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Gravity-driven capillary viscometers~GDCVs! are used to obtain the viscosity function of
non-Newtonian fluids from measurements of the instantaneous fluid height in the overhead
reservoir. The reliability of this viscometry depends on two main aspects: the accomplishment of the
required flow condition in the apparatus and the appropriate conversion of raw data into rheometric
functions. This work presents a rigorous theoretical analysis of the GDCV, thus providing criteria to
achieve accurate measurements. The equations describing the rheometric flow in a GDCV are
deduced from the basic laws of momentum and mass conservation. From these equations, the flow
dynamics of the apparatus is studied and the constraints required to attain a quasi-steady-state flow
are established. Under these conditions, the rheometric functions are written in terms of the
instantaneous fluid height. In addition, a method to process experimental data of non-Newtonian
fluids is proposed, which can handle the ill-posed problem associated with the determination of the
viscosity function in this viscometry. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1666987#

I. INTRODUCTION

The capillary rheometric cell is used to carry out viscos-
ity measurements of a wide variety of fluids. Thus, by using
an appropriate fluid driving device, experimental data of flow
rateQ, and pressure dropDP obtained from the flow through
a capillary tube allow one to evaluate the rheometric viscos-
ity function h(ġ), in a given range of shear ratesġ. In the
simplest instrument designed for this purpose,1 the liquid
flows through the capillary due to gravity force and the time
required to drain the liquid reservoir is recorded. At present,
there are several gravity-driven capillary viscometers~GD-
CVs! available commercially for scientific, academic, and
industrial laboratories. Nevertheless, the application of these
viscometers is mainly restricted to Newtonian liquids be-
cause only one pair of dataQ versusDP is obtained from
each measurement. Thus, GDCVs have been used mainly to
characterize dilute polymer solutions, the intrinsic viscosity
being the parameter of interest. The description of complex
fluids, instead, involves more than one rheological param-
eter, and hence its characterization demands data at different
shear rates. Precisely, as the sample flows due to its own
weight, the change of the overhead pressure generates a con-
tinuum variation ofġ in the capillary. One, however, ob-
serves that this feature of GDCVs has not been fully ex-
ploited in order to obtain additional rheometric information
of non-Newtonian fluids. Early ideas in this sense were pro-
posed by Maronet al.2,3 around 1954. These authors showed
the possibility of obtaining the viscosity functionh(ġ) in a

GDCV, by recording the fluid heighth(t) in the reservoir at
each timet, and then convertingh(t) into DP(t) andQ(t).
No additional theoretical work was carried out to explain
rigorously the rheometric response of this apparatus, and the
technique has been scarcely used since then~see, e.g., Ref.
4!. An aspect that contributed to the low diffusion of this
viscometric apparatus was the rapid evolution of rotational
rheometers, which, with the advent of electronic devices, be-
came fully automatic instruments, allowing one a diversity of
programmable measurements. In recent years, GDCVs have
been newly proposed in the literature with the incorporation
of modern data collection and recording systems.5–9

Since the regular operation of the GDCV involves a
quasi-steady-state flow~QSSF!, one may conclude that a
complete study considering the theoretical interpretation of
the instantaneous overhead pressure and flow rate, as func-
tions of fluid height, is still required in the literature. In pre-
vious analysis, it was simply assumed that QSSF is attained
in the apparatus, which is, of course, a crucial condition to
accomplish the desired viscometric flow in the capillary. It is
also worthwhile to add here that the advantages of these
gravitational viscometers are simplicity, relatively low cost,
and reliability, the last condition being associated with an
appropriate geometrical design.

In this context, the purpose of this work is to provide a
rigorous theoretical analysis of these devices through the
consideration of basic concepts of rheometry. Two major as-
pects are carefully analyzed:~a! the conditions required to
satisfy the QSSF assumption and~b! the problem of deter-
mining unambiguously the rheometric functionh(ġ) from
experimental datah(t) of the fluid reservoir. The first aspect
concerns the geometrical characteristics of the device. Thus,
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we carry out an analysis of the fluid dynamics of the appa-
ratus to find out the conditions required to attain the QSSF.
The second aspect involves a mathematical difficulty, the
so-called ill-posed problem, which is associated with the dif-
ferentiation of discrete and scattered experimental data. In
this part, a method of data analysis previously proposed by
the authors10 for conventional capillary rheometry is applied
to the GDCV. Therefore, in this work, we expect to provide
criteria to get accurate measurements. It should also be men-
tioned that other sources of error appearing in capillary vis-
cometry ~end effects, wall slip, etc.! are well described
elsewhere,11–13 and hence they are not analyzed here.

This work is organized as follows. A brief analysis of
capillary viscometry is presented in Sec. II. Next, the equa-
tions that govern the viscometric flow in a GDCV are de-
duced from the basic laws of momentum and mass conser-
vations ~Sec. III!. These equations are further analyzed in
order to find the constraints required to attain a QSSF. In
addition, a method to process experimental data from this
viscometry is proposed, which can handle the ill-posed prob-
lem just mentioned~Sec. IV!. For this purpose, the theoreti-
cal functionalityh(t) is found analytically for some simple
models of the rheometric functionh(ġ). Finally, a numerical
algorithm is presented for the treatment of experimental data
that need to be described with more complex viscosity mod-
els. An illustration with the Cross model is presented as a
typical example.

II. BASIC EQUATIONS OF CAPILLARY VISCOMETRY

We consider a capillary tube of radiusR and lengthL,
with ratio L/2R high enough to provide one directional flow
and make, in principle, end effects negligible. Once experi-
mental dataDP versusQ are obtained, the viscositym of
Newtonian fluids is readily calculated through the Hagen–
Poiseuille equation. On the other hand, special consider-
ations must be taken into account for the determination of
the viscosity functionh(ġ) when non-Newtonian fluids are
considered. In fact, to calculate

h~ġ!5
t

ġ
, ~1!

both the shear stresst and the shear rateġ have to be known
at least at one place in the rheometric cell. The shear stress
derives from the axial component of the momentum
balance:12,13

r
]uz

]t
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]~p2rgzz!

]z
2

1

r

]~r t!

]r
, ~2!

which is expressed in the cylindrical coordinate system. In
Eq. ~2!, uz is the axial fluid velocity that depends on radial
coordinater and timet, whereasr is the fluid density andgz

is the z component of the gravitational accelerationg. The
pressurep depends on axial positionz, which is measured
from the capillary tube entrance. When transient effects are
absent,t is expressed as

t~r !5
DPr

2L
5tw

r

R
, ~3!

whereDP/L52](p2rgzz)/]z is the generalized pressure
drop along the capillary andtw5t(R) is the shear stress at
the tube wall. The shear rate,ġ(r )52]uz /]r , is related to
the flow rate Q in the capillary tube through the
expression12,13

Q5pE
0

R

ġ~r !r 2dr, ~4!

which involves no-slip of the fluid at the tube wall. For the
steady-state flow, Eq.~3! can be introduced into Eq.~4!, to
obtain

Q5
pR3

tw
3 E

0

tw
ġ~t!t2dt. ~5!

Therefore, the determination ofġ(t) requires the inversion
of Eq. ~5!. This step places serious difficulties in capillary
viscometry, because an ill-posed problem is generated;10,14

that is, the mathematical solution is not unique due to the
unavoidable scattering present in the experimental dataQ
versustw .

The calculation method normally used evaluates the
shear rate at the tube wall,ġw5ġ(R), according to the fol-
lowing expression:

ġw5
Q

pR3 F31
d ln~4Q/pR3!

d ln tw
G , ~6!

which is obtained by differentiating Eq.~5! with respect to
tw . Equation~6! is designated Weissemberg–Rabinowitsch–
Mooney~WRM! equation. With this method, numerical data
of the viscosity function are generated fromh5tw /ġw .
Nevertheless, the numerical results yielded by Eq.~6! are
very sensitive to the way in which the derivative is calcu-
lated, because experimental data are always noisy in some
degree. Therefore, converting Eq.~5! to a differential expres-
sion like Eq.~6! does not eliminate the problem associated
with the existence of multiple solutions. Some interesting
proposals to handle this problem have been reported recently
in the literature~see Ref. 10 and references therein!. In Sec.
IV, the theoretical analysis carried out previously by the au-
thors is extended to the case of GDCVs; namely, we propose
to determine the parameters of an appropriate viscosity
model instead of calculating numerical values ofh(ġ).

III. GRAVITY-DRIVEN CAPILLARY VISCOMETERS

A. Calculation of the viscosity function

Figure 1 shows a highly schematic representation of the
rheometric device. In general, it is composed of a cylindrical
reservoir of radiusR1 that feeds the sample into a capillary
tube of radiusR and lengthL. At the end of the capillary, the
sample may rise through a second cylindrical tube of radius
R2 . In different settings, the axis of the capillary forms an
angleu with the direction of the gravitational field, as shown
in Fig. 1. The apparatus is held at constant temperature by
means of a water jacket connected to a precision thermostatic
bath. Once the fluid is at constant temperature, the flow
through the capillary is started by opening a stopcock. The
fluid heightsh1(t) andh2(t) in the reservoir and in the fluid
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rising tube, respectively, are measured as a function of timet.
These measurements can be done in different ways, depend-
ing on the recording system adapted to the apparatus.2,5,8 In
the simplest case,h1(t) can be read over a graduated ruler
and t measured with a chronometer. In the following, we
deduce rigorously the rheometric shear stress and shear rate
in terms of the fluid height. In these derivations, the viscous
friction in the reservoir and fluid rising tube is neglected in
relation to that of the capillary. This approximation is fairly
good provided both ratiosR1 /R andR2 /R are high enough.

For the device presented in Fig. 1, the generalized pres-
sure drop is

2
]~p2rgzz!

]z
5

rgH~ t !

L
, ~7!

where

H~ t !5h1~ t !2h2~ t !1L cosu ~8!

is defined to be a generalized fluid height. An additional term
needs to be included in Eq.~8! when the effect of surface
tension is relatively important in the tubes where the fluid
heights are measured. This effect increases as the tube radii
decrease. Hence, the problem arises when thin tubes are re-
quired in experiments in which a small quantity of sample is
available.15

A mass balance in the apparatus gives

Q52pR0
2 dH

dt
52pE

0

R

uzrdr , ~9!

where R0 involves both radiiR1 and R2 according to the
following definition:

1/R0
251/R1

211/R2
2. ~10!

As discussed in Sec. II, the shear stress is obtained from
the axial component of the momentum balance in the capil-
lary. In order to findtw as a function ofH, both sides of Eq.
~2! are averaged in the cross-sectional area of the capillary,
and Eqs.~7! and ~9! are introduced in the result to obtain

tw5
rgRH

2L
1

rR0
2

2R

d2H

dt2
. ~11!

The second term in the right-hand side of Eq.~11! is associ-
ated with the unsteady-state flow. Below, we demonstrate
that this term oftw is negligible in relation to the first one,
provided the appropriate geometrical scales are used. Under
these conditions, the wall shear stress is simply

tw5
rgRH

2L
. ~12!

In addition, the wall shear rate can be obtained from Eq.~6!
by introducing the appropriate expressions forQ and tw

@Eqs.~9! and ~12!, respectively#. Thus, one has

ġw52
R0

2

R3

dH

dt F31
Hd2H/dt2

~dH/dt!2 G , ~13!

which is the WRM equation written in terms of the fluid
heightH(t) and its first and second time derivatives. There-
fore, when transient effects are minimized, the viscosity
functionh5tw /ġw in the viscometer is effectively described
from basic concepts of capillary viscometry.

These equations also apply to the mass-detecting capil-
lary viscometer,8,9 taking into account that H(t)
5M (t)/rpR1

2, whereM (t) is the mass variation of the col-
lected liquid.

B. Constraints to attain quasi-steady-state flow

The aim of this section is to gain more insight on the
kinematics of the fluid in the apparatus, as well as to quantify
transient effects that may affect the quality of rheometric
results. For this purpose, the equations governing the fluid
dynamics in the viscometer need to be considered; namely,
Eqs.~2! and ~9!. These equations are linked through the ex-
pressiont5h(ġ)ġ, whereh(ġ) is the viscosity model for
the fluid under analysis. In this framework, the mathematical
problem consists in findingdH/dt as a function of time,
given the initial conditionsH5H0 anddH/dt50 at t50, of
the experimental run. This problem admits analytical solu-
tion for Newtonian liquids, since in this case the viscosity is
a constant, and requires numerical treatment for non-
Newtonian fluids. Since the pressure drop in a GDCV is not
a constant but a time-dependent function@see Eq.~7!#, it is
worth observing that the problem posed here is more com-
plex than the classical inception flow in cylindrical tubes.16

For the sake of simplicity and mainly to be able to obtain
an analytical solution, we now discuss the unsteady flow of
Newtonian fluids. A preliminary analysis of this problem was
carried out in a previous work.17 The main aspects of the
derivation are outlined subsequently. Momentum and mass
balance equations, as well as the initial and boundary condi-
tions, are written as dimensionless by using the following
definitions: r̄ 5r /R, H̄5H/H0 , ūz5uzaNR2/H0R0

2, and t̄
5t/aN , whereaN58mLR0

2/rgR4 is a time constant for the
Newtonian fluid running the viscometer. Thus, one has

l
]ūz

] t̄
58H̄1

1

r̄

]

] r̄
S r̄

]ūz

] r̄
D ; ~14!

FIG. 1. Highly schematic representation of a GDCV.
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2
dH̄

d t̄
5E

0

1

ūzr̄ dr̄; ~15!

t̄ 50, ūz50, H̄51; ~16!

r̄ 50, ]ūz /] r̄ 50; ~17!

r̄ 51, ūz50; ~18!

where

l5
gr2R6

8L~mR0!2 ~19!

is an additional dimensionless number relating scale ratios,
gravity, and inertial and viscous forces in the apparatus.
From Eq.~14!, one can infer that the condition required to
attain a QSSF isl!1. Furthermore, it is shown later that the
fluid kinematics in the viscometer depends significantly on
the parameterl.

The solution of Eqs.~14!–~18! involves the following
series:

ūz~ t̄ , r̄ !5(
k

Fk~ t̄ !J0~bkr̄ !, ~20!

whereFk( t̄ ) are time-dependent functions to be determined
andJ0(bkr̄ ) is the Bessel function of the first kind with the
eigenvaluesbk . Combining Eqs.~14!–~18! and ~20!, and
applying the orthogonal properties of Bessel functions,
yields

2
dH̄

d t̄
5

32

l
(

k
bk

22E
0

t̄
exp@bk

2~ t̄ 82 t̄ !/l#H̄~ t̄ 8!d t̄8.

~21!

This integral-differential equation, fully written in terms of
H̄( t̄ ), represents the rigorous initial value problem associ-
ated with the start-up flow of Newtonian liquids in a GDCV.
Through the use of Laplace transform and its convolution
properties, one finds

H̄* 5H s132(
k

1

bk
2~bk

21ls!J 21

, ~22!

whereH̄* is the transformed function ands is the Laplace
variable. Equation~22! shows thatH̄* →(s11)21 is the
asymptotic solution asl→0, taking into account that
(kbk

2451/32. Therefore, ifl!bk
2, one can readily express

2
dH̄

d t̄
'exp~2 t̄ !232(

k
bk

24 exp~2bk
2 t̄ /l! ~23!

as a good approximation, after neglecting terms on the order
of l.

The fluid velocity given by Eq.~23! is plotted in Fig. 2,
where a log scale is used to emphasize very short times,
when the fluid is suddenly set in motion. This figure shows
that the flow rate first increases, reaches a maximum, and
then decreases. For lowt̄ , the second term in the right-hand
side of Eq.~23! becomes relatively important, while at high
t̄ , the term exp(2 t̄) predominates. Thus, for low values ofl,

the curves approach the asymptote exp(2 t̄), which is the
limit of Eq. ~23! whenl→0. It is also concluded from Fig. 2
that the transient term vanishes when the flow rate reaches
the maximum at the value oft̄ , given by

t̄ m'
l

b1
2 lnS 32

lb1
2D , ~24!

which evaluates the lag required to reach the QSSF. This
dimensionless time is on the order ofl, beingb152.405.

Having evaluated the transient flow in the GDCV, the
relative importance of the unsteady term in the rheometric
functiontw(H) can be analyzed. Thus, for Newtonian fluids,
whenl!1 and henceH̄( t̄ )5exp(2 t̄), Eq. ~11! yields

tw5
rgRH

2L S 11
l

8D . ~25!

Therefore, the parameterl is also a measure of the error
introduced in using Eq.~12! to calculate the shear stress in
QSSF.

One may conclude that imposing the constraintl!1 is
enough to attain the viscometric flow in a GDCV. In fact,
according to Eq.~19!, this condition depends on the geo-
metrical characteristics of the apparatus~mainly the capillary
radiusR! as well as on the viscosity of the fluid considered.
It should be also observed that the QSSF is reached once the
start-up timet̄ m has elapsed.

Although the analysis carried out in this section is
strictly valid for Newtonian fluids, the results concerning the
unsteady regime in the GDCV can be roughly extrapolated to
non-Newtonian fluids. In this sense, one may have an esti-
mation of the order of magnitude of the unsteady term of Eq.
~11! by approximating the parameterl @Eq. ~19!# with an
average value ofh in the range of shear of the apparatus.
Furthermore, it should be observed thatH(t) is nearly an
exponential function for typical fluid models~see Table I in
Sec. IV!, indicating that the second term of Eq.~11! will be
generally on the order ofl @Eq. ~25!#.

FIG. 2. Start-up flow of a Newtonian fluid in a GDCV, for different values
of l.
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IV. TREATMENT OF EXPERIMENTAL DATA

A. Analytic solutions for simple viscosity models

The viscosity curve of most fluids of practical interest,
such as polymeric solutions, melts, and colloidal suspen-
sions, are commonly interpreted by using a suitable viscosity
model of the formh(ġ,q), whereq5@q1 ,...,qM# represents
a set ofM rheological parameters characterizing the shear
flow behavior~see the examples listed in Table I!. For the
rheometric device under study, the data measured consist of a
set of valuesHex versustex ~superscript ‘‘ex’’ refers to ex-
perimental!. Processing these data through the WRM method
to find h(ġ) involves the ill-posed problem discussed in Sec.
II. One should observe here that both the first and second
time derivatives ofHex are required in Eq.~13!. To avoid this
problem, we propose the direct analysis of the curveHex(tex)
following the theoretical prediction of a suitable viscosity
model, considering that this curve is specific for each type of
fluid. In other words, since the raw data obtained from a
GDCV contain the rheological information of the fluid, one
can estimate the rheological parameters of a given model by
fitting Hex(tex) with the appropriate theoretical function
H(t,q).

In QSSF, the simplest way to calculateH(t,q) consists
in integrating Eq.~9!, provided the flow rateQ as a function
of H is known for the model considered. In this sense, the
expressionsQ(tw ,q) for a series of typical fluid models are
found in the literature.11,13,18–21 These expressions derive
from Eq. ~5!, which is integrated after inserting the explicit
function ġ(t) deduced from the modelh(ġ,q). For the

GDCV, it is clear thatQ(tw(H),q)[Q(H,q) when Eq.~12!
is used. Therefore, onceQ(H,q) for a given fluid is avail-
able, the theoretical functionH(t,q) can be found by solving
the following equation:

dH

dt
52

Q~H,q!

pR0
2 , ~26!

with the conditionH5H0 at t50. Analytical expressions
H(t,q) can be derived for some viscosity models commonly
used: Newton, Ostwald–de Waele, Bingham, and Ellis, as
reported in Table I. For more complex models, the solution
of Eq. ~26! involves power series or strongly implicit expres-
sions, which are tedious to handle in practice. Moreover, for
some models, difficulties appear in obtaining an explicit ex-
pression ofQ(H,q). Therefore, it is clear that for several
fluids of practical interest, a numerical analysis is required,
as discussed subsequently.

To exemplify and validate the use of the theoretical treat-
ment proposed, we present experimental dataHex versustex

obtained through a GDCV with the following characteristics.
The sample reservoir consists of a glass tube (R151.1 cm)
containing a graduated scale~millimeters! that allows one to
read the instantaneous fluid height. The capillary is vertically
set (u50) and there is no rising tube (h250). Hence, ac-
cording to definitions in Sec. III,H(t)5h1(t)1L and R0

5R1 . During the operation, the entire apparatus was im-
mersed in a water jacket and allowed to reach thermal equi-
librium at 26 °C. The time for each reading was acquired
with a PC, where a subroutine used the internal clock and

TABLE I. FunctionH(t) for different viscosity models. In these equations,m is the Newton coefficient;K is the
consistency parameter;n is the ‘‘power law’’ index;t0 is the yield stress;h0 andh` are the limiting viscosities
for ġ→0 and ġ→`, respectively;tc is a characteristic shear stress anda is an exponent that measure the
severity of shear thinning. In particular,a52 leads to Ferry model~see Ref. 18! anda53 to Reiner–Philippoff
model ~see Ref. 16!, this last one whenh`!h0 . In the expressionsH(t), constantsa have units of time,
whereas constantsb andc are dimensionless.

Model name:
function h H(t)/H0 Constants

Newton:
m

exp(2t/aN)a
aN5

8mLR0
2

rgR4

Oswtald–de Waele:
Kġn21 (12t/aO)bOb

aO5S 2LK

rgH0RD 1/n ~3n11!R0
2H0

~n21!R3

bO5
n

n21

Bingham:

t0

ġ
1h` , t.t0

bB1(12bB)exp(2t/aB)c
aB5

8h`LR0
2

rgR4

bB5
8

3

t0

rgH0

L

R

Ellis:

h0

11~t/tc!
a21

H exp~2t/aE!

11bE@12exp~2t/aE!#J
cE

aE5
8h0LR0

2

rgR4~a21!

bE5
4

a13 S rgH0

2tc

R

L D a21

cE5
1

a21

aPreviously reported in Refs. 2 and 3.
bPreviously reported in Refs. 7 and 17.
cFor H/H0.2bB , approximately, since (t0 /tw)4 has been neglected in derivations.
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automatically stored numerical data after hitting a selected
key. Measurements were made in triplicate, starting from
h1(0)525 cm. Figure 3 shows two sets of data. One belongs
to a Newtonian silicon oil~Dow Corning!, for which a cap-
illary of radius R50.0639 cm and lengthL510.17 cm was
used. The other set, which was obtained with a capillary of
radiusR50.0763 cm and lengthL510.17 cm, corresponds
to an aqueous solution of polyacrylamide~PAA, Pusher 700,
Dow Chemicals! 0.5% ~w/w!, pH 7.5. In the same figure,
lines represent the theoretical functionsH(t) used to fit data.
The Ostwald–de Waele model was used for the PAA solution
since it was found to behave as ‘‘power law’’ in the range of
shear rates of the experiments~see Fig. 4!. The constants of
each function were obtained as fitting parameters. Since the

characteristics of the apparatus are known, the rheological
parameters can be readily obtained from the expressions re-
ported in Table I. Results are as follows:m518.6 mPa s for
the silicon oil; ‘‘power law’’ indexn50.38 and consistency
K51.36 Pa sn for the PAA solution. Further, from these data,
the viscosity function of each fluid is readily calculated in
the range of shear rates developed in the capillary. Figure 4
compares the functionh(ġ) thus obtained to data measured
by rotational rheometry at the same temperature~a cone-
plate cell in a Brookfield instrument was used!. A remarkable
agreement between results coming from the different tech-
niques is observed.

In the experiment with silicon oil, the value of parameter
l was around 1025. Hence, when the appropriate capillary
dimensions are used, the unsteady component of the shear
stress is negligible@see Eqs.~11! and~25!#. In relation to end
effects, the Newtonian entrance lengthLe'0.14rQ/pm
gives one an idea of the magnitude of the flow distortion.16

The most critical situation corresponds to the beginning of
the experiment, where the shear stress is maximum. Thus, we
estimatedLe(t50)/L'2.3 1023 for the flow of silicon oil in
the capillary used, which is fairly small.

Therefore, it may be concluded that as long as the QSSF
is achieved as discussed in this work and, of course, the other
viscometric flow conditions are assured~end effects negli-

FIG. 5. Viscosity as a function of shear rate obtained from a GDCV, for
different levels of experimental errord. Lines are the numerical predictions
of the SI procedure and symbols refer to the classical WRM method.

TABLE II. Parameters of Eq.~27! obtained by applying the SI procedure to
capillary viscometry dataH vs t.

Parameters True values

SI procedure

d50.001 d50.002

h0 ~mPa s! 10 9.86 9.80
tc ~ms! 1 1.006 1.011

m 1 1.029 1.061
Det. coef. ¯ 0.9999 0.9998

FIG. 3. Fluid height as a function of time. Symbols refer to experimental
data. Lines represent the theoretical functionH(t) provided by Table I for
Newton and Ostwald–de Waele models.

FIG. 4. Viscosity as a function of shear rate. Symbols refer to data from
rotational rheometry. Lines are data obtained with a GDCV by using curves
H(t) reported in Fig. 3.
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gible, no-slip at the tube wall, and isothermal flow!, the rheo-
logical parameters of a suitable fluid model can be estimated
by fitting the experimental dataHex versustex obtained from
the GDCV.

B. Numerical solutions for complex viscosity models

In this section, we describe the procedure suggested to
carry out calculations with a complex viscosity model. More
precisely, the data treatment proposed recently for conven-
tional capillary rheometry10 is extended here to the case of
GDCV. The algorithm is called the System Identification~SI!
procedure, since the input is a table ofN experimental data
Qi

ex versustw,i
ex , while the output is the appropriate set of

parametersq that belongs to the viscosity model considered.
The calculation scheme, which is fully described in Ref. 10,
is briefly the following: Equation~5! is solved numerically
with the shear rate profileġ(t) pertaining to the selected
model h(ġ,q). Thus, given an initial set of parameters, a
numerical valueQi is obtained for each datatw,i . To iden-
tify the best parameter values characterizing the fluid, the
sum of the squares (Qi2Qi

ex)2 over theN data is minimized
through an iterative process. The details of the computational
procedure are also in Ref. 10. Therefore, to perform calcula-
tions with data from GDCV, the conversion ofHi

ex versust i
ex

into Qi
ex versustw,i

ex is carried out by using Eqs.~9! and~12!.
The derivativedH/dt in Eq. ~9! is obtained by averaging the
slopes of two adjacent data points.

It is also relevant to mention here that the calculations of
q becomes rather simpler when the selected model allows
one to obtain the analytic expression ofQ(H,q) after inte-
gration of Eq. ~5! ~see, e.g., the analysis of blood data
through the Casson model in Ref. 15!.

To test the procedure suggested, we generate samples of
synthetic data for a hypothetical fluid whose shear flow be-
havior is described by22

h~ġ!5
h0

11~ tcġ !m , ~27!

with h0510 mPa s, tc51 ms, and m51. Therefore, we
simulate numerically an experiment in a GDCV having the
following characteristics:L/2R5100, R/R050.07, H0 /L
52 and rgL5103 Pa. The pseudo-experiment was per-
formed by solving, simultaneously, Eqs.~5!, ~9!, and ~12!,
from t50 up to 2500 s. In Eq.~5!, the expressionġ(t)
derived from Eq.~27! was introduced. Hence, discrete values
of Hi

T versust i
T were obtained~superscriptT means true data

or, equivalently, error-free data!. In addition, different levels
of pseudo-experimental noised were introduced in the time
data ast i

d5t i
T(11dG), whereG is a Gaussian random num-

ber with zero mean and unit variance.
Once scattered data of fluid height versus time in the

capillary were available, we followed the procedure de-
scribed earlier to identify the parametersh0 , tc , and m of

Eq. ~27!. Results for different levels of scattering of the
pseudo-experimental data are reported in Table II. In addi-
tion, Fig. 5 presents the viscosity curves obtained with these
parameter values. In this figure, viscosity curves are also
compared with those obtained from the classical WRM
method, that is,h5tw /ġw from Eqs. ~12! and ~13!. It is
observed that, while the WRM method generates viscosity
values highly scattered asd increases, the numerical predic-
tions obtained with the SI procedure are not affected signifi-
cantly by the experimental noise. It is worth noting that error
levels as low as 0.1% can be detrimental for the accuracy of
the classical treatment. In contrast, the knowledge of the best
set of rheological parameters allows one to plot a smooth and
continuous curveh(ġ) in the range of shear rates of the
experiment.
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