HTML AESTRACT * LINKEES

REVIEW OF SCIENTIFIC INSTRUMENTS VOLUME 75, NUMBER 4 APRIL 2004

Theoretical analysis of the gravity-driven capillary viscometers

Claudio L. A. Berli

INTEC (Universidad Nacional del Litoral-CONICET), &mes 3450, 3000, Santa Fe, Argentina

and Departamento de’Fica, Facultad de Biogmica y Ciencias Biolgicas, UNL, Pje. El Pozo, 3000,
Santa Fe, Argentina

Julio A. Deiber®
INTEC (Universidad Nacional del Litoral-CONICET), @mes 3450, 3000, Santa Fe, Argentina

(Received 13 August 2003; accepted 23 December 2003; published 15 March 2004

Gravity-driven capillary viscometer§GDCVs) are used to obtain the viscosity function of
non-Newtonian fluids from measurements of the instantaneous fluid height in the overhead
reservoir. The reliability of this viscometry depends on two main aspects: the accomplishment of the
required flow condition in the apparatus and the appropriate conversion of raw data into rheometric
functions. This work presents a rigorous theoretical analysis of the GDCV, thus providing criteria to
achieve accurate measurements. The equations describing the rheometric flow in a GDCV are
deduced from the basic laws of momentum and mass conservation. From these equations, the flow
dynamics of the apparatus is studied and the constraints required to attain a quasi-steady-state flow
are established. Under these conditions, the rheometric functions are written in terms of the
instantaneous fluid height. In addition, a method to process experimental data of non-Newtonian
fluids is proposed, which can handle the ill-posed problem associated with the determination of the
viscosity function in this viscometry. @004 American Institute of Physics.

[DOI: 10.1063/1.1666987

I. INTRODUCTION GDCYV, by recording the fluid height(t) in the reservoir at
each timet, and then converting(t) into AP(t) andQ(t).

The capillary rheometric cell is used to carry out viscos-No additional theoretical work was carried out to explain
ity measurements of a wide variety of fluids. Thus, by usingrigorously the rheometric response of this apparatus, and the
an appropriate fluid driving device, experimental data of flowtechnique has been scarcely used since tses, e.g., Ref.
rateQ, and pressure drofP obtained from the flow through 4). An aspect that contributed to the low diffusion of this
a capillary tube allow one to evaluate the rheometric viscosviscometric apparatus was the rapid evolution of rotational
ity function 7(), in a given range of shear ratgs In the  rheometers, which, with the advent of electronic devices, be-
simplest instrument designed for this purpdstiie liquid  came fully automatic instruments, allowing one a diversity of
flows through the capillary due to gravity force and the timeprogrammable measurements. In recent years, GDCVs have
required to drain the liquid reservoir is recorded. At presentpeen newly proposed in the literature with the incorporation
there are several gravity-driven capillary viscomet@®-  of modern data collection and recording systenfs.

CVs) available commercially for scientific, academic, and  Since the regular operation of the GDCV involves a
industrial laboratories. Nevertheless, the application of thesguasi-steady-state flowQSSH, one may conclude that a
viscometers is mainly restricted to Newtonian liquids be-complete study considering the theoretical interpretation of
cause only one pair of dat versusAP is obtained from  the instantaneous overhead pressure and flow rate, as func-
each measurement. Thus, GDCVs have been used mainly t@ns of fluid height, is still required in the literature. In pre-
characterize dilute polymer solutions, the intrinsic viscosityvious analysis, it was simply assumed that QSSF is attained
being the parameter of interest. The description of complexn the apparatus, which is, of course, a crucial condition to
fluids, instead, involves more than one rheological paramaccomplish the desired viscometric flow in the capillary. It is
eter, and hence its characterization demands data at differealso worthwhile to add here that the advantages of these
shear rates. Precisely, as the sample flows due to its owgravitational viscometers are simplicity, relatively low cost,
weight, the change of the overhead pressure generates a cefhd reliability, the last condition being associated with an
tinuum variation ofy in the capillary. One, however, ob- appropriate geometrical design.

serves that this feature of GDCVs has not been fully ex- |n this context, the purpose of this work is to provide a
ploited in order to obtain additional rheometric information rigorous theoretical analysis of these devices through the
of non-Newtonian fluids. Early ideas in this sense were proconsideration of basic concepts of rheometry. Two major as-
posed by Maroret al** around 1954. These authors showedpects are carefully analyzed) the conditions required to
the possibility of obtaining the viscosity function(y) ina  satisfy the QSSF assumption afig) the problem of deter-
mining unambiguously the rheometric functiof(y) from

aAuthor to whom correspondence should be addressed: electronic mai@XPerimental data(t) Qf the fluid res_er_VOir- The first _aSpeCt
treoflu@ceride.gov.ar concerns the geometrical characteristics of the device. Thus,
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we carry out an analysis of the fluid dynamics of the appawhere AP/L=—d(p—pg,2)/dz is the generalized pressure
ratus to find out the conditions required to attain the QSSFdrop along the capillary and,= 7(R) is the shear stress at
The second aspect involves a mathematical difficulty, thehe tube wall. The shear ratg(r)=—du,/dr, is related to
so-called ill-posed problem, which is associated with the difthe flow rate Q in the capillary tube through the
ferentiation of discrete and scattered experimental data. lexpressiotft3

this part, a method of data analysis previously proposed by R

the author¥ for conventional capillary rheometry is applied Q= Wf y(r)r?dr, (4)

to the GDCV. Therefore, in this work, we expect to provide 0

criteria to get accurate measurements. It should also be me@ich involves no-slip of the fluid at the tube wall. For the

tioned that other sources of error appearing in capillary vissteady-state flow, Eq3) can be introduced into Eq4), to
cometry (end effects, wall slip, etg.are well described gptain

elsewheré!~3and hence they are not analyzed here. .
This work is organized as follows. A brief analysis of Q= R ffw-y( A 2dr (5)
capillary viscometry is presented in Sec. Il. Next, the equa- 5 Jo '

tions that govern the viscometric flow in a GDCV are de- C . . .
. Therefore, the determination @f( ) requires the inversion
duced from the basic laws of momentum and mass conser-

vations (Sec. Ill). These equations are further analyzed inOf Eq. (5. This step places serious difficulties in capillary

. : . . viscometr n ill- roblem i n ;
order to find the constraints required to attain a QSSF. | Sco etry, because a posgd P oble s g€ erdtet;
i . .that is, the mathematical solution is not unique due to the
addition, a method to process experimental data from this ; . : ;
: . . ) unavoidable scattering present in the experimental @ata
viscometry is proposed, which can handle the ill-posed prob-
X . . . Versusry, .
lem just mentionedSec. 1V). For this purpose, the theoreti- .
. : : . : The calculation method normally used evaluates the
cal functionalityh(t) is found analytically for some simple . .
. C . . shear rate at the tube walj,,= y(R), according to the fol-
models of the rheometric function(y). Finally, a numerical lowing expression:
algorithm is presented for the treatment of experimental data g exp '
that need to be described with more complex viscosity mod- . Q dIn(4Q/7R3)
els. An illustration with the Cross model is presented as a "W~ ;R3 dinr, ' ©®

typical example.

which is obtained by differentiating E5) with respect to
7w - Equation(6) is designated Weissemberg—Rabinowitsch—
Il. BASIC EQUATIONS OF CAPILLARY VISCOMETRY Mooney(WRM) equation. With this method, numerical data
) i i of the viscosity function are generated from= 7/, .
_ We_con5|der_ a capillary tube of I’adllESar_]d Ie_ngthL, Nevertheless, the numerical results yielded by F&).are
with ratio L/2R high enough to provide one directional flow yery sensitive to the way in which the derivative is calcu-
and make, in principle, end effects negligible. Once experijaeq pecause experimental data are always noisy in some
mental dateAP versusQ are obtained, the viscosit of  geqree Therefore, converting E8) to a differential expres-

Newtonian fluids is readily calculated through the Hagen—ion like Eq.(6) does not eliminate the problem associated

Poiseuille equation. On the other hand, special considefi, the existence of multiple solutions. Some interesting
ations must be taken into account for the determination ofqhosals to handle this problem have been reported recently
the viscosity functiony(’y) when non-Newtonian fluids are , the jiterature(see Ref. 10 and references thefein Sec.
considered. In fact, to calculate IV, the theoretical analysis carried out previously by the au-
T thors is extended to the case of GDCVs; namely, we propose
n(y)=<, (1) to determine the parameters of an appropriate viscosity

Y - . .
_ model instead of calculating numerical valuesidfy).
both the shear stressand the shear ratg have to be known

at least at one place in the rheometric cell. The shear stress
derives from the axial component of the momentumlll. GRAVITY-DRIVEN CAPILLARY VISCOMETERS

2,13
balance: A. Calculation of the viscosity function

Uz d(p—pgz) 14(rm @ Figure 1 shows a highly schematic representation of the
ot Jz roor’ rheometric device. In general, it is composed of a cylindrical

which is expressed in the cylindrical coordinate system. [{€SErVOIr of radiuR, that feeds the sample into a capillary
Eq. (2), u, is the axial fluid velocity that depends on radial tub€ of radiusR and lengtiL. At the end of the capillary, the
coordinater and timet, whereas is the fluid density ang, ~ Sa@mple may rise through a second cylindrical tube of radius
is the z component of the gravitational acceleratignThe ~ Re- In different settings, the axis of the capillary forms an
pressurep depends on axial position which is measured fanglea with the direction of the gravitational field, as shown

from the capillary tube entrance. When transient effects ard Fi9- 1. The apparatus is held at constant temperature by

absent,r is expressed as means of a water japke_t connected to a precision thermostatic
bath. Once the fluid is at constant temperature, the flow
(r)= APr — r 3) through the capillary is started by opening a stopcock. The

2L "R’ fluid heightsh,(t) andh,(t) in the reservoir and in the fluid
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pgRH pR2 d2H
2R f> | 2R, W20 T 2R AP @y

The second term in the right-hand side of Etfl) is associ-

ated with the unsteady-state flow. Below, we demonstrate

that this term ofr,, is negligible in relation to the first one,

h provided the appropriate geometrical scales are used. Under
! these conditions, the wall shear stress is simply

_ p9RH

TW—T.

(12

In addition, the wall shear rate can be obtained from (&Y.

hy by introducing the appropriate expressions f@rand 7,
[Egs.(9) and(12), respectively. Thus, one has
/' _ R2 dH {3+ Hd2H/dtT 3
A == e 1
Capillary tube ' MW TRt (dH/dt)?

which is the WRM equation written in terms of the fluid
heightH(t) and its first and second time derivatives. There-
fore, when transient effects are minimized, the viscosity
rising tube, respectively, are measured as a function oftime function »= 7,/ ¥,, in the viscometer is effectively described
These measurements can be done in different ways, depenlom basic concepts of capillary viscometry.

ing on the recording system adapted to the appafeatfisn These equations also apply to the mass-detecting capil-
the simplest caséh,(t) can be read over a graduated rulerjary viscometef,® taking into account that H(t)
and t measured with a chronometer. In the following, we =M (t)/pwR2, whereM(t) is the mass variation of the col-
deduce rigorously the rheometric shear stress and shear raigted liquid.

in terms of the fluid height. In these derivations, the viscous

friction in the reservoir and fluid rising tube is neglected ing_constraints to attain quasi-steady-state flow

relation to that of the capillary. This approximation is fairly

FIG. 1. Highly schematic representation of a GDCV.

good provided both ratioR; /R andR, /R are high enough.  The aim of this section is to gain more insight on the
For the device presented in Fig. 1, the generalized preggnemancs of the fluid in the apparatus, as well as to quantify
sure drop is transient effects that may affect the quality of rheometric

results. For this purpose, the equations governing the fluid
dynamics in the viscometer need to be considered; namely,
Egs.(2) and(9). These equations are linked through the ex-
pressionT= n(vy)y, where n(v) is the viscosity model for
the fluid under analysis. In this framework, the mathematical
H(t)=hy(t)—h,(t)+L cosé (8) problem consists in findinglH/dt as a function of time,
given the initial condition$d=H, anddH/dt=0 att=0, of
is defined to be a generalized fluid height. An additional termpe experimental run. This problem admits analytical solu-
needs to be included in E¢8) when the effect of surface tjon for Newtonian liquids, since in this case the viscosity is
tension is relatively important in the tubes where the fluidy constant, and requires numerical treatment for non-
heights are measured. This effect increases as the tube rafljbwtonian fluids. Since the pressure drop in a GDCV is not
decrease. Hence, the problem arises when thin tubes are rg«onstant but a time-dependent functfsee Eq.(7)], it is
quired in experiments in which a small quantity of sample iSyorth observing that the problem posed here is more com-
available’® _ _ plex than the classical inception flow in cylindrical tudés.
A mass balance in the apparatus gives For the sake of simplicity and mainly to be able to obtain
H R an analytical solution, we now discuss the unsteady flow of
Q=— WR%W = 27-rJ' u,rdr, (9) Newtonian fluids. A preliminary analysis of this problem was
0 carried out in a previous worK. The main aspects of the
where R, involves both radiiR; and R, according to the derivation are outlined subsequently. Momentum and mass
following definition: balance equations, as well as the initial and boundary condi-
5 5 5 tions, are written as dimensionless by using the following
Ro=1/R; + 1/R;. (10 gefinitions: T=r/R, H=H/H,, T,=u,ayR2/HoR2, and t
As discussed in Sec. II, the shear stress is obtained froriT t/an ., Whereay=8uLRg/pgR" is a time constant for the
the axial component of the momentum balance in the capilNewtonian fluid running the viscometer. Thus, one has

d(p—pg,2) _ pgH(t)
B Y L @

where

lary. In order to findr,, as a function oH, both sides of Eq. 0 19/ Ju

. . . 4 T — z
(2) are averaged in the cross-sectional area of the capillary, N\ —=8H+ :—_(r _) : (14)
and Eqs(7) and(9) are introduced in the result to obtain at ror\ or
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dn f T (15 7
——=| U,rdr, ! - 7
dt 0o’ r ) exp(-7)
_ _ o8k / -
=0, u,=0, H=1,; (16) cl ; -
T=0, Ju,/dr=0; (17) B
b 06/
=1, U,=0; (18 |§ ,
where S
- I 04t :
A=o—— 19 : : )
8L(1Ro)? 19 S 0.1
is an additional dimensionless number relating scale ratios, 021 R 0.01
gravity, and inertial and viscous forces in the apparatus. ----0.001
From Eqg.(14), one can infer that the condition required to 0.0 L o Gy

attain a QSSF i& <1. Furthermore, it is shown later that the
fluid kinematics in the viscometer depends significantly on 7
the parametek.

The solution of Eqs(14)—(18) involves the following  FIG. 2. Start-up flow of a Newtonian fluid in a GDCYV, for different values
series: of \.

-1 0 1

10 10 10

U (t,1)=2, Fi(1)Jo( B, (200 the curves approach the asymptote exg)( which is the
: limit of Eq. (23) when\ —0. It is also concluded from Fig. 2
whereF,(t) are time-dependent functions to be determinedthat the transient term vanishes when the flow rate reaches
andJy(Byr) is the Bessel function of the first kind with the the maximum at the value df, given by
eigenvaluesB,. Combining Eqgs.(14)—(18) and (20), and

applying the orthogonal properties of Bessel functions, t_m~£2|n 3_22) (24)
yields B \AB1
— _ which evaluates the lag required to reach the QSSF. This
_ d_H: 3_22 B—zft exq,Bz(? —t_)/)\]ﬁ(?)d? dimensionless time is on the order Xf being 8, = 2.405.
dt Nk “Jo “ ' Having evaluated the transient flow in the GDCV, the

(21 relative importance of the unsteady term in the rheometric

This integral-differential equation, fully written in terms of fur?ctn;\n:,l\,(H)dcsn b(;_ar?leed. T:\_uséforll\iewt()lzlan fluids,
H(t), represents the rigorous initial value problem associ-W en and hencé(t) =exp(-1), Eq. (11) yields
ated with the start-up flow of Newtonian liquids in a GDCV. _pgRH( )\)

Through the use of Laplace transform and its convolution W™ "o
properties, one finds

+ 1k
L . Therefore, the parameter is also a measure of the error
= introduced in using Eq(12) to calculate the shear stress in

H* = S+32§k: BE(B&"‘)\S) , (22 QSSF.

_ One may conclude that imposing the constrairgl is
whereH* is the transformed function arglis the Laplace enough to attain the viscometric flow in a GDCV. In fact,
variable. Equation(22) shows thatH* —(s+1)"! is the according to Eq.(19), this condition depends on the geo-
asymptotic solution as\—0, taking into account that metrical characteristics of the apparatominly the capillary
Ek,Bk’“:l/SZ. Therefore, iﬂ\<ﬁ§, one can readily express radiusR) as well as on the viscosity of the fluid considered.

_ It should be also observed that the QSSF is reached once the
_ d—imexq —t_)—322 BK_AGXIO(—/BE)\) (23) start-up timet,,, has elapsgd. ' . ' o
dt K Although the analysis carried out in this section is
S ) strictly valid for Newtonian fluids, the results concerning the
as a good approximation, after neglecting terms on the ordefsteady regime in the GDCV can be roughly extrapolated to
of \. ) o ) o non-Newtonian fluids. In this sense, one may have an esti-
The fluid velocity given by Eq(23) is plotted in Fig. 2, mation of the order of magnitude of the unsteady term of Eq.
where a Iog_ sgale is used to _emphgsae very short tlmeﬁl) by approximating the parametar[Eq. (19)] with an
when the fluid is suddenly set in motion. This figure ShOWSaverage value ofy in the range of shear of the apparatus.
that the flow rate first_increases, reaches a maximum, a”ﬁurthermore, it should be observed ti4ft) is nearly an
then decreases. For loty the second term in the right-hand exponential function for typical fluid modelsee Table | in
side of Eq.(23) becomes relatively important, while at high Sec. IV), indicating that the second term of EdJ) will be
t, the term exp{-t) predominates. Thus, for low valuesxf  generally on the order of [Eq. (25)].

(25
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TABLE I. FunctionH(t) for different viscosity models. In these equatiopds the Newton coefficienK is the
consistency parametat;is the “power law” index; 7y is the yield stressy, and 7., are the limiting viscosities
for y—0 and y—o°, respectively;r. is a characteristic shear stress ands an exponent that measure the
severity of shear thinning. In particular= 2 leads to Ferry modékee Ref. 18anda =3 to Reiner—Philippoff
model (see Ref. 1§ this last one when;,.<17,. In the expressionsi(t), constantsa have units of time,
whereas constantsandc are dimensionless.

Model name:
function » H(t)/Hq Constants
Newton: 8uLR2
exp(—t/ay)? _ 0
( 2LK )1/"(3n+1)R§H0
_ . = — 3
O;\:Ivfzi\ld de Waele: (1—t/ag)b® pgHR (n—1)R
Ky n
bo:n—l
2
Bingham: astnxl";O
7 b+ (1— bg)exp(~tiag)® 9
7°+nx, > 5+ (1~ bg)exp(-t/ag) L
°"3 pgHo R
_ 8peLRj
A bR (a—1)
Ellis: a-1
) op e | -t (e
M — — a+3\ 27, L
T5 (rlrg) 1+ 1 exp(~tiag)] N
CE:af*l

#Previously reported in Refs. 2 and 3.
PPreviously reported in Refs. 7 and 17.
°For H/H,>2bg , approximately, since#/r,)* has been neglected in derivations.

IV. TREATMENT OF EXPERIMENTAL DATA GDCV, it is clear thaQ(7,(H),q)=Q(H,q) when Eq.(12)

A. Analytic solutions for simple viscosity models is used. Therefore, ona@(H,q) for a given fluid is avail-
. _ . o able, the theoretical functiad (t,q) can be found by solving
The viscosity curve of most fluids of practical interest, ¢ following equation:

such as polymeric solutions, melts, and colloidal suspen-
sions, are commonly interpreted by using a suitable viscosity dH Q(H,q)
model of the formy(v,q), whereq=[dq;,...,0m] represents at ﬁg_' (26)
a set ofM rheological parameters characterizing the shear
flow behavior(see the examples listed in Table For the with the conditionH=H, at t=0. Analytical expressions
rheometric device under study, the data measured consist ofté(t,q) can be derived for some viscosity models commonly
set of valuesH®* versust® (superscript “ex” refers to ex- used: Newton, Ostwald—de Waele, Bingham, and Ellis, as
perimental. Processing these data through the WRM methodeported in Table I. For more complex models, the solution
to find 5(y) involves the ill-posed problem discussed in Sec.of Eg. (26) involves power series or strongly implicit expres-
[I. One should observe here that both the first and seconsions, which are tedious to handle in practice. Moreover, for
time derivatives oH®* are required in Eq.13). To avoid this  some models, difficulties appear in obtaining an explicit ex-
problem, we propose the direct analysis of the cuH#G&t*) pression ofQ(H,q). Therefore, it is clear that for several
following the theoretical prediction of a suitable viscosity fluids of practical interest, a numerical analysis is required,
model, considering that this curve is specific for each type ofs discussed subsequently.
fluid. In other words, since the raw data obtained from a  To exemplify and validate the use of the theoretical treat-
GDCV contain the rheological information of the fluid, one ment proposed, we present experimental détaversust®
can estimate the rheological parameters of a given model bgbtained through a GDCV with the following characteristics.
fitting H®{(t®) with the appropriate theoretical function The sample reservoir consists of a glass tuRe={1.1 cm)
H(t,q). containing a graduated scdfillimeters that allows one to

In QSSF, the simplest way to calculdt{t,q) consists read the instantaneous fluid height. The capillary is vertically
in integrating Eq(9), provided the flow rat€ as a function set (¢#=0) and there is no rising tubéh{=0). Hence, ac-
of H is known for the model considered. In this sense, thecording to definitions in Sec. IlIH(t)=h4(t)+L and R,
expression®)(,,q) for a series of typical fluid models are =R;. During the operation, the entire apparatus was im-
found in the literaturé®'3!8-21 These expressions derive mersed in a water jacket and allowed to reach thermal equi-
from Eg. (5), which is integrated after inserting the explicit librium at 26 °C. The time for each reading was acquired
function y(7) deduced from the modeh(vy,q). For the with a PC, where a subroutine used the internal clock and
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TABLE Il. Parameters of Eq.27) obtained by applying the S| procedure to
1.0 capillary viscometry datél vst.
S| procedure
0.9 Parameters True values 6=0.001 6=0.002
70 (MPa $ 10 9.86 9.80
mo te (M9 1 1.006 1.011
=~ 038 m 1 1.029 1.061
< | . Det. coef. 0.9999 0.9998
E/ Experimental data:
0.7+ ® Silicon oil .\.
8 PAAO0.5% e - :
Th ical fu " ' N characteristics of the apparatus are known, the rheological
0.6 |- | heoretical function: > parameters can be readily obtained from the expressions re-
| -~~~ Newton ported in Table I. Results are as follows:=18.6 mPa s for
- Ostwald-de Waele the silicon oil; “power law” indexn=0.38 and consistency

K=1.36 Pa %for the PAA solution. Further, from these data,
the viscosity function of each fluid is readily calculated in
! [S] the range of shear rates developed in the capillary. Figure 4
FIG. 3. Fluid height as a function of time. Symbols refer to experimentalCompar(:,'ls the funCtIOW( 7) thus obtained to data measured
data. Lines represent the theoretical functié(t) provided by Table | for by rotational rheometry at the same temperat(&econe—
Newton and Ostwald—de Waele models. plate cell in a Brookfield instrument was usedl remarkable
agreement between results coming from the different tech-

automatically stored numerical data after hitting a selectedtiques is observed.

key. Measurements were made in triplicate, starting from  In the experiment with silicon oil, the value of parameter
h,(0)=25 cm. Figure 3 shows two sets of data. One belongd Was around 10°. Hence, when the appropriate capillary
to a Newtonian silicon oilDow Corning, for which a cap- dimensions are used, the unsteady component of the shear
illary of radius R=0.0639 cm and length =10.17 cm was  Stress is negligiblgsee Eqs(11) and(25)]. In relation to end
used. The other set, which was obtained with a capillary offfects, the Newtonian entrance length~0.14Q/mu
radiusR=0.0763 cm and length =10.17 cm, corresponds 9dives one an idea of the magnitude of the flow distortfon.

to an aqueous solution of polyacrylamitRAA, Pusher 700, The most critical situation corresponds to the beginning of
Dow Chemicaly 0.5% (w/w), pH 7.5. In the same figure, the experiment, where the shear stress is maximum. Thus, we
lines represent the theoretical functidét) used to fit data. estimated.¢(t=0)/L~2.3 10 for the flow of silicon oil in

The Ostwald—de Waele model was used for the PAA solutiorthe capillary used, which is fairly small.

since it was found to behave as “power law” in the range of ~ Therefore, it may be concluded that as long as the QSSF
shear rates of the experimerisee Fig. 4 The constants of is achieved as discussed in this work and, of course, the other

each function were obtained as fitting parameters. Since thédscometric flow conditions are assuréend effects negli-

05— L—
0 100 200 300 400 500 600

Cone-plate rheometry: True
O Silicon oil WRM, §:
100 O PAAO05S% ° . e (.001
] o
GDCV o G 29 o 0.002
—_ S 1028 ¥ S SLL 6
3 % _ » o - === 0.001
% — o,  TTERg 0.002
b &<
[m]
< qu
O O -©-6-660ee30
10 PR | o aa s b e | 2 Lo s sl n N A e
100 1000 10 100 1000
. -1 . -1
y[s] y[s]

FIG. 4. Viscosity as a function of shear rate. Symbols refer to data fromFIG. 5. Viscosity as a function of shear rate obtained from a GDCYV, for
rotational rheometry. Lines are data obtained with a GDCV by using curveslifferent levels of experimental err@: Lines are the numerical predictions
H(t) reported in Fig. 3. of the Sl procedure and symbols refer to the classical WRM method.
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gible, no-slip at the tube wall, and isothermal flpthe rheo-  Eq. (27). Results for different levels of scattering of the
logical parameters of a suitable fluid model can be estimatedseudo-experimental data are reported in Table Il. In addi-
by fitting the experimental datd ®* versust® obtained from  tion, Fig. 5 presents the viscosity curves obtained with these
the GDCVW. parameter values. In this figure, viscosity curves are also
compared with those obtained from the classical WRM
method, that is,p=7,/v, from Egs.(12) and (13). It is

In this section, we describe the procedure suggested tebserved that, while the WRM method generates viscosity
carry out calculations with a complex viscosity model. Morevalues highly scattered asincreases, the numerical predic-
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> versusfﬁfi , while the output is the appropriate set of set of rheological parameters allows one to plot a smooth and
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