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SUMMARY

A non-reecting boundary condition based on the Gauss �lter is employed for the determination of scattered
potential governed by the Helmholtz equation. A �ltering layer is used for closing in�nite domain calculations.
An expression for the reection coe�cient is derived and an optimal �ltering layer is designed. Numerical
results validate the performance of this method for unbounded wave guide problems. Copyright ? 2000 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

Numerous techniques are in use for the solution of acoustic wave radiation and scattering problems
governed by the Helmholtz equation. A common feature to many of these methods is to get
an approximate solution on a bounded domain. The papers by Givoli [1] and Moore et al. [2]
provide good summaries of much of the work that has been done in this direction. Several non-
local procedure has been developed in the last 10 years, such as the DtN method proposed by
Givoli [3] and Giou and Keller [4] and developed by Harari and Hughes [5] and Harari et al.
[6]. The DtN boundary condition is exact and non-reecting at the continuum medium, but it is
dependent of the operator and the dimensional space where this is de�ned, then, when you apply
this boundary condition do you need to know the fundamental solutions in question.
A discrete non-local DNL method has been developed for the study of water waves radiation

and scattering problems [7; 8] and for ship wave resistance problem [9].
A Gaussian �ltering layer in rectangular co-ordinates is used to obtain non-reecting boundary

condition for unbounded wave guides in two dimensions, de�ning problems that can be solved by
�nite element method.
The Gaussian �lter has a large utility in engineering applications. In image processing; for

instance, the Gaussian outputs a ‘weighted average’ of each pixel’s neighbourhood, with the
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Figure 1. A model domain for radiation and scattering problem

average weighted more towards the value of the central pixel. Due to this fact, a Gaussian provides
a gentle smoothing and preserves edges, and it attenuates high frequencies more than low frequen-
cies. On the other hand, the Gaussian shows no oscillations.
Based on the Gauss �lter, which is de�ned on the external region of the computational domain,

we split the solution of the radiation problem governed by the planar Helmholtz equation, and
obtain a novel non-reective radiation boundary condition that characterize the ‘outer’ modes from
the computational domain. The solution procedure is concerned to use standard �nite element
discretization in the computational domain, and in the external absorbing layer a linear system
must be solved. The solution of this system is dependent of the parameters that characterize the
absorbing layer, such that the thickness of the layer, the number of the layer points and the shape
of the Gaussian �lter.
In this paper we show that an in�nite layer of this type can be used to solve the time harmonic

radiation calculations. We also show that the truncated �ltering layer reduces the reection of the
incident waves on the arti�cial boundary. In both cases an expression for the reection coe�cient is
derived. Finally, we explain how to design the optimal �ltering layers for scattering calculations,
and how to use of the optimal parameters to solve a parallel plate wave guides with constant wave-
number. Such numerical results con�rm the good performance of the Gaussian �ltering method.

2. ORIGINAL PROBLEM AND REFORMULATION

The problem in question is to �nd the scattered wave produced when an incident wave is reected
from a scatterer. The mathematical problem is to �nd the solution to

��+ k2�= 0 in 
 (1)

�= g in � (2)
@�
@n
= 0 on lateral boundaries (3)

+ some b:c: at in�nity (4)

where 
 is the unbounded domain and g is obtained from the incident wave. � is the location of the
incoming wave front (Figure 1). The ‘boundary condition at in�nity’ (4) guarantees the uniqueness
of this problem. The basic idea for the reformulation of this problem on a bounded domain is
to introduce an arti�cial boundary �t and an appropriate boundary operator B that substitutes the
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radiation condition at in�nity. In this paper we consider a planar boundary �t = {x= x0}, which
closes the computational domain 
− 
t. This fact leads to the bounded boundary value problem
on the 
− 
t region

��+ k2�= 0 in 
− 
t (5)

�= g in � (6)

@�
@n
= 0 on lateral boundaries (7)

@�
@n
=B� on �t (8)

where B is still an unspeci�ed boundary operator. This operator establishes a ux relation between
� and @�=@n on the arti�cial boundary �t. For a given f on �t, B� is de�ned as Bf= @ =@n
where  is the solution of the semi-in�nite parallel plate wave guide with k = k0 constant wave
number on the 
t semi-in�nite domain, such that 
t = {(x; y)∈R2 = x¿x0}

� + k2 = 0 in 
t (9)
@ 
@n
= 0 on lateral boundaries (10)

 =f on �t (11)

+ some b:c: at in�nity (12)

In order to solve the unbounded problem (9)–(12), we substitute the radiation boundary condition
(12) by a distributed radiation boundary condition on the 
t domain

L( )=
∫ ∞

x0
�(x) eik x dx=0 (13)

where the �(x) kernel represents the shape of a Gaussian (‘bell-shaped’) hump, such that xc
parameter de�nes the centre of the bell, and s parameter de�nes the width of the bell

�(x)= e−s2(x−xc)2=2 (14)

Finally, we solve analytically or numerically, problem (9)–(11) with condition (13) in the next
sections.

3. AN EXACT GAUSS FILTER FOR HELMHOLTZ EQUATION
IN UNBOUNDED DOMAIN

For simplicity, we consider the constant refraction index Helmholtz problem posed in a 
t half-
plane (external region of the computational domain):

� + k2 =0 (x¿x0; −∞6y6∞) (15)

This equation admits solutions in the form of plane waves propagating at all angles �= �0 relative
to the x-axis, which can be expressed as follows:

 (x; y; �)=  ̂ (x)eik sin �y (16)
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Then, substituting (16) in (15) gives a one-dimensional problem

@2 ̂
@x2

+ l2 ̂ =0; x¿ x0 (17)

where l= k cos(�). We wish to choose a boundary condition at x= x0 so as to minimize reec-
tion of waves travelling towards the boundary from x¡x0. Considering incident waves of unit
amplitude, we write  ̂ as

 ̂ (x)= eil(x−x0) + Re−il(x−x0) (18)

where R is the reection coe�cient. A boundary condition of the form

 ̂ x = il ̂ ; x= x0 (19)

produces the desired value R=0 when (18) is substituted in (19), however, this boundary condition
cannot generally be achieved [10], because it is neccesary to know the incident wave direction
to the boundary in question. Several strategies have been reported to eliminate this di�culty in
the past [1; 2; 4; 6]. Recently, Harari et al. [6] presented a derivation and the analysis of DtN
formulations for unbounded wave guides in two and three dimensions. In virtue of this fact, the
DtN operator is expressed in the form of in�nite series. In contrast to them, in this paper, we
introduce a novel strategy based on the Gauss �lter, then a boundary condition is derived by means
of the solution of unbounded problem (9)–(11), (13). A measure of the reection of waves at
the arti�cial boundary in virtue of the (13) ‘distributed boundary condition based on Gauss �lter’
may be obtained by substituting (16) and (18) in (13). Then, the resulting reection coe�cient
can be given as follows:

R=− L(eil(x−x0))
L(e−il(x−x0))

(20)

An estimate of the reection coe�cient can be given by the expression

R=− L̃(eilx)

L̃(e−ilx)
(21)

provided that xc be large enough and �.s.xc, such that

L̃( )=
∫ +∞

−∞
e−s2(x−xc)2=2 eik x dx

where � denotes one wavelength. After some computation in (21) for an in�nite layer, we obtain
that the reection coe�cient modulus |R| is independent of x0 and xc values, and it takes the form

|R|=e−2kl=s2 (22)

We recall that this expression is independent of the position of the arti�cial boundary x= x0
and the bell centre xc, because they appear in the factor e2il(x0−xc), of complex argument. Figure 2
shows the curves of reection coe�cient (|R| in Db) versus the angle of incidence, for several s
values of in�nite layer. In this �gure, we note that the reection coe�cient decreases for decreasing
s values. In the following, we analyse the e�ect of truncation of this layer and we will show that
there is an optimal s value for a discrete �nite layer.
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Figure 2. Reection coe�cient |R| in Db (ie. 20 log10 |R|) versus angle of incidence in radians

4. DISCRETIZATION OF THE PLANAR FILTERING LAYER

Next, we will investigate the e�ects of discretization on the one-dimensional �nite layer. We
consider only the Cartesian absorbing truncated layer, since in this case, we can compute the
reection coe�cient directly. We consider the following problem:

@2 ̂
@x2

+ l2 ̂ = 0 in x06x6� (23)

 ̂ = g on x= x0 (24)∫ �

x0
�(x) eik x dx= 0 (25)

on the absorbing truncated layer, located at the external region from the computational domain
(x¿x0). This problem is discretized using the �nite element method. We consider a uniform mesh,
with element size h, so that the nodes are located at xj = jh, j=−1; 0; 1; 2; 3; : : : ; nj. x0 is the node
corresponding to the arti�cial boundary �t. We denote �= njh the layer thickness. We suppose
that the term �j = �(xj) is the function value of

�(xj)=
{
e−s2(xj−xc)2=2 for 06 j6 nj

0 for j¡ 0

Here xc is the bell centre. Using the �nite element method to discretize problem ((23)–(25)), we
obtain a linear equation system. For each l, a modal amplitude equation is expressed as follows:

aj ̂ j−1 + bj ̂ j + aj ̂ j+1 = 0 (26)

where

aj = 1 +
l2

6
(27)

bj =−2 + 2l
2

3
(28)
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and  ̂
j
as the nodal potential values that satis�es the equation:

Lh( ̂ )=
j=nj∑
j=1

�(xj) ̂ jeik xj hj =0 (29)

Let

U=( ̂ 0;  ̂ 1; : : : ;  ̂ nj)T

then

AU=B

where A is the (nj + 1)× (nj + 1) matrix de�ned by

A=




b0 a0 0 · · ·
a1 b1 a1 · · ·

. . .
. . .

. . .
�0eik x0 �1eik x1 · · · �njeik xnj




and

B=



−a0 ̂

−1

0
...
0




We note that the A matrix is not sparse, due to the presence of the ‘discrete distributed condition’
at the last row, however, a strategy to solve this system while keeping the sparsity of this matrix

can be easily implemented. Given that B is proportional to  ̂
−1
, we can compute the solution in

the form

U=
(
 ̂
∗0
;  ̂

∗1
; : : : ;  ̂

∗nj
)T

 ̂ −1

and a new condition is obtained on  ̂
0
;  ̂ 1

 ̂
∗0
 ̂ 1 −  ̂

∗1
 ̂ 0 = 0 (30)

This condition is dependent of the propagation mode l and the parameters s; xc that characterize
the Gaussian �lter. A boundary condition for the modal equation (17) can be expressed by the
following relation:

 ̂ 1 =
 ̂ ∗1

 ̂ ∗0  ̂
0 (31)

The above relation is called ‘discrete local planar Gauss �lter’ boundary condition. We recall
that this RBC is dependent of the kh dimensionless wavenumber and the incidence angle � to
the boundary x= x0. Then, by means of this procedure, we can obtain the ‘discrete planar Gauss
�lter’ boundary condition for the two-dimensional problem in a diagonal basis.
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Figure 3. Numerical reection coe�cient at normal incidence (left) and �= �=4 rad (right)(in Db, i.e. 20 log10 |R|) versus
the number of points per wavelenghts for �ve di�erent values of s

5. DISCRETE REFLECTION COEFFICIENT

Next we examine the behaviour of the discrete local planar Gauss �lter boundary condition (30).
Based on the solution of the system

 ̂
0
= ( ̂ +)0 + ( ̂ −)0

 ̂
1
= ( ̂ +)0 exp (+il(0)h) + ( ̂ −)0 exp (−il (0)h)

(32)

we obtain the ( ̂ +)0 and ( ̂ −)0 wave �eld, the ‘forward’ and ‘backward’ wave �eld, respectively.
Then, using (30) the discrete reection coe�cient for this layer is given by

|R|=
∣∣∣∣∣
 ̂ ∗1 − exp (+il(0)h)  ̂ ∗0

 ̂ ∗1 − exp (−il(0)h)  ̂ ∗0

∣∣∣∣∣
x0

(33)

In Figure 3 we show the variation of the numerical reection coe�cient |R| versus the number
of points per wavelength N =2�=kh for two di�erent angles of incidence (�=0 and �= �=4).
We can observe that the scheme is consistent and the numerical reection coe�cient converges
better for the angle of incidence 45◦. For �=0, note that the reection coe�cient decreases as
the number of points in the layer increases. Convergence is faster for �= �=4. Finally, we remark
that, when N is �xed, the smallest reection coe�cient is not necessarily obtained for the smallest
value of s (Figure 4).

6. OPTIMIZATION OF THE CARTESIAN DISCRETE GAUSS FILTER

The optimization process is dependent on the number of points in the layer nj, the number of
points per wavelengths N and the parameters of the planar discrete Gauss �lter, s and xc. We
consider that xc is constant for all transversal modes, taken at the middle of the layer.
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Figure 4. Numerical reection coe�cient (in Db, i.e. 20 log10 |R|) versus the angle of incidence for three di�erent values of
the number of points per wavelengths (N =10; 20; 30). (left)s=0·25, (right)s=0·9

Analogously to Collins and Monk [11], we assume that the number of points in the layer nj and
the number of points per wavelengths N are �xed. In contrast with them, we look for a particular
family of parameters, which provide the optimal ones such that the vector �̃ de�ned by the layer,
causes the lowest reection coe�cient. We decide to choose �̃ in order to minimize R for all
the progressive transversal modes m de�ned by the discretization. To compute an optimal layer(
h�̃0; h�̃1; : : : ; h�̃nj

)
, we minimize

1
(M + 1)

M∑
m= 0

|Rm(�m; s)|2 cos(�m) (34)

over (h�0; h�1; : : : ; h�nj). Here M is the number of progressive modes. Figure 5 shows several
optimized standard layers for di�erent thickness and parameters family. These layers have been
obtained for a resolution of 20 points per wavelength in the +x direction.
We can see that as the layer thickness increases, the optimal normalized Gauss �lter curve

on the layer (made non-dimensional to width length) gets narrower. In Table I we show the
corresponding optimal values for each layer thickness (in wavelengths). These values have been
obtained for M =99. Reection curves for several number of points per wavelength N for the layer
thickness of one wavelength are shown in Figure 6. It can be seen that the process is convergent.
Results of this computation for several thicknesses are shown in Figure 7. As expected, the upper
envelope of the reection coe�cient curves for a given angle decrease as the width of the �ltering
layer increases (except for certain angles where the reection goes to zero). For practical purposes
the optimal value for s can be �tted as

s ∼ 3·2�−0·45 (35)

for layer widths of up to 10 wavelengths.
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Figure 5. Optimal discrete normalized Gauss �lter

Table I. Optimal �ltering layer

Layer thick Optimal
(�) s value Average R

1 3·1430 2·7775e− 03
2 2·4905 1·3249e− 03
3 1·9199 2·7755e− 04
4 1·7823 2·8770e− 04
5 1·5157 9·6061e− 05
6 1·4585 1·1577e− 04
7 1·2935 4·5070e− 05
8 1·2638 5·8650e− 05
9 1·1472 2·4434e− 05
10 1·1229 3·0625e− 05

7. IMPLEMENTATION DETAILS

A radiation boundary condition based on the Gaussian �lter is incorpored into �nite element com-
putation for a two-dimensional wave guide problem via the Galerkin form of the boundary-value
problem (5)–(8). The solution procedure is concerned to use standard �nite element discretiza-
tion in the computational domain 
 − 
t, and in the external absorbing layer a linear system
AU=B must be solved, where the thickness of the layer �, number of layer points nj, the bell
parameters xc and s are chosen as described in Sections 5–7. From a practical viewpoint, we
solve the discrete eigenvalue problem determined by M and K global matrices, in the expres-
sion (1=h2)M−1K=V�V−1, where V is the eigenvector matrix, and � is the eigenvalue diagonal
matrix. By means of V we obtain a decoupled linear equation system AU=B, in
which, the matrix A is not sparse. To avoid this di�culty, we substitute the last row in the
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Figure 6. Optimal numerical reection coe�cient (in Db, i.e. 20 log10 |R|) versus angle of incidence in radians, for
several number of points per wavelengths

Figure 7. Optimal numerical reection coe�cient (in Db, i.e. 20 log10 |R|) versus angle of incidence in radians, for several
layer thickness (in wavelengths)
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matrix by the row vector [−1=h 1=h 0 : : : 0](nj+1). Then, we solve two linear equation systems
AU=B, with the same matrix A and two linearly independent B vectors, hence the  1 and  2
solutions are linearly independent. Finally the solution of the problem is

 ̂ ∗(x1; x2; : : : ; xnj)=Lh( 2) 1 −Lh( 1) 2

and the local planar discrete Gaussian �lter boundary condition takes the form (30). After that,
taking �j =  ̂ ∗(x1)= ̂ ∗(x0) value for each eigenvalue, and forming the matrix G=diag(�1(�); : : : ;
�nj (�)), by means of the V matrix, we obtain the non-local Gauss �lter boundary condition

 1 =F 0

where

F=VGV−1

This boundary condition is incorporated to global level in the assembled sti�ness matrix, and
its contribution couples all of the degrees of freedom on the arti�cial boundary.

8. NUMERICAL RESULTS

We develop a numerical tests to show the performance of the boundary condition based on the
Gaussian �lter in various wave guide con�gurations. We seek a two-dimensional unbounded wave
guide of constant width b, with Neumann wall conditions. A varying Dirichlet boundary condition
which satis�es the wall conditions 1

2 − (3737=18)(y=b)2 + (1·0675=9)(y=b)3 − (21764=9)(y=b)4 +
(18896=9)(y=b)5 − (1984=3)(y=b)6 is speci�ed on the boundary at x=0, to excite signi�cant con-
tributions to the �rst three cross-sectional modes. A computational domain, determined by se-
lecting x0 = b=4, is meshed with 20×20 bilinear rectangles. We employ this problem to compare
the discrete non-local planar Gaussian �lter boundary condition to known boundary conditions:
the Sommerfeld condition and the planar DNL boundary condition. The real parts of the numer-
ical results for kb=2 and 4 are compared to the analytical solution in Figures 8 and 9. Another
numerical solutions for kb=4 case have been presented by Harari et al. [6] using the DtN method.
In both �gures, we note the good correspondence between the numerical solution by the

Gaussian �lter condition and the analytical solution, improving the solution when the layer thick-
ness increases. Also, we note that the Sommerfeld condition provides poor results. These results
con�rm that the planar Gaussian �lter condition is not better than planar DNL boundary condition.
The e�ect of the Gaussian �lter truncated boundary condition at the arti�cial boundary x= x0

is shown in Figures 10 and 11 for the same wave numbers as in the above �gures. The relative
error

E=
| h −  |x=x0

| |x=x0

for the wave numbers kb=2 and 4 are shown in Figures 10 and 11, respectively. In general,
we can observe that the error decreases as the layer thickness increases, until it reaches a given
thickness value. The relative errors for �=10 or 20 are lower than 10 per cent. This demonstrates
the good performance of this method.
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Figure 8. Comparison of boundary conditions along the arti�cial boundary, for kb=2

Figure 9. Comparison of boundary conditions along the arti�cial boundary, for kb=4
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Figure 10. Dependence of the relative error on the layer thickness, for kb=2

Figure 11. Dependence of the relative error on the layer thickness, for kb=4

9. CONCLUSIONS

In this paper a strategy to solve wave problems numerically in unbounded domain by means of
the Gauss �lter for the planar Helmholtz equation is presented. By this procedure, a perfectly
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absorbent boundary condition can be obtained on an in�nite layer. For a �nite layer, the solution
procedure is that in the computational domain the standard �nite element discretization is used,
and in the exterior absorbing layer, the linear system AU=B is solved, where the thickness of
the layer �, number of layer points nj, and the bell parameters xc and s are given. The truncation
of this layer produces some reections, and a procedure to get the optimal discrete Gauss �lter
has been developed. The optimal numerical reection coe�cient as function of layer thickness and
the numerical resolution has been obtained. A regression law for the computation of the optimal
s values is presented. Numerical results for a two-dimensional wave guide problem with constant
wave number validate the good performance of this method.

APPENDIX

Nomenclature

B boundary operator
� Laplacian operator
k0 2�=L0 constant wave number
k 2�=L wave number
� angular polar co-ordinate

 unbounded domain


− 
t �nite element computation domain

t outside the computation domain
i

√−1 imaginary unit
� boundary surface (at the wave front)
�t arti�cial boundary
g prescribed datum from the incident wave
h water depth
L wavelength
L0 wavelength of wave front
! wave angular frequency
n outward normal on boundary
C wave celerity
T wave period
� velocity potential values

�+ velocity potential values (forward component)
�− velocity potential values (backward component)
 velocity potential values in the unbounded problem
�̇ derivate of � with respect to x
A system matrix
U solution vector
B independent term matrix
M mass assembled matrix
K sti�ness assembled matrix
j layer index
� layer thickness
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N number of points per wavelength in the layer
M transversal mode number
� wavelength
R reection coe�cient
nj number of nodes in the layer
� Gaussian distribution

(L) integral operator for the Gauss �lter (in semi-in�nite region)
L̃ integral operator for the Gauss �lter
� Gaussian distribution
xc bell centre
1=S deviation

s̃ estimated s value
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