameter has to be changed. This also implies
that the other parameters like particle material, inter-
stitial #uid, temperature di!erence between hot and cold
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Fig. 3. Percentile di!erence between #uid and solid dimensionless
temperatures *H]100 as function of radial position (r!r

i
)/(r

o
!r

i
)

for di!erent heights z of the porous cavity. Parameters are:
Ra

f
"2.1]109, Da"0.99]10~5, Pr

f
"4.60, ¸/D"1, r

c
"0.56,

e
=
"0.40, A"0.35, B"7.5, c"0.10, a

l
"a

t
"0.1, u"2.5.

walls and cell dimensions have also to be "xed for these
particular numerical runs. One thus gets a change of the
bed permeability, and hence, of the Darcy number. We
found that increasing Da, while r

c
was constant, the #uid

Nusselt numbers calculated from the 1- and 2-F models
also increased. Additionally, the values of Nu

hf
obtained

from these models are not the same, as shown in Fig. 2.
In fact, for the water}glass system (r

c
"0.56) and

Da"1.1]10~6, the di!erence between the values of
Nu

hf
(Eqs. (28) and (32)) is less than 1%, while for

Da"0.99]10~5 is around 15.4%. In all the cases
studied here, the two models provide almost the same
Nusselt numbers for Da(10~6; i.e. the 1-F model is
good to predict quantitatively this macroscopic para-
meter at relatively low Darcy numbers. On the other
hand, when porous media of high permeability are con-
sidered (high Da), numerical results indicate that the 1-F
model overestimates the steady heat #ux through the
porous cavity, for any value of r

c
considered in Fig. 2.

The reason for this defect to occur (Deiber & Bortolozzi
(1998) "tted experimental data with the 2-F model and
physicochemical properties used here) is that the 1-F
model does not take into account the additional resis-
tance 1/h

sf
(Eq. (15)) to the interfacial heat transfer that

exists in the microstructure of the cavity between the
solid particles and the #uid. This result is emphasized
when the particle diameter is relatively large, because the
heat transfer becomes di$cult to occur when the speci"c
surface a

v
of the porous medium is low. It is important to

place emphasis in that the two models predict near the
same Nu

hf
when the local heat transfer between the

interstitial #uid and the particles is high, yielding equal or
almost equal temperatures in both phases. This last situ-
ation occurs mainly for porous media with small par-
ticles, i.e., for cP0 (see also Bortolozzi & Deiber, 1998).

We also analyzed the e!ect of the thermal conductivity
ratio r

c
"ko

f
/ko

s
on the #uid Nusselt number Nu

hf
. With

this purpose, numerical runs were carried out by keeping
ko
f

constant and taking di!erent values of ko
s
. In practice,

these situations are obtained by changing the material of
which the spheres are made. For this purpose the same
#uid was used and *¹ was kept constant in all the cases
so that Ra

f
and Da remained constant too. These consid-

erations allowed us to study speci"cally the e!ect of r
c

on Nu
hf

. Therefore, the thermophysical properties of
three systems were used: water}steel, water}glass and
water}acrylic (Nield, 1991; Prasad et al., 1989; these
references report experimental values of stagnant thermal
conductivities of the porous media considered here). It is
found that for high Darcy numbers, the physical situ-
ation is close to that of the LTE in the porous medium
when the solid phase is a good heat conductor (r

c
P0).

This result is expected because the high thermal conduct-
ivity of the solid improves the heat transfer between the
interstitial #uid and the particles. For this particular
reason, i.e. when the system is close to the LTE, the
Nusselt numbers calculated with both models are similar
in the whole range of values of Da. For example, in Fig. 2,
the di!erence between the Nusselt numbers is no more
than 2.8% for Da"0.99]10~5 and r

c
"0.017.

On the other hand, when the solid phase is a poor heat
conductor and the bed permeability is relatively high,
numerical results show that di!erences between solid and
#uid temperatures in some places of the porous medium
are present. Thus, for r

c
"0.56 (water}glass system) and

Da"0.99]10~5, zones in the cavity with dimensionless
percentile temperature di!erences *H]100 between
phases ranging from !55.1 to #32.5% are found. For
a less heat conductor solid phase like acrylic spheres
saturated with water (r

c
"3.875), these di!erences are

!63.3 and #38.9%, respectively. Nevertheless, this
e!ect is not directly related with the numerical Nusselt
numbers obtained from the two models, as shown clearly
in Fig. 2, in particular for r

c
"3.875. In fact, the higher

di!erences between Nusselt numbers occurs for inter-
mediate values of r

c
. When r

c
"0.56 and Da"

0.99]10~5, this di!erence is around 15.4%, while for
r
c
"3.875 and Da"0.99]10~5, it is smaller and around

6.5%. Consequently, these numerical results show one
that despite the Nusselt numbers may be close from one
another as calculated from the 1- and 2-F models, respec-
tively, it is also possible to "nd for these calculations,
zones in the porous cavity where the di!erences between
phase temperatures are signi"cant for high r

c
. Then, the

comparison between Nusselt numbers (which are macro-
scopic parameters) obtained with these models cannot
indicate us, in a su$cient way, that the LTE assumption
is attained at the microscopic level under certain physical
conditions. It may happen that even in the case of exist-
ing high di!erences between solid and #uid temperatures
in some places of the cavity, there are physical reasons for
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Fig. 4. Map of percentile di!erence between #uid and solid dimension-
less temperatures *H]100 in the porous cavity. Parameters are the
same as in Fig. 3.

Fig. 5. Dimensionless velocity <
z

near the hot wall at midheight of the
porous cavity, obtained from 1- and 2-F models, as function of radial
position (r!r

i
)/(r

o
!r

i
). Parameters are the same as in Fig. 3.

yielding similar Nusselt numbers from these models. In
this sense a physical interpretation for high r

c
follows.

Thus, when ko
s
is substantially smaller than ko

f
, the contri-

bution of the solid phase to the global heat transfer
through vertical walls is poor. This result can be visualiz-
ed from Eqs. (28) and (32). In fact, under this situation,
Nu

h
+!:1

0
je(LH

f
/LR) dZ for the 2-F model. A similar

expression is obtained for the 1-F model since kH
m

is
close to je for l@j. Therefore, when ko

s
@ko

f
, Eqs. (28)

and (32) give almost the same Nusselt number at the
hot wall, despite the solid temperature is di!erent from
the #uid temperature in some places of the porous
medium.

We found that the greatest di!erences between the
temperatures of solid and #uid phases are in zones close
to the vertical walls of the cavity. Additionally, under the
circumstances analyzed in this work, the solid temper-
ature ¹

s
is greater than the #uid temperature ¹

f
near the

hot wall. This speci"c relation is the opposite in the
neighborhood of the cold wall. The temperature di!er-
ences obtained near the hot wall are higher than those
calculated near the cold wall due to the annular geometry
of the cavity (the surface of heating is smaller than the
surface of cooling). On the other hand, the middle zone of
the cavity is close to the LTE conditions as it is required
in the 1-F model. These results can be readily visualized
in Fig. 3 for di!erent cuts along the cavity height. The
maximum di!erence in absolute value between #uid and
solid dimensionless temperatures D*HD is thus placed on
the bottom near the hot wall of the cavity. These thermal
responses are consistent with the expected behavior fol-
lowed by the convective streams of the cold #uid, which
approaches the hot wall from below. Then, this #uid gets

hotter when it moves upward, and its temperature be-
comes closer to that of the solid phase. At the isolated top
wall (Z"1) the temperatures of the phases do not be-
come equal and ¹

f
is higher than ¹

s
; this result is

satis"ed along the whole width of the cavity. Thus, the
#uid that #ows in the upper boundary layer does not
deliver enough heat to the solid particles and both phases
cannot be at LTE near the upper isolated wall, in this
particular cavity where ¸"D.

Fig. 4 presents a map showing the iso-lines of *H as
they are predicted by the 2-F model for the more drastic
situation analyzed here, i.e. when the Darcy number and
the conductivity ratio are relatively high. The iso-line
corresponding to *H"0 divides the cavity in two zones.
Each zone has the thermal characteristics mentioned
above. This "gure also shows where the near LTE do-
main is placed in the cavity as well as the zones where
H

f
(H

s
(low and left cavity zone) and H

f
'H

s
(upper

and right cavity zone). Thus, the two maxima of D*HD are
diagonally opposed in the cavity.

To determine quantitatively the limit of application of
the LTE assumption according to the criteria similar
to those established by Amiri and Vafai (1994), we
calculated the fractions of the cell volume where temper-
ature di!erences satisfy the following pre"xed ranges:
(1) 0)D*HD]100)1; (2) 1(D*HD]100)5; (3)
5)D*HD]100)10; (4) 10(D*HD]100)20 and (5)
20(D*HD]100. Table 1 presents the results obtained for
Ra

f
"2.1]109 and di!erent Darcy numbers. It is found

that for beds of low permeability (Da"1.7]10~7) a sig-
ni"cant volume fraction of the cavity has percentile tem-
perature di!erences less than 1%, indicating this result
that the LTE assumption is good except for some zones
that surmount only around 7% of the total volume of the
cavity. In fact, for Da"1.1]10~6, around 37% of the
cavity volume presents values of D*HD]100 comprised
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Table 1
Percentile of cavity volume that presents temperature di!erences within
pre"xed ranges, for di!erent values of Da and Ra

f
"2.1]109. The

other parameters are the same as in Fig. 3

D*HD]100 0}1 1}5 5}10 10}20 '20

Da"1.7]10~7 93 7 0 0 0
Da"1.1]10~6 63 35.5 1.5 0 0
Da"0.99]10~5 24 49 12.5 9 5.5

Table 2
Percentile of cavity volume that presents temperature di!erences within
pre"xed ranges, for di!erent values of Ra

f
and Da"0.99]10~5. The

other parameters are the same as in Table 1

D*HD]100 0}1 1}5 5}10 10}20 '20

Ra
f
"2.0]107 79 21 0 0 0

Ra
f
"1.8]108 57 38 5 0 0

Ra
f
"2.1]109 24 49 12.5 9 5.5

Table 3
Maximum percentile di!erences between #uid and solid dimensionless
temperatures *H]100 obtained with di!erent correlations for h

f
(see

Eq. (16)). r
c
refers to the conductivity ratio of the three systems studied

r
c
"3.875 r

c
"0.56 r

c
"0.017

Correlation (a) !63.27 38.89 !55.10 32.45 !57.62 29.54
Correlation (b) !64.24 39.54 !61.24 35.98 !64.68 33.09
Correlation (c) !63.20 38.80 !54.72 31.90 !57.37 28.81

Table 4
Fluid Nusselt numbers Nu

hf
obtained with di!erent correlations for h

f
(see Eq. (16)). r

c
refers to the conductivity ratio of the three systems

studied

r
c
"3.875 r

c
"0.56 r

c
"0.017

Correlation (a) 65.99 82.86 146.72
Correlation (b) 65.91 80.53 131.23
Correlation (c) 66.00 82.90 147.16

between 1 and 10%. For Da"0.99]10~5 (high per-
meability bed) more than 60% of the cavity presents
values within the range 1}10% and there exist zones with
percentile di!erences higher than 20%, indicating these
results that the description of the porous medium
through the 1-F model is an approximation. This dis-
cussion validates our previous conclusion described
above: the volumetric fraction with unequal temper-
atures of solid and #uid phases increases with the Darcy
number. Table 2 shows the results for high permeability
beds (Da+10~5) at di!erent Ra

f
. Additionally, an in-

crease of the #uid Rayleigh number, keeping Da constant,
generates small zones with very high D*HD]100 in this
porous medium of high permeability.

Although the results shown in Fig. 4 were obtained
with the correlation of Wakao et al. (1979), additional
calculations were also carried out by using Correlations
(b) and (c) also described by Eq. (16) where numerical
coe$cients are di!erent from those of Correlation (a). It
is observed that these three correlations, which have
a value of h

f
di!erent from zero when Re

p
P0, give

almost the same numerical results, in the sense that
relatively small changes in the maximum temperature
di!erences and Nusselt numbers are observed (see Tables
3 and 4). Thus, the description of particular situations
showing *HO0 does not depend signi"cantly on the
type of correlation used to evaluate the interface heat
transfer coe$cient.

In the context of this work, it is also important to point
out that the heat transfer between phases increases with
Ra

f
, mainly due to #uid convection through the intersti-

ces of the porous matrix. Nevertheless, in beds of higher

particle diameters (low a
v
) this last e!ect is not su$cient

to generate equal temperatures at every points of the
porous medium. This phenomenon occurs because the
solid resistance to the local heat #ux is limiting, and
hence, controlling the heat transfer process (see Eq. (15)).
Thus, in this case the increase of h

f
does not necessarily

produce an important e!ect on the global heat transfer
between the #uid and solid particles.

It is also remarkable that the velocity "elds obtained
from the 1- and 2-F models are not coincident, unless the
LTE is physically approximated (see Fig. 5). This is partly
due to the way the thermal driving force associated to the
gravity term is calculated in the 1-F model. In this model,
this force is the di!erence between the #uid temperature
taken equal to the solid temperature, and the reference
temperature ¹

r
that is the arithmetic mean between

¹
h

and ¹
c
. On the other hand, in the 2-F model the #uid

movement near the particle is driven by a di!erence
between the #uid temperature ¹

f
, which is not necessar-

ily equal to the solid temperature ¹
s
, and reference tem-

perature. At low Rayleigh and Darcy numbers, these
velocity pro"les are rather coincident, because ¹

s
+¹

f
.

According to our results, the #uid phase shows temper-
ature pro"les that are sharper than those of the solid
phase, close to the vertical cavity walls. As we mentioned
above, the single temperature pro"le calculated with the
1-F model considering the LTE, generates a driving force
in the gravity term that is di!erent from that of the 2-F
model for the cases studied here. Additionally, the di!er-
ences in velocity "elds obtained from the two models also
a!ect the value of the Nusselt number as it can be
visualized from Eqs. (31) and (34), where the presence of
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Fig. 6. Dimensionless mixture temperature H obtained from 2- and 1-F
models for Ra

f
"2.1]109, r

c
"0.56 and di!erent values of Darcy

number. (a) Da"1.7]10~7, (b) Da"0.99]10~5. The other para-
meters are the same as in Fig. 2.

the velocity component <
r

is evident. In this context of
analysis, it is clear that the 2-F model predicts Nusselt
numbers that are not equal to those calculated with the
1-F model because both the temperature and velocity
pro"les of each model are di!erent, unless the LTE as-
sumption is attained in the porous cavity.

Another analysis that illustrates comparative aspects
between these models consists in calculating the mixture
temperature by means of Eq. (26). This calculation re-
quires the knowledge of both the temperatures and drift
velocities of the solid and #uid phases, which are a result
of solving the 2-F model only (Eqs. (21)}(24)). For di!er-
ent Darcy numbers, the mixture temperature pro"les
thus calculated are compared with the temperature pro-
"les obtained with the 1-F model involving the LTE
assumption (Fig. 6). In this "gure, one can observe that
the temperature pro"les calculated with the two models
are almost coincident when the bed is composed of par-
ticles with small diameters (Da"1.7]10~7) (Fig. 6(a)).
The opposite occurs for beds with high particle diameters
(Da"0.99]10~5), particularly in the zone near the hot
wall (Fig. 6(b)). This conclusion is consistent with the fact
that at high Da the 1-F model overestimates the Nusselt

number in relation to the experimental values available
for this problem for the set of data used in the 2-F model.

Additionally, we found numerically that in Eq. (26) (see
also Eq. (8)) the terms associated to the drift velocities of
the #uid and solid phases can be neglected as a good
approximation. This result is further veri"ed when one
evaluates the order of magnitude of the terms involving
these velocities, which are around 10~9 in the dimension-
less model. In a similar analysis, numerical results also
reveal that the terms involving drift velocities are negli-
gible in Eq. (7), except oa;aua containing ;a , which is
a part of the energy convective term, when the energy
balance is expressed by using the mixture velocity v.

As far as water is the #uid phase in the porous media
considered in this work, the dissipation term can be
always neglected in the energy balance for both models.
Thus, for the porous cavity studied here, with for
example *¹"203C, and the water thermophysical
properties evaluated at 403C, the values of the dimen-
sionless parameter N

1
and N

2
are of the order of 10~15

and 10~7, respectively. When one includes the terms
associated to N

1
and N

2
in the numerical algorithm, no

relevant di!erences are observed from the numerical
values obtained by neglecting these terms.

Finally, numerical studies were carried out with Eqs.
(19) and (20) included into the 2- and the 1-F models.
Results demonstrate here that the Nusselt numbers are
not signi"cantly a!ected when a damped oscillating
porosity is considered in these models. Although both
porosity functions (Eqs. (18)}(20)) yield similar values of
Nusselt numbers for practical use, this conclusion is not
valid when the #ow "eld is under analysis. In fact,
Fig. 7 shows that 2- and 1-F models predict spatially
oscillating streamlines following the periodic change in
porosity when Eqs. (19) and (20) are applied. Since the
permeability of the cavity is a function of the porosity one
expects this phenomenon to be present. Therefore, it is
clear that Eqs. (19) and (20) should be used in 1- and 2-F
models when #uid convection at the microstructure level
is relevant, for instance, in industrial devices where mass
transfer with chemical reaction takes place within a bed
of particles of relatively high permeability.

8. Conclusions

The Nusselt number evaluated through the 2-F model
is less or equal to the value obtained from the 1-F model
under the LTE assumption, for the same set of para-
meters and thermophysical properties, because the 1-F
model does not include the additional resistance to the
heat transfer existing in the microstructure of the cavity
between the solid particles and the interstitial #uid. Nu-
merical results indicate that the 1-F model should be
used for porous media in which the Darcy number is less
than 10~5 in the porous cavity studied.
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Fig. 7. Numerical predictions of #ow patterns in the porous cavity. Hot vertical wall is on the left. Parameters are the same as in Fig. 3. Ten equally
spaced streamlines are reported between the maximum value W

.!9
and the minimum W

.*/
"0. (a) 1-F model with Eq. (18); W

.!9
"34.53. (b) 1-F

model with Eqs. (19) and (20); W
.!9

"38.03. (c) 2-F model with Eq. (18); W
.!9

"30.45. (d) 2-F model with Eqs. (19) and (20); W
.!9

"32.98.

Although the LTE assumption can be used as a good
approximation in many practical situations, it is re-
commended to carry out calculations with the 2-F
model when the solid temperature is substantially di!er-
ent from the interstitial #uid temperature. On the other
hand, the formulation of a 1-F model when the LTE
assumption is not attained requires an additional con-
straint that relates ¹

f
with ¹

s
to get a closed mathemat-

ical problem. This constraint is not available, unless one
proposes empirical relationships or generates an addi-
tional modeling. One possible solution to this problem is
the 2-F model.

For a porous medium of high permeability composed
by #uid and solid particles of low thermal conductivity,
zones of the bed with di!erences between temperatures
exist. The comparison between Nusselt numbers pre-
dicted through the 1- and 2-F models cannot indicate us

precisely when the LTE assumption is attained at the
microscopic level.

Another important aspect to be considered in the
modeling of the heat transfer by natural convection in
porous media is the formulation of the thermal driving
force associated to the gravity term. Finally, if the #uid
convection is required at the microstructure level, a dam-
ped oscillating porosity function shall be used in 1- and
2-F models.

Notation

a thermal hydrodynamic dispersivity tensor
a
l

longitudinal component of the dispersivity tensor
a
t

transverse component of the dispersivity tensor
a
v

speci"c surface of the porous medium, m~1
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a
1

empirical constant for Kunii and Smith's correla-
tion

A empirical constant used in Eq. (18)
b Forchheimer inertial constant, m
B empirical constant used in Eq. (18)
c numerical constant used in Eq. (16)
Co

pf
#uid heat capacity at constant pressure, J/kg K

C
pm

heat capacity of #uid}solid mixture, J/kg K
d
p

particle diameter, m
D width of the porous cavity, m
Da Darcy number ("K

=
/D2)

ea exchange of internal energy, W/m3 (a"s, f )
eTa exchange of total energy, W/m3 (a"s, f )
f
c

factor for Kunii and Smith's correlation
F
s

Forchheimer number ("b
=

/D)
g acceleration due to gravity, m/s2
h
f

#uid heat-transfer coe$cient, W/m2 K
h
sf

solid}#uid heat-transfer coe$cient, W/m2 K
H dimensionless heat-transfer coe$cient
H

f
#uid enthalpy, J/kg

I unity tensor
ka thermal conductivity of species in mixture,

W/m K (a"s, f )
k
m

thermal conductivity of the saturated porous me-
dium, W/m K

kH
m

("k
m
/k

m=
)

k
d

thermal dispersion tensor, W/m K
kH
d

("k
d
/k

m=
)

K permeability of the porous medium, m2

l van Driest function
l
c

characteristic length for heat transfer in the solid
phase, m

¸ height of the porous cavity, m
m numerical constant used in Eq. (16)
ma exchange of momentum, Pa/m (a"s, f)
n perpendicular distance from any wall, m
Nu

i
overall Nusselt numbers de"ned in Eqs. (28)}(34)
(i"h, c)

Nu
h,f

overall Nusselt number at hot wall, based upon
#uid conductivity

po
f

#uid pressure, Pa
p dimensionless #uid pressure
P
rf

#uid Prandtl number ("Co
pf

ko
f
/ko

f
)

q numerical constant used in Eq. (16)
q heat #ux of mixture, W/m2

qa heat #ux of species, W/m2 (a"s, f )
r radial coordinate, m
r
c

conductivity ratio ("ko
f
t/ko

s
)

r
i

inner radius of porous cavity, m
r
o

outer radius of porous cavity, m
R ("r/D)
Ra Rayleigh number ("oo

fr
gbK

=
D *¹/ko

f
ao
m=

)
Ra

f
#uid Rayleigh number ("Ra/Daj)

Re
p

particle Reynolds number ("oo
fr

eDv
f
Dd

p
/ko

f
)

s numerical constant used in Eq. (16)
t time, s

T stress tensor of mixture, Pa
¹ temperature of mixture, K
¹a species temperature, K (a"s, f )
¹

i
wall temperature, K (i"h, c)

T
f

#uid stress tensor, Pa
¹

r
reference temperature, K

ua di!usion velocity of species, m/s (a"s, f )
; internal energy of mixture, J/kg
;a internal energy of species, J/kg (a"s, f )
v( speci"c volume, m3/kg
v velocity of mixture, m/s
v
f

#uid velocity, m/s
V dimensionless super"cial velocity
<

j
component of dimensionless super"cial velocity
( j"r, z)

z axial coordinate, m
Z ("z/D)

Greek letters
ao
m

thermal di!usivity of saturated porous medium,
m2/s

b isobaric thermal expansion coe$cient, K~1

c ("d
p
/D)

e porosity
H

f
["(¹

f
!¹

r
)/(¹

h
!¹

c
)]

H
s

["(¹
s
!¹

r
)/(¹

h
!¹

c
)]

i ("r
o
/r

i
)

j ("ko
f
/k

m=
)

ko
f

#uid viscosity, Pa s
l ("ko

s
/k

m=
)

m ["2(n/d
p
)!1]

o density of mixture, kg/m3

oa species density in mixture, kg/m3 (a"s, f )
u
j

empirical constants for Kunii and Smith's correla-
tion ( j"1,2)

/
j

functions used in the dimensionless model
( j"0}2)

U viscous dissipation term, W/m3

p numerical average error de"ned by Eq. (35)
s
f

viscous stress tensor of #uid, Pa
s numerical parameter de"ned by Eq. (36)
t ["1#1.5(1!e)]
W streamlines
u van Driest empirical constant

Subscripts
c cold wall
f #uid phase
h hot wall
m property of composite (solid and #uid)
min minimum value
max maximum value
r reference temperature
s solid phase
R any property far from cavity walls
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Superscripts
o property of pure species
t total property
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