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Abstract Molecular motors are responsible of transport-

ing a wide variety of cargos in the cytoplasm. Current

efforts are oriented to characterize the biophysical prop-

erties of motors in cells with the aim of elucidating the

mechanisms of these nanomachines in the complex cellular

environment. In this study, we present an algorithm

designed to extract motor step sizes and dwell times

between steps from trajectories of motors or cargoes driven

by motors in cells. The algorithm is based on finding pat-

terns in the trajectory compatible with the behavior

expected for a motor step, i.e., a region of confined motion

followed by a jump in the position to another region of

confined motion with similar characteristics to the previous

one. We show that this algorithm allows the analysis of 2D

trajectories even if they present complex motion patterns

such as active transport interspersed with diffusion and

does not require the assumption of a given step size or

dwell period. The confidence on the step detection can be

easily obtained and allows the evaluation of the confidence

of the dwell and step size distributions. To illustrate the

possible applications of this algorithm, we analyzed tra-

jectories of myosin-V driven organelles in living cells.

Keywords Single particle tracking � Molecular motors �
Stepping dynamics � Dwell time � Xenopus melanophores

Introduction

Molecular motors play important roles in a wide variety of

cellular processes from segregation of chromosomes during

mitosis to vesicular transport in the cell cytoplasm. Motors

attach to cytoskeleton polymers, i.e., actin filaments and

microtubules, and move in a stepwise manner along these

tracks converting the energy provided by ATP hydrolysis

into mechanical work (see for example, [1]).

The molecular mechanism involved in the motor

movement along cytoskeleton tracks has been extensively

studied mainly by single molecule techniques. The force of

molecular motors was measured by optical trapping rang-

ing between 1 and 7 pN [2–5]; this technique was also used

to dissect the motor reaction cycle (see for example, [6, 7]).

On the other hand, single particle tracking (SPT) with

nanometer accuracy have been used to study properties of

motors such as the stepping mechanism of single [8, 9] or

small ensembles of motors [10–12] and the influence of the

environment and cytoskeleton tracks organization in the

motor dynamics [13, 14].

However, the functional properties of motors in their

natural environment cannot be directly extrapolated from

these in vitro measurements. The cell cytoplasm behaves as

a complex, viscoelastic fluid [15] which exerts drag on

motor molecules. Moreover, it has been recently demon-

strated that the dynamics of the cytoskeleton also affect the

motion of organelles driven by motors [16, 17] and that

active motion along cytoskeleton tracks is usually inter-

spersed by periods of diffusion [18]. On the other hand,

motor activity is finely regulated in living cells by other

proteins which are not present in in vitro determinations

[19, 20].

Current efforts are oriented to characterize the bio-

physical properties of molecular motors in the complex
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cellular environment. Two main strategies have been fol-

lowed with this aim; either tracking micrometer-sized

cargoes transported by motors and inferring the motion of

the motors from this data or studying directly the motion of

single motors labeled with bright fluorescent probes

(reviewed in [21]).

We and others have demonstrated that it is possible to

detect single steps of motor proteins in living cells by

tracking organelles transported along cytoskeleton tracks

[22–25]. These reports show that the step sizes of myosin-

V and kinesin-2 in living cells are 36 and 8 nm, similar to

what it is observed in in vitro conditions [22–24]. On the

other hand, myosin-VI performs steps of 29 and 15 nm in

living cells with a dwell time of *30 ms [25]. Importantly,

the small step of this motor has not been observed in in

vitro assays. Watanabe et al. also determined that the

characteristic dwell times of kinesin- and dynein-driven

cargoes were 5 and 7.5 ms, respectively [25].

Nan et al. [26] improved the temporal resolution to the

microsecond range and tracked gold nanoparticles-contain-

ing endosomes which were further detected in a darkfield

microscopy setup. They reported that while kinesin driven

endosomes present clear 8 nm steps, dynein-driven endo-

somes can take either 8 nm or longer steps not observed

before in living cells. This result was expected since cyto-

plasmic dynein present different step sizes under different

loads in in vitro conditions [2]. They could also measure the

in vivo rising time of the steps ranging from 100 ls to a few

milliseconds which is at least twice as slow as the in vitro

rising time. In the same direction, we have estimated the

rising time of myosin-V driven organelles on 20–80 ms [23].

The motion of single kinesin and myosin molecules in the

cytoplasm of living cells has also been studied by using

quantum dots and tandems of fluorescent proteins to label the

motor molecules avoiding studying the motor properties by

following the motion of their cargoes [27–30].

Taken together, these studies showed that important

biophysical properties of motors such as the distributions of

step size, dwell time, velocity, and run length can be

studied by SPT and opened the possibility of analyzing the

detailed molecular mechanisms of motor transport in the

cytoplasm of living cells.

Unfortunately, the analysis of the data obtained in SPT

experiments is often performed by arbitrary selecting

regions of the trajectories showing curvilinear motion,

linearizing them and picking up steps from the distance vs.

time plot by eye examination, pairwise analysis or with

algorithms designed for in vitro experiments in which

motors move processively along a linear track (see refer-

ences in [31]). As we mentioned before, these are not the

conditions in which transport develops in living cells.

In this study, we present a new algorithm designed to

extract step size (L) and dwell time (DT) distributions from

trajectories of single organelles or single motors in living

cells. This step-finder algorithm presents clear advantages

with respect to previous methods used for the analysis of in

vitro experiments when analyzing trajectories of motors or

cargoes in living cells. Specifically, it allows the analysis of

2D trajectories without assuming motion along a linear

path as in vitro algorithms. Moreover, it can be used to

analyze trajectories presenting active transport and diffu-

sion and does not assume given values of L or DT. We

show that the confidence on the step detection can be easily

obtained and allow the evaluation of the confidence of the

overall experimental distributions of L and DT. To illustrate

the possible applications of this algorithm to studies of

transport, we analyzed trajectories of myosin-V driven

organelles in living cells.

Materials and Methods

Melanophore Cell Culture and Imaging

Immortalized Xenopus laevis melanophores were cultured

as described in [32]. In order to track the movement of

individual organelles, the number of melanosomes in cells

was reduced by treatment with phenylthiourea [33]. To

study transport along actin filaments, the cells were incu-

bated at 0 �C for 30 min with 10 lM nocodazole to

depolymerize microtubules [23].

For microscopy measurements, cells were grown for

2 days on 25-mm round coverslips. Before observation, the

coverslips were washed in serum-free 70 % L-15 medium

and mounted in a custom-made chamber specially designed

for the microscope. All the measurements were performed

at 21 �C.

Tracking Experiments

SPT experiments of melanosomes moving along actin fil-

aments were carried out in a Olympus IX70 microscope

adapted for SPT using a 609 oil-immersion objective

(numerical aperture = 1.25) under illumination with a

tungsten–halogen lamp. A cMOS camera (Pixelink,

Ottawa, ON, Canada) was attached to the video port of the

microscope for imaging the cells at a speed of 50 frames/s.

Trajectories of melanosomes were recovered from the

movies registered as described above using the pattern-

recognition algorithm described in [34]. This algorithm is

included in the program Globals for Images developed at

the Laboratory for Fluorescence Dynamics (UCI, Irvine,

CA). The program, which also contains some of the tools

used for trajectory analysis, can be downloaded from the

Laboratory for Fluorescence Dynamics website (www.

lfd.uci.edu).
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Numerical Simulations and Data Analysis

Numerical codes were written and run in Matlab environ-

ment (The Mathworks, Natick, MA).

The bin size of histograms was determined following the

criteria proposed previously [35].

Results and Discussion

The Step-Finder Algorithm

Figure 1a represents a trajectory of a melanosome trans-

ported along actin filaments by myosin-V. This trajectory

presents periods of motion which characteristics seems

compatible with active transport interspersed with regions

in which the organelles are probably detached from the

actin tracks and perform a complex diffusive process in

which other forces such as remodeling and reorganization

of the cytoskeleton play an important role [18, 36]. As can

be observed from this representative trajectory, motion of

motor-driven organelles in the cell cytoplasm is usually

very complex and cannot be analyzed by only considering

active transport along curvilinear cytoskeleton tracks.

To obtain quantitative information regarding the step-

ping dynamics of motors in the cell cytoplasm, we con-

structed an algorithm that allows extracting motor steps

and dwell times between steps from the whole trajectory

without the requirements of arbitrarily selecting regions in

which active transport is presumed and assuming an

underlying shape for the cytoskeleton track.

The algorithm is based on finding patterns in the tra-

jectory compatible with the behavior expected for a motor

step, i.e., a region of confined motion followed by a jump

in the position to another region of confined motion with

similar characteristics to the previous one. The radius of

these regions of confined motion is related to the fluctua-

tions of the position of the organelle or motor given by

thermal jittering in the intracellular medium [37] and the

error on the position determination which is given by the

particle tracking algorithm and the experimental noise [38].

We define the parameter r as the standard deviation of the

organelle position during these periods of constrained

motion. According this definition, the radius of the con-

fined regions of diffusion is *2r.

Figure 1b schematizes the general procedure followed

to localize the regions of confined motion. The routine

starts by setting a sliding circle of radius d at the position

corresponding to the coordinates of the first data point of

the trajectory. Then, the program analyzes whether the

consecutive point of the trajectory falls inside or outside of

this circle. In the first case, the program re-centers the

circle to the average position between both data points and

analyzes the subsequent points in the trajectory recalcu-

lating the position of the circle center after each data point

analysis. This procedure continues until two consecutive

data points fall outside the circle. In that condition, the

program classifies this segment of the trajectory as a hyp-

othetic dwell and saves the number of data and coordinates

of the circle. Single data points outside the circle but

belonging to a trajectory segment included in a dwell

period are also computed as part of this hypothetic dwell.
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Fig. 1 Analysis of motor stepping in living cells. a Representative

trajectory of melanosomes moving along actin filaments by the action of

myosin-V. The trajectory lasted for 80 s. b Simulated trajectory of a

particle undergoing fixed steps with variable DT and Gaussian-distributed

noise with standard deviation equal to 20 % of the step size. The pink
circles illustrate different positions of the sliding circle which is

represented in red (top). The region corresponding to the hypothetic

dwell period containing the greatest number of data points is represented

in blue (middle top). The trajectory is split in two segments after

removing from the analysis the data contained in the detected dwell (blue)

and both segments are further analyzed as before (middle bottom). The

analysis results on the detection on the dwell regions (blue circles). Steps

(represented with arrows) are then calculated as the distance between

continuous dwells periods (bottom) (Color figure online)
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The program then moves the circle to the position cor-

responding to the second data point and repeats the analysis

described before. This procedure is performed with the rest

of the points of the trajectory. Once this is done, the pro-

gram sorts the hypothetic dwells according to the number

of data included in them and saves the coordinates of the

dwell period containing the highest number of data; these

points are excluded from further analysis. The procedure

resumes as before with the two trajectory segments

remaining after extracting the first dwell period. These

iterations are necessary since removing a segment of the

trajectory may affect the number of data and center of mass

of the hypothetic dwells adjacent to the removed segment.

The procedure is iteratively repeated and results in the

detection of dwell periods in the trajectory; steps are then

calculated as the distance between the centers of two

continuous dwell periods.

To initiate the step-finder routine, the user only needs to

set values for the minimum number of data points to be

considered as a dwell period (Ncrit) and d.

Comparative Performances of the Step-Finder Method

and Previous Algorithms

In a previous work, Carter et al. [31] compared different

algorithms of steps detection designed for the analysis of

processive motion along one dimensional (1D) tracks and

concluded that the v2 minimization method designed by

Kerssemakers et al. [39] presented the highest perfor-

mance. Briefly, the v2 method starts by fitting a single large

step to the distance vs. time plot obtained from the tra-

jectory and calculates the v2 for this initial fitting. Sub-

sequent steps are found by fitting new steps, each time

selecting the most prominent one first. This leads to a series

of ‘‘best’’ fits that differ only by one step. Each best fit in

the series is afterward compared to a ‘‘counter fit’’ that has

an equal number of steps as the original one but with step

locations in between the step locations found by the best fit.

The final fit of the data is considered as the one that gives

the highest value for the ratio between the v2 of the counter

fit to the best fit. This method can also be extended to

analyze curvilinear trajectories. To do that, the shape of the

underlying filament is previously calculated by using, for

example, a polynomial fit and the coordinates of the par-

ticle along the filament are used as input for the v2 method.

This approach was followed by Pierobon et al. [28].

We compared the performance of the step-finder algo-

rithm with that described in Ref. [39]. With this aim, we

simulated 1D trajectories of particles performing steps

using conditions identical to those assayed before [31] and

analyzed the capability of our algorithm to detect the

simulated steps. To quantify the performance of the algo-

rithms, we followed the analysis of Carter et al. [31] and

used three different performance indicators: the total

number of recovered steps, the number of steps correctly

detected, and the number of steps correctly detected which

sizes equal that of the simulated step (‘‘correct size’’ steps).

For this analysis, we considered that a given step is

correctly detected if the position of the center of the first

circle agreed with the position of the simulated particle

before the step within a 37.5 % bound confidence. Also,

the step size is considered correct if the distance between

the two circle centers did not differ from the simulated step

within 37.5 % (this criterion is used in Ref. [31]).

Figure 2 shows that the number of steps detected by our

algorithm is within 90–120 % of the total steps in every

assayed condition. However, both the number of correct

steps and correct size steps decreased with the noise

showing that false steps are probably detected at high noise

levels. Figure 2a–c shows that the performance of the

algorithm presented in this study was similar to that of

Kerssemakers et al. [39] in every assayed condition of

noise/L. On the other hand, Fig. 2d shows that our algo-

rithm presented a slightly worst performance as a function

of DT. We found that the reduction of the performance was

due to the detection of false, intermediate steps within

dwells. In these conditions, the Kerssemakers method will

have a better performance for noise/step ratios lower than

the limit value assayed in this study.

In summary, Fig. 2 shows that the step-finder algorithm

presented in this article worked as well as the algorithm

designed by Kerssemakers et al. [39] when analyzing 1D

trajectories of motors with fixed DT and L, within the

assayed ranges of noise/L ratios and DT.

Global Plot of Step Detection Efficiency

In order to explore how the parameters required in the step-

finder routine, i.e., Ncrit and d affect the performance of the

algorithm, we first simulated trajectories in which DT and

noise were independently varied in a wide range allowing

us to measure the performance of the algorithm in 30 dif-

ferent conditions.

In these simulations, L was considered equal to 1 in

arbitrary units and DT ranges between 2 and 24 also in

arbitrary units. Zero-centered Gaussian-distributed noise

with standard deviation ranging from 0.2 to 0.5 was added

to each simulated trajectory. For every studied condition,

we simulated trajectories with 100 steps and analyzed the

data with the step-finder algorithm considering different d
and Ncrit values.

To quantify the performance of the algorithm, we defined

the efficiency or confidence of step detection (E) as the ratio

of the number of steps which position and size are accurately

detected by the algorithm within a 37.5 % bound confidence

(i.e., ‘‘correct size steps’’) to the total number of detected
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steps. This parameter ranges from 0 to 1 and is a direct

measure of the goodness of the recovered steps. The

straightforward evaluation of the ratio of recovered to sim-

ulated steps is not a correct indicator of the performance

since this ratio can be high even if the size and the position of

the recovered steps in the trajectory are not the correct ones.

Moreover, an overestimation of the number of steps in the

trajectory may result in ratios of recovered/simulated steps

higher than 1, while the value of E will decrease in this

particular situation. One disadvantage of this ratio is that

E can be as high as 1 even if the algorithm does not detect all

the simulated steps.

Figure 3 shows the global plot of step detection effi-

ciency (GPS) in four different assayed conditions. Notice-

able, the maximum value of E in each assayed condition

was achieved with different values of Ncrit and d. Moreover,

while E can be as high as 1 when r is low (Fig. 3b), the

average efficiency attained for r equal to 30 % of the step

size was reduced to *80 % (Fig. 3d) as was shown before.

In most of the assayed conditions, we found that efficiency

higher than 50 % could be attained with d values near 1.8r
thus this value can be considered as the starting circle radius

for the analysis of experimental data.

The figure shows that steps with variable DT or r/L ratio

were recovered with different efficiencies. As we men-

tioned in the ‘‘Introduction’’ section, this may be expected

for motors in living cells and therefore it is required to

consider this bias in the step-finder routine.

General Procedure for Recovering Step Size and Dwell

Time Information in Complex Trajectories

In the previous section, we showed that the efficiency of

the step-detection algorithm depended on the stepping

properties of the motors and the selected values for the

parameters used in the routine. Therefore, we decided to

use the data contained in the GPS to assign a confidence

value to each step detected by the algorithm. In this sec-

tion, we describe the general procedure followed in the

analysis of experimental data.

In order to estimate r from the data we followed two

different procedures: either we applied a short-pass FFT

filter to the trajectories of the organelles/motors and

obtained the standard deviation of the filtered data or cal-

culated r as the standard error of the particle position

determination by tracking immobile particles in the
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BFig. 2 Performance of the step-

finder algorithm. Trajectories of

particles performing 600 steps

of 8 nm were simulated

considering an exponential

decay distribution for DT with

s = 24 data points and Gaussian

noise ranging 1–5 nm. The data

was analyzed by using the

algorithms described in this

study (black square) and that

designed by Kerssemakers et al.

(circle) and the performance of

the algorithms were determined

quantifying a detected steps,

b correct steps, and c ‘‘correct

size’’ steps. d The number of

‘‘correct size’’ steps recovered

by the step-finder algorithm was

also evaluated as a function of s
(in units of data points). For this

analysis, we simulated and

analyzed trajectories consisting

of 200 steps of 8 nm with

Gaussian noise of 3 nm. The

Ncrit and d values used to

analyze the data with the step-

finder algorithm were chosen

using the global plot of step

detection efficiency presented in

Fig. 3
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conditions used for the SPT experiments with motors. In

this last analysis, the radius may be slightly underestimated

since it only evaluates fluctuations in the position due to the

experimental noise; however, we found that both proce-

dures worked equally well in the analysis of our experi-

mental data (not shown). Once r was estimated we input in

the program the trajectory data and the values of d and Ncrit

selected by the user.

The output of this first part of the routine is a matrix that

contains the position of the detected dwell periods, the

number of data points included in each dwell and the value

of L. The program then calculates for each detected step the

ratio r/L and computes the lowest dwell time within the

two that define the step. These values and the parameters of

the program used to detect the steps are considered as the

input in the GPS to assign a confidence value to each step.

The user then arbitrarily chooses a threshold value for the

confidence to decide whether each recovered step will be

computed as a real step or not.

For example, if we analyze a trajectory with r = 10 nm

considering d/r = 1.8 and Ncrit = 5 and the recovered

L and DT were 33 and 8, respectively. Figure 3c shows that

the step confidence is *60 %. This step is rejected if the

confidence threshold were set at 60 %.

If the threshold value is very low, multiple false steps

may be included in the further analysis while if the confi-

dence is high, the output will consist in a small number of

very precise steps. It is important to mention that confidence

threshold extremely high will biased the distribution toward

long steps since short steps presents higher values of r/L.

Finally, the program builds the histograms of DT and

L for the high-confidence steps, and provides a plot of the

x–y original trajectory with vectors positioned at the

detected steps. As shown below, this last graph can be

useful in case the user would like to correlate the steps

properties with the general characteristics of the trajectory.

Importantly, only dwell periods located between two con-

tinuous steps are included in the DT histogram since these

are the only well-defined dwells.

These histograms can also be used to check if the values

selected for Ncrit and d were the optimal ones. For example, if

the obtained average DT was equal to 20 (in arbitrary units)

and the average r/L was 0.2 using a Ncrit = 2, Fig. 3a shows

that the algorithm would have worked better using Ncrit * 10.

Then, the user can re-run the program using this Ncrit in order

to optimize the confidence of the recovered steps.

Figure 4 shows the general procedure followed by the

step-finder program applied to a simulated 2D trajectory of
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Fig. 3 Global plot of step

detection efficiency.

Trajectories of particles

performing 100 steps with

L = 1 and DT ranging between

2 and 32 (all in arbitrary units)

were simulated as described

before. Zero-centered Gaussian

noises were added to each

simulated trajectory, with r
values ranging 0.2–0.5. Each

trajectory was analyzed with the

step-finder algorithm using

different values of d and Ncrit.

The efficiency of step detection

is represented in pseudocolor

from 0 (blue) to 1 (red) as a

function of the ratio d/r and

Ncrit for the following

conditions: a DT = 16 and

r/L = 0.2; b DT = 24 and

r/L = 0.2; c DT = 8 and

r/L = 0.3, and d DT = 16 and

r/L = 0.3 (Color figure online)
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a particle presenting steps of either 8 or 20 arbitrary units

(a.u.) randomly distributed along the trajectory. DT was

considered to be exponentially distributed with a charac-

teristic s = 24 in arbitrary time units with 1 unit corre-

sponding to the time resolution of the simulated

experiment. After the simulation, we added to each data

point of the trajectory Gaussian-distributed noise with a

standard deviation of two arbitrary units.

The figure shows a small region of a representative sim-

ulated trajectory and the estimation of r obtained by FFT

filtering of one of the coordinates of the particle as a function

of time. The distribution of filtered positions was fitted with a

Gaussian function and r was obtained as the standard devi-

ation of this distribution. In this particular case, we obtained

r = 2.15 ± 0.08. As we showed before, the optimal effi-

ciency in most conditions can be achieved with d % 1.8r
and therefore, this value can be input as the initial d.

After setting the initial values of Ncrit and d and the

confidence criteria, the routine output a plot of the steps as

vectors on the trajectory and the histograms of DT and

L. Noticeable, in this particular case the step size

distribution presented two major peaks at 8 and 20 a.u. and

a small peak at 28 a.u. that may be due to the detection of

8 ? 20 consecutive steps with an undetected short-dwell

period. The DT distribution was fitted to an exponential

decay function obtaining a characteristic s = 21 ± 2

which agreed well with the simulated dwell distribution.

Application of the Step-Finder Algorithm

to Trajectories of Myosin-V Driven Melanosomes

To show the possible applications of the step-finder pro-

gram described in this study and illustrate the simplicity of

the resulting analysis, we studied the motion of myosin-

driven melanosomes in cells in which the microtubule

network have been depolymerized [23]. It is important to

mention that melanosomes are extremely rigid and do not

deform significantly in the cellular environment [40].

Movies of regions of the cells were recorded from which

a total of 50 trajectories of melanosomes moving along

actin filaments were obtained using the pattern-recognition

algorithm.
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Fig. 4 Analysis of step size and dwell distributions in complex

trajectories. 2D trajectories of a particle undergoing steps of 8 or

20 arbitrary units with equal probability and DT exponentially distrib-

uted were simulated and analyzed with the step-finder algorithm. A

small region of a representative trajectory is shown as input. The

trajectory was filtered using a high-pass filter with a cutoff frequency

equal to 0.05 and the distribution of the filtered data was fitted with a

Gaussian function with waist = 2.15 ± 0.08. The step-finder algorithm

was initially run using d = 4 and Ncrit = 4 and a confidence criteria of

80 %. The initial dwell time distribution recovered from this analysis

was used to determine that the optimal value for Ncrit was 7. As an

example, the steps determined in the presented region of the trajectory

are shown as black arrows. The histograms of L and DT obtained for a

trajectory of *250 of each 8-steps and 20-steps are shown as output of

the algorithm. The DT distribution followed an exponential decay

function with s = 21 ± 2 (black line)
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Since trajectories of motors in living cells may include

periods of diffusion and switches in direction (Fig. 1a), we

also incorporated in the program a routine for filtering the

stepping data obtained before using as a criteria the relative

angle between two continuous steps. If the detected steps

are supposed to be part of a processive region of the tra-

jectory, we would expect a low angle between these step

vectors. Therefore, the user may also input in the program

an arbitrary maximum value for this critical angle between

continuous steps to further filter the data.

Figure 5 shows a representative trajectory of a myosin-

driven melanosome and the output of the step-finder

algorithm. The program detected several steps in this tra-

jectory with confidences higher than 70 % which were

further filtered considering a critical angle of 60�.

Figure 6 shows the histograms of L and DT constructed

from the analysis of the trajectories using the same confi-

dence and critical angle values used for the analysis of the

trajectory showed in Fig. 5.

The step size histogram could be described as the sum

of two Gaussian distribution functions centered at

37.1 ± 0.6 nm and 72 ± 4 nm with standard deviation of

11.6 ± 0.6 nm. The second peak of the distribution prob-

ably reflects two continuous 37 nm steps separated by a

short dwell. The center of the first peak of the distribution

agree well with the predicted step size of myosin obtained

by our and other groups [23, 28, 29] showing that the step

size of myosin-V in vivo is identical to that determined in

vitro [5]. As far as we know, there are no reports claiming

that the actin-dependent motor myosin-V works in multi-

motor arrays as microtubule-dependent motors.

The DT data was examined using a mean residual plot

analysis [41] and determined to be exponential for dwell

times above 200 ms. We estimated the time constant of the

exponential distribution as s ¼ xjx [ u � u, where xjx [ u is

the mean value of the excess distribution above a threshold

and u is the value of the threshold [41]. We verified that s
remained constant as the threshold was increased.

We determined for the first time the DT distribution of

myosin-V driven melanosomes obtaining a characteristic

time for the dwell period of 150 ms.

This characteristic dwell time is longer than the 60–80 ms

dwell time determined for the same motor labeled with Qdots

in Cos-7 and Hela cells [28, 29]. Taking into account that

0 1 2

-1

0

1

y 
(μ

m
)

x (μm)

Fig. 5 Extracting the stepping dynamics of myosin-V driven mela-

nosomes. A representative trajectory of a melanosome driven by

myosin-V in living melanophore cells was analyzed with the step-

finder algorithm using Ncrit = 7 and d = 21 nm and a threshold

confidence of 80 % obtaining the steps observed with black arrows.

The trajectory lasted for 80 s. The accuracy on melanosome position

determination was 10 nm
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Fig. 6 Characterization of the stepping properties of myosin-V

driven melanosomes. Fifty trajectories of melanosomes transported

by myosin-V were obtained as described in ‘‘Materials and Methods’’

section and analyzed with the step-finder algorithm using Ncrit = 7

and d = 18 nm. a Step size distribution. The data was fitted with the

sum of two Gaussian functions with the best fitting parameters

indicated in the text (continuous line). b Dwell time distribution. The

data followed an exponential decay behavior above 200 ms. The time

constant was 150 ± 20 ms (continuous line)
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melanosomes radius is *10 times bigger than Qdots radius

[32, 42], this result may reflect the relevance of the cargo size

and therefore of the drag force on motor stepping dynamics

in living cells. This longer dwell period may also be a con-

sequence of the drag introduced by the interaction of mela-

nophilin molecules attached to melanosomes with actin

filaments [43]. It is important to mention that the average

speed of the myosin motor reported for the motor labeled

with Qdots (*700 nm/s, [28]) is significantly higher than

that observed for melanosomes driven by myosin-V

(*80 nm/s, [18, 44]) also supporting that the drag force in

our experimental condition is higher.

Final Remarks

In this study, we presented a new algorithm designed to

extract quantitative information of the stepping dynamics

of molecular motors in living cells. We believe that this

new routine present clear advantages with respect to pre-

vious step-detection algorithms used for the analysis of

dynamics of motors in in vitro assays when analyzing

trajectories of motors or actively transported cargoes in

living cells. According to the data showed in Fig. 2 the

performance of the step-finder algorithm is slightly worst

with respect to that of the Kerssemakers method [39] in

conditions in which the dwell period is significantly higher

than the sampling time.

The step-finder algorithm is included in the program

Cris2011 (Correct RetrIeval of Steps) which can be down-

loaded from the website (http://www.gdti.df.uba.ar/). The

program runs within a Matlab environment (The Math-

works, Natick, MA), and it also contains a code designed for

the simulation of 2D trajectories of particles moving in

steps with L and DT distributions selected by the user. To

make the analysis of experimental data easier, we included

in the program a filtering routine designed to extract the

noise of the trajectories. The algorithm is very simple to

implement, the user only needs to input the values of Ncrit,

and d, and the desired confidence threshold. The routine of

step detection automatically output a plot of the steps as

vectors on the trajectory and the histograms of DT and L.

We showed that the step-finder routine works as well as

previous algorithms when analyzing 1D trajectories but it

allows extending the analysis to 2D trajectories showing

more complex behaviors as those observed in the cellular

environment. Trajectories of motors or of cargoes attached to

active motors are usually tortuous presenting periods of

active transport interspersed by periods of diffusion or

complex motion that cannot be easily interpreted. Therefore,

it is sometimes very difficult to determine an overall direc-

tion of the organelle and to distinguish periods of clear active

transport to obtain the typical distance vs. time plot required

in previous step-detection algorithms. Moreover, analyzing

only a small segment of a trajectory may constitute a dis-

advantage since we may be loosing valuable information to

get a more complete view of how transport develops in cells.

It is important to mention that the program considers

that r is constant along the analyzed trajectories. In the

particular case of the melanosome trajectories analyzed in

this study, we studied the dependence of r with time and

verified that this approximation is valid (not shown).

However, this may not be true in other experimental con-

ditions; for example, the time evolution of the organelle

thermal jittering may be relevant when sampling the tra-

jectory at high frequencies. We normally test the consis-

tency of the output of the step-detection algorithm by

re-running the program using a slightly different value of d:

it is expected that the output will not change significantly if

r was correctly estimated.

The algorithm presented in this study does not require

the assumption of a constant step size as it is required, for

example, in pair-wise analysis. This is very important

because it has been demonstrated that transport of big

organelles usually requires the simultaneous action of a

small ensemble of motors (see for example, [34, 45]) and

peaks observed in this analysis blurred out when multiple

motors transport the cargo [11]. On the other hand, it has

been demonstrated that dynein performs steps of variable

sizes depending on the load [2] and that tandems of motors

working together present fractional steps in in vitro assays

[11]. A deep analysis of the properties of transport driven

by multiple motor have been further explored by Jamison

et al. [12] who characterized the properties of motor

assemblies composed by two kinesin-1 motors.

The proposed step-finder routine could be used in these

cases to analyze whether these properties are conserved in

living cells helping to unravel the molecular mechanisms

of motors in their natural context.
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