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Abstract

Multiangle dynamic light scattering (DLS) provides a better estimate of particle size distributions (PSD) than single-angle DLS. However,
multiangle data treatment requires appropriate weighting of each autocorrelation measurement prior to calculation of the PSD. The weightin
coefficients may be directly obtained from (i) the autocorrelation baselines or (ii) independent measurement of the average light intensity
by elastic light scattering. However, the propagation of errors associated with such procedures may intolerably corrupt the PSD estimate. |
this work, an alternative recursive least-squares calculation is proposed that estimates the weighting coefficients on the basis of the comple
autocorrelation measurement. The method was validated through a numerical example that simulates the analysis of a polystyrene late
with a bimodal PSD and with “measurements” taken at 10 detection angles. The ill-conditioned nature of the problem determines that the
“true” PSD cannot be recovered, even in the absence of errors. A sensitivity analysis was carried out to determine the effect of errors in the
weighting coefficients on the PSD recoveries.
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1. Introduction At a given scattering anglé,, the DLS measurement
consists of the (second order) autocorrelation of the light

The particle size distribution (PSD) of a polymer latex intensity fluctuations. This function is defined by

is an important morphological characteristic that determines 1
the processability and end properties of the material when Gé?)(rj) = lim — Zégr (tk)&6, (Titj),
used as an adhesive, a coating, an ink, or a paint [1]. Most ' N Ns k=1
industrial latices are obtained via emulsion polymerizations.
Dynamic light scattering (DLS) is a widely applied tech-
nique for estimating the PSD of a polymer latex with par-
ticles in the submicrometer range. The instrument basically
consists of monochromatic laser light falling onto a dilute la-
tex sample, with a photometer placed at a fixed angle with re-
spect to the incident light to collect the light scattered overa ~@2),_ . _ ~(@ D, 2
small solid angle. Brownian motion induces temporal fluctu- G, (1) = G°°"’"{1+ 'B|g"" (T])| }
ations in the scattered light, and a dedicated digital correlator (- =61,02,....0r, j=1,..., M}), 1)
calculates the autocor'relation function. This raw measure- pa e G(Z)G is the autocorrelation baseling: (< 1) is
ment must be appropriately processed to obtain the PSD or 005

AN . - O . an “instrumental” constant; and¥, is the total number of
the distribution of diffusion coefficients. Details of the tech- ¢ rejator channels or points of the autocorrelation function

where&,, is the scattered light intensity; is the discrete
time delay; andV, (> 10°) is the total number of light in-
tensity samples. The Siegert equation [2] relﬂé'@(tj) to

the modulus of the (first-order and normalized) autocorrela-
tion function of the electric fieldgé(,rl)(rj),

nique are given in [2,3]. measured af,. The average intensity of the scattered light
(Iy,), is related toGg?ﬁr through
* Corresponding author. 2
E-mail address. gmeira@intec.unl.edu.ar (G.R. Meira). (Ip,) =+/ Goo,f),'

0021-9797/03/$ — see front mattér 2003 Elsevier Science (USA). All rights reserved.
doi:10.1016/S0021-9797(03)00040-7


http://www.elsevier.com/locate/jcis

J.R Vega et al. / Journal of Colloid and Interface Science 261 (2003) 74-81 75

The intensity-based PSD or particle light intensity dis- the dimensionless weighting ratg relative to a fixed ref-
tribution (PLID) hg, (D;) (i =1,2,..., N) represents the erence anglé,
fraction of light intensity scattered &t by particles in the (2) 1
range[D;, Di+1]. Thus, the PLID is by definition normal- . _ ko, _ (Np o, )[G } / _ <M) (Igy)

ized; i.e.,ZlNzl he,(D;) =1. The PLID is related t(gérl)(rj) o = ko, Np.o, G(Z) Np.g, ) {1s,)
through [4 o
gh 4] (6, =01,62, ....08), 7)
D _ =To09)%/Di o ( whereN, ¢ /Ny g, is the ratio between the number particle
&, (7)) = ;e 6 (D) concentration ab, and the number particle concentration
: at 61. If the sample concentration remains unaltered along
0, =01,602,...,60r, j=1,..., M,), 2
(6r = 61,62 R r) @) the measurement angles, th€p /N0, = 1.
with The last two equalities of Eq. (7) suggest two simple ways
16 [n,(h) of determining thek} ratios: (i) from the autocorrelation
m r
Io(®r) = 3”( 2\ ) —sm2(9 /2) baselines fo))e ; or (ii) from independent elastic light-
(6, = 61,00, ....08) 3) scattering measurements of the average intendifies In

. _ o both cases, the particle concentration ratios must be known a
wherex (nm) is the in vacuo wavelength of the incident laser priori. An added practical difficulty is that some commercial
light; n,, (%) is the real refractive index of the nonabsorbing
mediurrrnrk (= 0,0138 gnd/K) is the Boltzmann con- DLS software does not strictly prowdﬁOo s, but rather

el Y i s values that are only proportional to the real estimates.
stant; T (K) is the absolute temperature; andg/nms) is From the PSD, several (measurement-independent) aver-

the medium viscosity. . age diameter®, ;, are defined as follows:
The aim is to find the discrete PSPP(D;) (i = 1,2,

., N); where f is the number particle concentration in N N pa 1Y@ D
; = > iz1 S (Di)D;
the range D;, D;+1] andN is the (chosen) total number of  Dg . =

- : YLy f(DHD]
PSD points that are evenly spaced in the rdigin, Dmax]- i=1 1
Each PLID is related to the number PSD, as follows, (a,b=1,23,..., a>Dh). (8)
ha,(Di) = kg C1 4,(D;) f(D;) Also, an intensity-based average diamebeyi s is defined
@ =01,02....08 i=1,....N), @

where kg, is a constant (for a givefi,) that ensures the Dot «(8.) — > iz1he, (Di) he, (D;)
normalization ofhg, (D;); and the functionC; g, (D;) is pLs(6r) = SN e @) Z D;
calculated through the Mie theory 5.4, (D;) represents i=1 D i=1

the fraction of light intensity scattered @t by a particle of _ SN f(D)Cre, (D) 9
diameterD;, for fixed values of the light polarization, the o ZN fD)Cro, (D) * 9
laser wavelength, and the refractive indexes of the particles i=1 Di
and the medium [5,6]. Substituting Eq. (4) into Eq. (2), one Note thatDp,s is a function of the measurement angle, and
obtains it cannot be associated with any specifig ,. However,
N the following can be proven: (i) for any monodisperse
gé})(fj) — kg, Ze—Fo(Gr)rj/Di Cr.o,(Di) f(D;) PSD f (Do), hg, (D;) is also monodisperse, ardb, s tends
i1 to Do independently of6,; and (ii) for a PSD inside
6, =61,6,....0%, j=1,...,M,). (5) the so-called Rayleigh region (i.e., typically containing

. N . particles smaller than 50 nm¥; 4, DS, and therefore
Since) ;1 he, (D) =1, Eq. (4) provides Dpis = Des. In practice, Dps is directly calculated

1 from the autocorrelation function through the cummulants
ke, = SN Cro (D) f (D) Or =01.02.....08).  (6) method [7]. This method conmdegé ) as a power series

) ] ] of r;, and it does not require the intermediate calculation of
where the denominator of Eq. (6) is proportional (but not F(Dy) or hg, (Dy).

equal) to the light intensity scattered &t Thus, thekq,
weighting coefficients are proportional to bogh,)~* and

Consider the data treatment of single-angle DLS. Ini-
tially, Eq. (1) is applied to obtaig;” from G. Then,

(\/Gg))’g,)_l- two calculation paths are possible [8]: (1) flrst estimate
In areal measurement, the PSD is unknown, and thereforehg, (D;) by inverting Eq. (2), and then calculatg, f (D;)
Eq. (6) cannot be used to estimate the (absolujegoeffi- through Eq. (4) (“double-step method”); or (preferably) (2)

cients. Also, it may be necessary to modify the concentration directly estimate, f (D;) by inverting Eg. (5) (“single-step
of the latex emulsion along the different measurement anglesmethod”). Since, is only a scaling factor of (D;), its es-
to avoid multiple scattering. Thus, it is convenient to define timation is unnecessary in single-angle DLS.
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Compared to single-angle estimates, improved PSD esti-2. Theoretical considerations
mates can be obtained by multiangle DLS [9,10]. Such im-
provement is not only a consequence of the larger informa-  Consider first the procedure for estimating the PSD with
tion content of multiangle measurements, but also the re-the single-step method. In vectorial notation, Eq. (5) can be
sult of better conditioning of the numerical inversion [11]. rewritten
More specifically, improved estimates are obtained when
the analyzed PSDs are broad, with all the particles outS|de99, =ko,Fo,t (6, =01,02,....6k), (10)
the Rayleigh region. Unfortunately, such advantages are lost
when the PSD is narrow or when it falls inside the Rayleigh
region [8,12]. discrete heights @(1)(@-), andf(D;), respectively, anég,

The data treatment of multiangle DLS is still a matter isan (M, x N) matrix. The elements d, are given by (see
of controversy. The aim is to estimate the PSD through EQ. (5))
El?rsén(lle)n—t(s4)_l,_;)3éosr|nmultaneously processing aII- of the mea-efji(er) _ o~ To6)7;/D; Cro. (D)

. pensate for the differences in the averag

intensities at each scattering angle, it has been suggested (j=1,...,M,, i=1,..., N). (11)
that each autocorrelation measurement be weighted appro;
priately prior to estimation of the PSD [9,10,12,13]. We
shall here implement such weightings with tje ratios of

where the vectorge) (M, x 1) andf (N x 1) contain the

In Eq. (10), let us replace the absolute coefficignjsby
ko,kj , whereo is a fixed reference angle (Eq. (7)). The
resulting equations can be lumped into the single expression

Eq. (7).
Cu_mmins and Staples [13] used the “double—step“ method g<1) ko, G gf (12)
to estimate a volume (or mass) PSD on the basis of a refer-
ence PLID a®i, hg, (D;). This reference PLID was calcu- with .
lated by inversion of Eq. (2), after replacementiof(D;) g5, K5, Fon
by he, (D)[{1; (6,))/(I; (61))], where(];) is the average light @ & E
intensity scattered by the particles of diamdder The inten- g) _ gf’z ’ Gp = 02" 02 ’ (13)
sity ratio [(Z; (6,))/(I; (61))] was evaluated through the Mie : :
theory [5]. gé}g) k5 Fog

Bott [9] estimated the volume PSD in a single operation,
without explicitly calculating any weighting coefficient. His WheregR [((M1+ ---+ Mg) x 1] is an augmented vector
approach is equivalent to inverting Eq. (5) w'gtﬁ) replaced andGg [(M1+ ---+ Mg) x N]is an augmented matrix.
by ' By definition,k;‘1 = 1. Therefore, Egs. (12) and (13) must
be solved fork, f, and for the remainingR — 1) unknown
ks 's. This problem may be solved as in Bryant et al. [10],

(2 (2
G i)—G
6 (%) = oo, through a globahonlinear inversion. Alternatively, we here

and to using weighting coefficients defined by propose the following sequential solution: first, estimate the
relative weighting coefficients; , and then find' through
ke, (Gg)g'ﬁ)_l/z. thelinear inversion of (12),
F; —1] (D
The problem of this approach is the propagation of errors of ko,f = R 9% - (14)
2
G4, into the PSD. wheref is an estimate dfandG!, ! is a regularized pseudo-

Bryant and Thomas [12] and Bryant et al. [10] have inverse ofGg.
calculated the weighting coefficients and the PSD ina single  For the recursive estimation of tii& — 1) unknownk? s,
operation. Their approach is equivalent to directly inverting

Eq. (5) with weighting coefficients defined by, C1 4, (D;). let us define the augmented autocorrelation vegﬁtjdr

D

To solve this relatively complicated nonlinear problem, an 9,1

ad hoc iterative procedure was developed. It was shown that9r [ @ } r=2,....R), (15)
the errors in the average intensitigs, ), when determined Y,

by elastic light-scattering, were larger than the errors in the with g'¥ = gél) At each recursive step, the “best} is

autocorrelation basellnc{%(z) found as follows:

In this work, a novel data treatment for multiangle DLS is
proposed that first estimates the relative weighting ratios on (1) calculate the combined matrix
the basis of the complete autocorrelation functions, and then G
estimates the number PSD by direct inversion of Eq. (5), G, = [k*’gl}
without calculation of the PLIDs. The proposed procedure o' br
is validated with a synthetic numerical example. with G1 = Fy,;

(16)
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(2) calculate an estimate gfl) on the basis of ther(— 1) 3. A simulated example
previous measurements with
3.1. Initial measurements

4D — G IGYg® 17
" G191} (17) Some initial autocorrelation baseline measurements were

where a weak regularization is recommendable for the carried out to estimate the typical errors of i ratios,
inversion indicated in Eq. (17); when estimated through the last equality of Eq. (7). The
(3) calculate the error vector between the augmented auto-2n@lyzed latex was a monodisperse polystyrene (PS) from

correlation vectogﬁl) and its upgraded estimaj;él), Polysc!ence, of nqmmal diameter 306 nm. The dynamic
laser light scattering photometer was from Brookhaven

A A, Instruments Inc. The instrument was fit with a vertically
&=9"-0" (18) polarized He—Ne laser at 632.8 nm and a digital correlator
) L (Model BI-2000 AT). The measurements were carried out at
(4) estimatek; as the value that minimizes the sum of 550 Five measurements of the autocorrelation baselines

squared errors were taken at each of the following detection angles: 30,
50, 70, 90, 110, and 13@see Table 1a). Each measurement

min(e’e.). (19) took between 100 and 200 s, and the particle concentration

kG was adjusted as indicated in Table 1a to produce a counting

, rate of around 200,000 courits Then, a reference angle
The procedure of Egs. (15)(19) is proposed for calcu- o _ 300 \yas adopted, and the! ratios were calculated
lating thek; ratios, but not the PSD. To estimate the PSD, {,qm the 6@ . baselines. Table 1b presents the resulting

00,6,

Eq. (14) withGy as defined by Eq. (13) is applied. Note kz ratios and their relative errors with respect to the average
that the proposed method does not require the particle con-5jyes. The relative errors seem to show some dependence
centration ratios to be inputs, since such ratios are implicitly \ith the detection angle. Also, maximum deviations of
included in the definition of thé; coefficients. The regu-  around+5% are seen in the! ratios.

larization in Eq. (17) must be relatively weak, in the sense "

that {G[__lllgﬁl_)l} does not provide an acceptable estimate 3.2, The simulated measurements

b
of f. In other words, the regularization @ in Eq. (14)
must be stronger than the regularization{@f__ll]gfl_)l} in Consider the simulated DLS analysis of a polydisperse

Eqg. (17). PS latex. Some of the sought system parameters are

Table 1
(a) Initial measurements: autocorrelation basel'(r(ég)gr PR 10~9) for the different combinations of measurement angles,
concentration ratios, and measurement number
6 30 50° 70° 90 110 1300
Np.o,/Np.oy 1 1.461 2.675 6.427 20.78 85.47
g=1 04916 04170 04246 Q4174 Q04737 04559
qg=2 0.4797 Q4970 04289 Q4572 04707 04619
q=3 05119 Q4755 04142 04195 04750 04654
qg=4 05451 04723 04344 Q4246 04718 Q04704
q=5 0.5105 04310 04249 04302 04721 Q4707
Mearf 0.5078 0.4586% 0.4254 0.4298 04727 0.464F
(b) Initial measurements: calculated weighting ratios (with Eq. (17)) and corresponding relative errors
0, 30 50° 70° 90° 110 130
kgr,q Eer,qc k;r,q Eer,qc k;r,q Eer,qc k;r,q Eer,qc k;r,q Eer,qc k;r,q Eer,qc
g=1 1 0% 1586 30% 2878  —15% 6975 —0.2% 2117 -17% 8875  —0.6%
qg=2 1 0% 1435 —6.7% 2829 —-3.2% 6583 —5.8% 2098 26% 8710 —2.5%
qg=3 1 0% 1516 —-1.5% 2974 18% 7.100 16% 2157 02% 8964 04%
g=4 1 0% 1570 20% 2997 26% 7.282 42% 2234 38% 9201 30%
qg=5 1 0% 1590 33% 2932 Q3% 7.001 Q2% 2161 04% 8901 —0.3%
MearP 1b - 1539 - 292 - 6.988° - 2153° - 8930° -

)]
0,6r,q"

a Mean baselinesc’;_ﬁ)gr =(1/5) ZgzlG
b Mean weighting ratiosi;r =(1/5) Zg’:l ba
¢ Relative error kg : Eq, 4 = (k;‘rAq//Egr — 1) x 100.
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Table 2
The simulated example: “measurements” and resulting weighting ratios

r Oy At Gfi) o Weighting ratios
©) (us) (#x 1079 True With additive error Estimated
k;r k;r e Eo, 2 lzg, Ep, b
1 30 210 495.68 1 1 0 1 0
2 40 120 258.90 B837 13740 —-0.701 13792 —-0.325
3 50 75 113.45 2903 21706 3842 20880 —-0.110
4 60 50 42.594 3114 34242 0375 34075 —0.114
5 70 35 14.450 B568 59403 1426 58059 —0.869
6 80 24 4.9748 9819 99892 Q073 98242 —1.580
7 90 18 2.0873 18103 158163 2635 151836 —1.471
8 100 15 1.2242 20217 206315 2534 200438 —0.387
9 110 13 0.95805 22461 222369 —2.239 226734 —-0.320
10 120 13 0.86308 29649 231817 —3.268 237772 —-0.783
3 Eg, = (K}, /i —1) x 100.
= (kp [k} —1) x 100.
bimodal) PSD is represented By D) in Fig. 1a. It consists
of 81 equally spaced points in the range [100 nm, 500 nm].
a) It was obtained by combining two normal-logarithmic dis-
tributions,
2
0 100 200 300 400 500 600 f(D;)=085——"__ M}
D, (nm) 101«/_ 20?2
_ 2
— il = D, +015 2 exp[[ln(Dl/ng’Z)] } (20)
DDL: fED """"""""""""""" Bk Diﬁzx/g 2(72
) Dys | . :
2300 Ly whereN,, (= 10° #/cm~3) is the number particle concentra-
b) Dy 8 g g00Q tion, Dg 1 (=200 nm) andD, > (= 400 nm) are the geomet-
------ B B e ric means; and1 (= 0.150) ando» (= 0.075) are the stan-
0 o 5 0% b dard deviations. The distribution averages are represented in
0,() Fig. 1b. While D10, D43, and Dg 5 are independent f,,
DpLs varies from a value that is close 19s 5 for 6, < 40°,
200] N\ sp0 107 % (G G‘f;, ) to a value close ta; o for 4, > 80°. The reason for this
is that while low-angle measurements emphasize the peak
9 with D, » =400 nm, large-angle measurements emphasize
1007 > the peak withD, 1 = 200 nm.
ﬁ:'” To simplify the analysis, we shall assume that the particle
0 ——= —_— concentration remained unaltered along the simulated exper-
g 30 3 e o I iment, i.e.,N, 4,/Np ¢, = 1. The baselines values were cal-

HuaE culated from

Fig. 1. The simulated example, assuming noise-free autocorrelations. N 2

(a) The true number PSDf, is compared with two estimate; (cal- G(Z)e =c Z Cr.0.(Di) f(D;)

culated with the “true"k* _ratios) and . (calculated with the erroneous o0Or im1 o

ratios, ka ). (b) The trueDDLS averages (represented by dots) are com-

pared with the estimatedp, g obtained fromf; (in crosses) and from (0 = 61,02, ..., 0r), (21)

fe (in_squares). For comparison, other measurement-independent aver- 6
. ) with ¢ = 107°.

agesDa » are represented. (c) Resulting “measurements” expressed as

(Gg)(r] /A1) — G( )9 ) for different detection angles.

The resulting baselines are presented in the
third column of Table 2. From the baselines and the sought
reference angle, the “trué}; ratios were calculated through
the second equality of Eq. (7) and are presented in the fourth
n, = 15728 (particle refractive index)n, = 1.3316; column of Table 2.

L =6328nm;T =29815K; =0.89x 10-° g/nms; and The autocorrelation “measurements” were obtained as
B = 0.5. The synthetic “measurements” were simulated for follows. First, the noise-free and discrete autocorrelations
the detection angles and lag intervals given in the second ancﬂ( )(r]) with (j = 1,...,100) were calculated through
third columns of Table 2. The a priori known (discrete and Eqs (1)—(4), for all the g|ven combinations &f and Az.
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Then, the noisy “measurements” were obtained by adding Table 3
the following random noise onto the noise-free autocorrela- The simulated example: performance indices for different combinations of

. . 1 d ighti ti
tions, (zj) = 0.001G ), eo(t;), whereeg is a random se- ~ TSasUIeMments and welghiing ratios

quence in the range-1, 1] with a flat probability distribu- ~ Measurements Weighting ratios  J¢ Jp

tion [14]. The resulting difference functiop&; (z; /A7) — Noise-free autocorrelations kg, ® 0374 0.0048
* b

Gfi)e.] are represented in Fig.1c. Kor.e 0-598 0.0118

o Noisy autocorrelations k;‘ra 0.306 0.0149
I b

3.3. PSD estimation K e 0597 0.0118

e © 0.397  0.0279

Consider recuperating the PSD from the synthetic mea- a “Trye” value.
surements. First, Eq. (1) was used to caIcugé}é(r]) from b Value taken from Table 2.
Géz)(rj) Then, a diameter axis was selected for the esti- ¢ Estimated with the proposed method.
mated PSDf(D ) consisting of N = 29 equally spaced

points in the rang¢Dmin = 40 NM, Dmax = 600 nm]. The  qyjite large(7.37 x 10'5), thus indicating a difficult recovery.
value of N is a compromise between a highly defined PSD =

and a well-conditioned inversion. Note that the assumed di- I(r;i;f)glg)a.lst, note the almost negligible errorsim.s(6)
ameter range off (D;) is somewhat broader than “real,”
and that the total number of points is considerably lower
than “real.” Then, the elements Bf, were calculated with
Eq. (11), and finally the PSD was estimated through Eq. (14).

To solve the pseudo-inverse @y in Eq. (14), two
numerical methods were tested: (i) the regularization tech-
nigue of Twomey [15] with an optimally selected regular-
ization parameter [8], and (ii) the singular value decomposi-
tion technique [16]. From all the nonnegative solutions, the
“best” PSD estimaté(D,») was selected as that which min-
imizes the performance index

Consider now the propagation of errorsigf into the
PSD estimates, when the ideal noise-free measurements are
employed, but withk; ratios that are contaminated by an
additive error. The noisy ratios are indicated gy , and
were calculated by adding a random noise of flat probablllty
distribution with an error band af4% to the truky . This
error band is narrower than the band observed in the initial
measurements. The resultikg) , ratios, together with their
errors with respect to the true values, are shown in the sixth
and seventh columns of Table 2. The resulting PSD estimate
is represented byf,(D;) in Fig. 1a, and the performance

SN LF(D) — F(DP 05 indexes are given in the third row of Table 3. As expected,
Jr= ( i=1 — - ) (22) both J; and Jp have increased with respect to the totally
Yimalf (D)1 ideal case.

where f(D;) is the true PSD. Note that in a real measure-
ment, it would be impossible to calculafe. However, this
criterion was adopted here to investigate the ultimate limita- a)
tions of the technique.
Additionally, a performance index was calculated that
compares the “true” intensity-based mean diamBksirs (6,
(obtained by injectingf (D;) into Eg. (9)) with its estimate
Dpis(6,) (obtained by injectingf (D;) into Eq. (9)),

1(&T. Dows@) 13\
Ip= §<Z[1_ _DL} ) . (23) Dy ]
=1 DpLs(6r) (nm)
Clearly, the PSD that minimizeg; will not in general b)\
minimize Jp.

Consider first recovering the PSD in the totally ideal case
of employing the noise-free autocorrelations and thekfue

ratios. The resulting solution ig (D;) in Fig. 1a, and the
performance indexes are shown in the second row of Table 3.Fig. 2. The simulated example, assuming a zero-mean measurement noise.
Note that large deviations are observed in the recuperateda) The true number PSD,, is compared with the estimatgs (calculated
PSD, even in this doubly ideal case. This illustrates the with the “true” k0 ratios), f» (calculated with the erroneoug ratios),

. L and f (calculated Wlthke as obtained by application of the proposed
insurmountable limitation of DLS, as a consequence of the method). (b) The trudp, s averages (represented by dots) are compared

highly ill-gqnditioned nature of the“numerica.ll .inversion. with the estimatedDpys obtained by usingf; (in crosses), fromf (in
The condition number of5z quantifies the difficulty of open squares), and frof (in full squares). For comparison, othgx, ,

the numerical inversion [11]. In our case, this parameter is averages are also represented.

9]_ (u)
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Table 4
The simulated example: single- vs multiangle estimations

30° 60° 9° 12¢ Multiangle
Condition number D1x 109 1.66 x 1018 1.15x 1018 1.81x 1018 7.37x 1015
Jr 0.817 0482 0543 Q478 Q397
Jp 0.0312 00286 01805 00233 00279

0 100 200 300 400 500 600

b)

0 100 200 300 400 500 600
D; (nm)

Fig. 3. The simulated example. The original number P$Dis compared
with several single-angle PSD estimates obtained at (a)ﬁ??o ,and 60,
f6% and (b) 90, /9% and 120, f120°.

Consider now the more realistic case of using the noisy
autocorrelations, but with three different setgcg)rf values:
(i) the “true” coefficients (5th column of Table 2); (ii) the
coefficients with errors as given in the previous paragrap
(6th column of Table 2); and (iii) the;r estimates obtained
by application of the proposed method of Egs. (15)—(19)
(which we shall caIFQ;r). These last estimates, together with
their corresponding relative errors, are given in the last two
columns of Table 2. The relative errorsf?gi are all lower

than 1.6%. Three different PSD estimates were calculated

(Fig. 2a). With the “true” ratios/; (D;) was obtained. With
the kék,,e ratios, f.(D;) was obtained. Finallyf(D;) was

obtained from thefc;;r ratios. Note that for’@;r, the resulting
J is quite close to the lowest possible value (Table 3).

In Fig. 2b, the “true” Dp.s (in dots) are compared
with the estimates calculated fromy(D;), f.(D;), and
f(Dl-). The Jp values are presented in the last column of
Table 3. The inversion methods aimed at minimizing
rather than/p. This explains why the/p value forf(D,»)
is larger than that forf,(D;). Even though not shown in
the presented resultd)p. s was also estimated by direct
application of the cummulants method. The resultihg
values were lower than those of Table 3.

Finally, the multiangle PSD estimates were compared

and the performance indexes are given in Table 4. As ex-
pected, single-angle measurements produce worse PSD es-
timates than the multiangle estimate as obtained by applica-
tion of the proposed procedure. But again, this tendency is
not verified for theDp| s mean.

4. Conclusions

Errors in the weighting coefficients may seriously dete-
riorate PSD estimates of multiangle DLS. A novel method
for calculating the weighting ratios has been presented. It
involves recursive least-squares and uses all of the measured
information. The procedure was tested on a synthetic ex-
ample, and the numerical results indicate that the weighting
ratios are considerably more accurate than those directly ob-
tained from the autocorrelation baselines. An extra advan-
tage of the proposed method is that it does not require inde-
pendent measurement of the latex concentration, when this
variable must be modified along the detection angles.

The proposed procedure aimed at obtaining a number
PSD. The technique can be easily extended to determine

ha volume PSD, with the potential benefit of improving the

ill-posedness of the numerical inversion. Also, an iterative
(rather than a direct) data treatment could be developed
that recalculated the weighting coefficients after a first PSD
estimation and finally obtained an improved PSD from the
recalculated coefficients. In a future communication, the
proposed technique will be verified with real measurements.
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