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Abstract

It has long been considered sufficient a single method or only a descriptive diagnosis to propose a new species. Recently, 

many works have proposed new theoretical paradigms to consider multiple sources of evidence to support the hypothesis 

of new taxa within an integrative approach. Despite this, many new described species continue to be merely descriptive 

and without any reproducible statistical analysis to support these descriptions. We tested whether five species described 

as members of a species complex of the lizard genus Liolaemus from Patagonia, can be differentiated based on classical 

morphometric analyses and ecological niche modeling. Individuals were sampled from their type localities. Our results 

showed that the univariate tests and Principal Component Analyses (PCA) were more accurate to differentiate species 

compared to the Linear Discriminant Analyses (LDA). However, there were almost no morphometric differences between 

two of the analyzed species. Major differences were found in bioclimatic variables of four of the species through Maxent 

ENMs and PCA using the original worldclim variables. Our results partially support the hypothesis that species can be 

differentiated by classical morphometric analyses, and found a strong support for the hypothesis that these taxa can be 

differentiated through their bioclimatic niches. These two approaches based on repeatable statistical basis, can supplement 

qualitative descriptive diagnoses of new species of the genus Liolaemus.
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Introduction

One of the major challenges systematists and taxonomists face when describing new taxa is to clearly advocate a 

species concept and implement associated delimitation methods, which implies a strong theoretical background as 

well as a variety of analytical methods. Several contributions have been written concerning species definition (e.g., 

de Queiroz 2005, 2007; Camargo & Sites 2013) and de Queiroz (1998) listed numerous species concepts; currently 

most evolutionary biologists agree that species are separately evolving lineages of populations or metapopulations 

(de Queiroz 2007; Padial et al. 2010). An important aspect to consider is the operational criteria used to delimit 

species (Sites & Marshall 2004), which is one of the main focus of discussion among systematists, because 

scientists give priority to different operational criteria depending on their working systems (de Queiroz 2007; 

Yeates et al. 2011). The species concept and operational criteria used for delimiting species (whether it is explicit 

or not), have a major impact on systematic and taxonomic arrangements (Sites & Crandall 1997), and also have a 

great impact on conservation and management strategies, especially for groups with a large number of species 

(Camargo et al. 2010).

Integrative taxonomy (Dayrat 2005) is currently the working paradigm that provides the best theoretical basis 

for hypothesizing new species, implementing more than one line of evidence. This framework is described as the 

science that is intended to delineate the units of the diversity of life from multiple and complementary perspectives, 

such as phylogeography, comparative morphology, population genetics, ecology, development, behavior, etc. 

(Dayrat 2005). The main theoretical concept is to employ more than one line of evidence to hypothesize new taxa 

(e.g., Schlick-Steiner et al. 2010) and three alternative protocols have been proposed: integration by accumulation, 

by congruence and by consensus, and each of them has advantages and disadvantages to delimit species (Padial et 
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al. 2010). The integration by accumulation is based on the assumption that divergences in any of the organism’ 

attributes that constitute taxonomic characters, can provide evidence for the existence of a new species; and 

defends the view that the only way for true integration is to allow any source of evidence (even a single one) to 

support species discovery. The congruence approach is defined on the basis that differences in two or more 

taxonomic characters is adequate to validate a new species. The integration by accumulation approach may over-

estimate the number of species by identifying distinct species where there may be only intraspecific character 

variation. On the contrary, integration by congruence is a highly stringent approach that might under-estimate the 

number of species by being unable to detect cryptic or young species. The consensus protocol for integrative 

taxonomy is a general working protocol that combines advantages of cumulative and congruence approaches 

(Padial et al. 2010). As a result of the difficulties in delineating closely related species, the integrative taxonomy 

framework by consensus is considered the most suitable and adequate approach to analyzed cryptic species and 

species complexes (Padial & De la Riva 2009; Padial et al. 2010).

Using multiple methodological approaches is considered the more robust operational criteria to hypothesize 

new species, and is much more robust than implementing a single method. Few works have combined molecular, 

morphological and ecological methods to hypothesized new species (e.g., Sanders et al. 2006; Leaché et al. 2009; 

Blankers et al. 2012, Ahmadzadeh et al. 2013), whereas others have proposed new species based on two 

approaches (e.g., Wiens & Penkrot 2002; Malhotra & Thorpe 2004; Rivera et al. 2011; Florio et al. 2012).

Nonetheless, the great majority of published works have proposed new species using a single approach (e.g., 

Kaliontzopoulou et al. 2005; Passos et al. 2009) and also, in some contributions there is only one type of data used 

(e.g., morphological) but without any hypothesis tested with statistical analyses (Avila 2003; Abdala & Lobo 2006; 

Scolaro & Tapari 2009), which may lead to incorrect results that, constantly generates systematic-taxonomic 

rearrangements and discussions (e.g., Liolaemus genus, Lobo et al. 2010). These permanent systematic changes 

and new proposals are very common in Liolaemus, a highly diverse genus for which many synonymizations and 

redescriptions have been published (Etheridge 1998; Quinteros & Lobo 2009; Nori et al. 2010).

Liolaemus is a lineage that underwent a major speciation process, which is reflected in the constant 

rearrangements of systematic proposals and also by a constant description of new species. This South American 

genus of lizards with more than 230 described species (Breitman et al. 2011a; Abdala et al. 2012a), includes 

cryptic species (Lobo & Espinoza 2004; Pincheira-Donoso et al. 2007a), species complexes (Morando et al. 2003; 

Avila et al. 2006) and, in some cases, species with extensive geographic ranges that are accompanied by 

phenotypic and clinal variations (Pincheira-Donoso et al. 2007b, 2008; Escudero et al. 2012). The majority of these 

taxa were described based only on descriptive morphology without statistical analyses and most of the disputes on 

the validity of some species may be due to the lack of agreement on which lines of evidence are required to 

consider a lineage as a new species (de Queiroz 2007).

This issue is particularly relevant for the Liolaemus fitzingerii group, which includes taxa diagnosed and 

described based only on descriptive morphology, without statistical analyses. The fitzingerii group (sensu Avila et 

al. 2006; partially equivalent to ‘fitzingerii clade’ Abdala 2007) is distributed from northern Neuquén and Río 

Negro provinces to southern Santa Cruz province (Escudero et al. 2012) and comprises two species complexes: 

fitzingerii and melanops (sensu Avila et al. 2006, 2010; Escudero et al. 2012). To test if classical morphometric 

analyses and ecological niche modeling can differentiate closely related Liolaemus species, we considered the five 

species currently included within the fitzingerii complex: Liolaemus fitzingerii, L. xanthoviridis (Cei & Scolaro 

1980), L. chehuachekenk (Avila et al. 2008) and the recently described L. camarones and L. shehuen (Abdala et al.

2012b). Several controversial taxonomic arrangements have been proposed for this species complex since the 

1970's (Donoso-Barros & Cei 1971; Cei 1973; Cei & Scolaro 1977; Scolaro & Cei 1977) to the present (Abdala et 

al. 2012a; 2012b). The main problem related to species limits and diversity in the L. fitzingerii complex, may be 

linked to the proliferation of species concepts and operational criteria throughout these last three decades. 

Furthermore, some papers did not include a species concept or an operationally criterion and taxonomic changes 

were made without any analyses, solely based on taxonomic authority (e.g., Cei & Scolaro 1983). Most probably, 

this has led the same authors to several subsequent papers with continuous changes on the taxonomic identity of 

this species complex (see Cei & Scolaro 1983; Scolaro et al. 1985).

A great step forward in Liolaemus alpha taxonomy, would be to estimate (or re-evaluate) species boundaries 

based on the integrative taxonomy framework including more than one approach with reproducible statistical 

analyses to propose and diagnose new taxa. As we discussed above, if the species can be differentiated by an 
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integrative taxonomy approach, the currently diagnosed Liolaemus species should present clear differences with 

more than one methodological approach. The objective of this work is to review and assess the accuracy of the 

most common morphological and niche modeling analyses as additional approaches coupled to traditional species 

diagnosis (see Aguilar et al. 2013) to detect differences between closely related species, using the Liolaemus 

fitzingerii species complex as an example to answer the following questions:

1. Can current described species be distinguished from each other based on commonly used morphological 

traits?

2. Which morphological and ecological traits contribute the most to differentiate the diagnosed taxa?

3. Can we detect diagnostic traits for each taxa that are useful for species delimitation?

In this work, we performed an extensive review and assessment of morphological and ecological variation 

across this species complex and we implemented standardized methods for data acquisition and treatment. Based 

on these results, we propose to adopt the integrative taxonomy approach to review Liolaemus species complexes 

and describe new taxa.

Material and methods

Field work, examined material and species concept. Several surveys were carried out from January 2000 to 

January 2013 during spring-summer seasons along the complete geographic distribution of the Liolaemus 

fitzingerii species complex, which spans over the Chubut and Santa Cruz provinces in Patagonia, Argentina 

(Escudero et al. 2012). Specimens were collected by hand after visual spotting. Latitude, longitude and elevation 

were determined by a Garmin GPS 12™ Global Position Device. After capture, lizards were euthanized by a 

pericardiac injection of sodium thiopenthotal Pentovet®, fixed in 10–20 % formalin and later transferred to 70 % 

ethanol (Simmons 2002). Samples are deposited in the herpetological collections of Monte L. Bean Life Science 

Museum-Brigham Young University (BYU; Provo, USA), Museo de La Plata (MLP; La Plata, Argentina), 

Fundación Miguel Lillo (FML; Tucumán, Argentina) and Centro Nacional Patagónico (LJAMM-CNP; Puerto 

Madryn, Argentina). We included a total of 223 specimens from 53 localities (Fig. 1, Appendix) from the five type 

localities and surrounding areas. In this study, we followed the General Lineage Species Concept according to de 

Queiroz (1998) and the integrative taxonomy framework by consensus (Padial et al. 2010). We considered as 

recognition criteria to distinguish a putative taxon from the others the presence of one or more exclusive 

differences in each implemented method.

Morphological analyses. We used a total of 82 adult males and 65 adult females from 27 localities (Appendix) 

and for most cases we included at least ten individuals of each sex from each species (Fig. 1). To select 

morphological variables, we searched for literature focused on species descriptions of the Liolaemus fitzingerii

complex (Cei & Scolaro 1980; Avila et al. 2006, 2008, 2010; Abdala 2007; 2012a; 2012b), and we included a total 

of 11 continuous and 9 discrete characters from adult fixed specimens. Scale terminology and measurements 

follow Smith (1946). All bilateral characters were measured on the right side of each specimen, and when this was 

not possible (e.g., lack of a member) they were taken on the left side. Scale counts were performed using a 

stereoscopic microscope Stemi DV4 Zeiss® and continuous biometric variables were recorded using an electronic 

Schwyz® caliper to the nearest 0.01 mm, and included: SVL, snout vent length (measured from the anterior tip of 

the rostral scale to vent); AGD, axillae groin distance (measured from the posterior edge of the forelimb insertion 

to the anterior edge of the hindlimb insertion); HL, head length (measured from the anterior edge of the auditory 

meatus to the anterior tip of the rostral scale); HW, head width (measured between both edges of the two auditory 

meatus); HD, head depth (measured from the parietal surface to the throat, considered at the anterior border of both 

auditory meatus); DBN, distance between nostrils (measured between the inner edges of both nostrils); NED, 

nostril eye distance (measured from the most anterior superciliares and preocular scales to the anterior tip of the 

rostral scale); RPD, rostral-parietal distance (measured from the posterior tip of interparietal scale to the junction 

with both parietal scales); FLL, fore limb length (measured from the elbow to the most distal lamellae of the third 

toe); TL, tibial length (measured from the knee to heel); HLL, hind limb length (measured from the heel to the most 

distal lamellae of the fourth toe). The meristic variables registered were: LLS, number of lorilabial scales; SLS, 

number of supralabial scales; ILS, number of infralabial scales; SCM, number of scales in contact with mental 

scale; L4T, number of lamellae of the fourth toe; SAMB, number of scales around midbody; DS, number of dorsal 

scales; VS, number of ventral scales; PCP, number of cloacal pores.
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FIGURE 1. Known geographic distribution for the studied species and sampled locations selected (inside polygons) from type 
localities and surroundings for each species.

Statistical analyses. We tested for morphological differences among the five species. Male and female 

specimens were treated separately in all analyses to avoid potential bias caused by sexual dimorphism (Verrastro 

2004; Laspiur & Acosta 2007). We calculated descriptive statistics from each one of the morphological characters 

most commonly used and evaluated the accuracy of statistical analyses frequently used to evaluate differences 

between species. As exploratory analyses, we performed Principal Components Analysis (PCA) including both 

continuous and meristic characters and Lineal Discriminant Analysis (LDA). To decide how many PCA axes we 

considered in analysis, we used "The Scree Test”, “Proportion of Variance Accounted For” criteria and components 

that had a minimum of 10% of the variation (O’Rourke & Hatcher 2013). We considered for these PCA results as a 

correlated variable to the PCs, all those which present a P < 0.05. The LDA test assumes that the variables are 

independent, with homogeneity of covariance matrices and normally distributed. These assumptions were tested 

with Spearman Correlations, Barlett and Multivariate and Univariate Normality tests. Considering these 

assumptions, all morphological continuous variables were tested: raw data, log-transformed and each variable 

divided by SVL. Once assumptions were met, we carried out LDA on the continuous variables standardized by 

SVL. We excluded from all analysis SCM from males because all individuals present 4 scales, and PPC from the 

female’s data set because we did not record any.

Further on, we used all the other variables to perform univariate analyses. When Marginality Principles 

(Claude 2008) were validated, we used Analysis of the Covariance (ANCOVA) on the continuous variables with 

SVL as covariate to adjust all size-correlated characters, to test for significant differences among species. When the 

variable was not influenced by SVL, we performed an Analysis of Variance (ANOVA). When parametric P values 

were significant (P ≤ 0.05), multiple post hoc comparisons were performed using Tukey's honestly significant 
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difference (HSD) test for unequal sample size (Miller & Haden 2006; Yandell 1997). Homoscedasticity and 

normality assumptions were checked with Levenne (Zar 2010) and Shapiro-Wilks tests (Claude 2008). When these 

assumptions were not met, we performed a nonparametric Kruskal-Wallis test on the meristic variables with 

multiple post hoc comparisons (Conover 1999). All statistical analyses were performed in R 2.15.2, we used the 

FactoMiner 1.18 package (Lê et al. 2008; Husson et al. 2013) for PCA analyses and the MASS package (Venables 

& Ripley 2002) for LDA.

Environmental niche models (ENMs). We analyzed ecological differences between species using ENMs and 

data from samples collected at type localities and surrounding areas. We revised a total of 191 geographical records 

from 44 localities (Appendix). Several previous works analyzed the real potential of environmental niche modeling 

using low numbers of species records and remarked its importance for limited species distributions (Anderson et al.

2002; Pearson et al. 2007). Models for each species were created using a total of 44 locality records: L. 

chehuachekenk (n = 9), L. fitzingerii (n = 11), L. shehuen (n = 10), L. xanthoviridis (n = 14). To lessen the 

possibility of inflating validation statistics by including localities that are not spatially independent (Hampe 2004; 

Luoto et al. 2005) or autocorrelated localities, we conservatively removed from the training data set all localities 

situated within 5 km of the test locality for each jackknife model. Based on the substantial local variation in 

topography and climatic conditions that exists in the studied area (as shown in our environmental layers), we 

considered localities separated by at least 5 km to exhibit sufficient potential variation as to be considered spatially 

independent. We removed duplicated coordinates records per species and excluded L. camarones because the 

number of localities (n = 2) was not enough to perform a robust analysis, thus for this analysis, we included four of 

the five species of this complex (Fig. 1).

To model and compare each taxa, we used Maxent 3.3.3k (Phillips & Dudík 2008) and presence-only data to 

model species distributions. Like other niche-based models constructed from presence-only data, the predicted 

distribution describes suitability in ecological (environmental and climatological) space, which is then projected 

onto geographic space revealing a prediction of the geographic distribution of the taxon of interest (Phillips et al.

2006). For our analyses, we used 19 environmental variables for current conditions (1950–2000) and an altitude 

variable all of ~ 30 arc-second resolution from the studied area (WorldClim—Global Climate Data; http://

www.worldclim.org/tiles.php?Zone=43). The included bioclimatic and topographic variables were: ALT = 

Altitude, BIO1 = Annual Mean Temperature, BIO2 = Mean Diurnal Range (Mean of monthly (maximum 

temp–minimum temp), BIO3 = Isothermality (BIO2/BIO7)*(100), BIO4 = Temperature Seasonality (standard 

deviation*100), BIO5 = Max Temperature of Warmest Month, BIO6 = Minimum Temperature of Coldest Month, 

BIO7 = Temperature Annual Range (P5–P6), BIO8 = Mean Temperature of Wettest Quarter, BIO9 = Mean 

Temperature of Driest Quarter, BIO10 = Mean Temperature of Warmest Quarter, BIO11 = Mean Temperature of 

Coldest Quarter, BIO12 = Annual Precipitation, BIO13 = Precipitation of Wettest Month, BIO14 = Precipitation of 

Driest Month, BIO15 = Precipitation of Seasonality (Coefficient of Variation), BIO16 = Precipitation of Wettest 

Quarter, BIO17 = Precipitation of Driest Quarter, BIO18 = Precipitation of Warmest Quarter, BIO19 = 

Precipitation of Coldest Quarter. These variables data were imported into DIVA GIS and we extracted values by 

points per species localities. In order to decide the variables model assessment (considering the small numbers of 

localities used for these species), an initial Maxent Jackknife test (Pearson et al. 2007) was performed for all the 

variables and checked which ones contributed most. Also, for pairs of variables that were highly correlated, we 

chose the variable considered biologically more meaningful (related to the studied organism) in addition to a 

correlation criterion (Rissler & Apodaca 2007; Debandi et al. 2012). Correlation matrices were then generated for 

all 19 variables per species record within each of two general climatic categories: temperature (BIO1–11) and 

precipitation (BIO12–19). Altitude was considered for all models. Pearson Correlation Coefficient was used with a 

≥ 0.75 threshold to identify and remove highly correlated variables (Rissler et al. 2006; Debandi et al. 2012; 

Kershaw et al. 2013). Considering the entire 43 tile, fourteen variables were chosen and used in Maxent models 

including ALT, BIO12, BIO13, BIO15, BIO16, BIO17, BIO18, BIO19, BIO2, BIO3, BIO4, BIO6, BIO8, BIO9. 

Finally each climate layer was entered into Maxent as ASCII raster grid. For each species, Maxent was run 

considering the following features: Linear features, response curve, pictures predictions and a Jackknife test for 

variable importance. We assigned 20 % of the presence points to test the model and 80 % of the data to train the 

model and set “Apply threshold rule to equal training sensitivity & specificity”. To evaluate model performance for 

each species, we used AUC values (Area Under the Receiver Operating Characteristics Curve) with the summarize 

results of the 5-fold cross-validation (e.g., Yu et al. 2013; Lyu & Sun 2014). The AUC values range from 0.5 for 
 Zootaxa 3856 (4)  © 2014 Magnolia Press  ·  505SPECIES LIMITS IN THE LIOLAEMUS FITZINGERII COMPLEX



models with no predictive power to 1.0 for models with perfect predictive power (Swets 1988). We considered 

AUC values greater than 0.9 denote ‘‘very good’’ predictive power, values between 0.8 and 0.9 denote ‘‘good’’ 

predictive power and values between 0.7 and 0.8 indicate ‘‘useful’’ predictive power (Swets 1988). Although AUC 

has known limitations as a measure of model performance (Franklin 2009), it still is the most used analysis. Other 

selected algorithms were: Replicates 5, Crossvalidate, while the remaining options were left on default values. Bil 

and Logistic were chosen as file-format output. All .bil output files were transformed to raster format with DIVA-

GIS 7.5 (Hijmans et al. 2001) and maps were done considering the original output of legend´s interval range and 

colours from Maxent with Quantum GIS 1.8 (Quantum GIS Geographic Information System 2013). Suitability 

values range from 0 (unsuitable habitat) to 1.0 (highly suitable habitat), with 0.5 representing habitat suitability at 

typical presence locations.

Additionally, to examine the overall levels of divergence in the ecological niche, we conducted principal 

component analysis (PCA) for each species with the BIOCLIM and altitude values extracted for each climate layer. 

We considered for PCA results as a correlated variable, all those which presented a P ≤ 0.00001 and a correlation 

higher than 60 %. To determine whether separation in the ecological niche was statistically significant we used 

multivariate analysis of variance (MANOVA) with PCA axis scores as dependent variables and species as the fixed 

factors (Rissler & Apodaca 2007; Rivera et al. 2011). Additionally, we performed a MANOVA on PCA axis 

scores, with pairwise comparisons by sub-setting the four species to analyze overall differences among them. All 

statistical analyses were performed with R 3.0.2 (R Core Team 2014).

Results

Morphological analyses

We detected greater differences between species in the analyses of continuous variables than of discrete ones. 

Comparisons among females showed more differences than between males, with univariate or multivariate 

analyses.

Descriptive analyses. Interspecific comparisons with basic descriptive statistics for both sexes showed that 

continuous and meristic variables overlap (mean, standard deviation and rank, Tables 1–2).

Multivariate analyses. For the principal component analysis (PCA) for both sexes, we retained the first three 

components. These three components for males explained 63.64 % of the morphological variation; while for 

females they explained 72.40 % of the variation (Table 3). In both sexes, the continuous variables presented high 

loadings and correlation values for the first component, whereas discrete variables presented high correlations for 

the second and third components (Table 3). The graphical representation of male individuals' space in PC1–PC2 

and PC1–PC3 with 95 % confidence ellipse around barycenter (the mean vector of each category, see Abdi et al.

2013) of the species (Fig. 2, left panel), presented a clear overlap between Liolaemus camarones and L. shehuen

with the other three species. In the variables' space (Fig. 2, right panel), all the continuous variables were highly 

correlated in PC1 except for DBN, HW and NED, in PC2 highly correlated were VS, SAMB, LLS, and in PC3 the 

highly correlated were DS and PCP. For females, the PC1–PC2 graph (Fig. 3) showed clear overlap and proximity 

of barycenters between all species, with the exception of L. xanthoviridis; while the PC1–PC3 graph presented a 

clear non overlapping ellipses and barycenters for L. chehuachekenk and L. xanthoviridis, but showed an overlap 

between L. fitzingerii, L. camarones and L. shehuen. The variable’s space (Fig. 3, right panel) showed that PC1 had 

a high correlation between all continuous variables except for NED, and in PC2 all meristic variables were highly 

represented; and in PC3 SAMB, ILS, DS and L4T were well represented.

The prior probabilities of the linear discriminant analysis (LDA) between males (N = 82) were: Liolaemus 

camarones (0.15854), L. chehuachekenk (0.23171), L. fitzingerii (0.15854), L. shehuen (0.28049), L. xanthoviridis

(0.17073). The 84.21 % of the variation is explained by the first two axes of the discriminant analysis. The 95 % 

confidence ellipses showed a clear overlap between L. camarones and L. fitzingerii (Fig. 4.1). Liolaemus 

chehuachekenk had the higher error rate in specimen classification (11 of 19 individuals, error = 57.89 %), 

followed by L. camarones (4 of 13 individuals, error = 30.77 %), L. fitzingerii (3 of 13 individuals, error = 23.08 

%), L. xanthoviridis (3 of 14 individuals, error = 21.43 %) and L. shehuen (3 of 23 individuals, error = 13.04 %). 

Males presented a total of 24 misclassified cases (29.27 %) from 82 specimens analyzed (Table 4).
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TABLE 3. Results of Principal Component Analysis performed with all morphometric variables. References: Eig. 

Comp.: Eigenvalues per component; % Var.: Percentage of Variance; Cum. % Var.: Cumulative Percentage of Variance; 

SVL, snout vent length; AGD, axillae groin distance; HL, head length; HW, head wide; HD, head deep; DBN, distance 

between nostrils; NED, nostril eye distance; RPD, rostral–parietal distance; FLL, fore limb length; TL, tibial length; 

HLL, hind limb length; LLS, lorilabial scales; SLS, supralabial scales; ILS, infralabial scales; SCM, scales in contact 

with mental scale; L4T, lamellae of the fourth toe; SAMB, scales around midbody; DS, dorsal scales; VS, ventral scales; 

PCP, cloacal pores.

Males

PC1 PC2 PC3

Eig. Comp. 9.03 Eig. Comp. 1.60 Eig. Comp. 1.46

% Var. 47.55 % Var. 8.43 % Var. 7.66

Cum. % Var. 47.55 Cum. % Var. 55.98 Cum. % Var. 63.64

Correlations Correlations Correlations

SVL 0.98043 (P < 0.00001) VS 0.70830 (P < 0.00001) DS 0.68509 (P < 0.00001)

RPD 0.96046 (P < 0.00001) SAMB 0.55444 (P < 0.00001) L4T 0.49986 (P < 0.00001)

HL 0.95393 (P < 0.00001) ILS 0.38544 (P = 0.00035) LLS 0.48751 (P < 0.00001)

TL 0.95312 (P < 0.00001) DS 0.29312 (P = 0.00753) SLS 0.34228 (P = 0.00165)

HD 0.94839 (P < 0.00001) DBN 0.25476 (P = 0.02090) VS 0.32558 (P = 0.00284)

AGD 0.89093 (P < 0.00001) PCP 0.23350 (P = 0.03475) PCP -0.49714 (P < 0.00001)

HLL 0.88236 (P < 0.00001) NED -0.28274 (P = 0.01006)

HW 0.86914 (P < 0.00001) LLS -0.52724 (P < 0.00001)

FLL 0.86024 (P < 0.00001)

DBN 0.81419 (P < 0.00001)

NED 0.69047 (P < 0.00001)

SAMB 0.24568 (P = 0.02610)

ILS 0.21754 (P = 0.04961)

L4T -0.22894 (P = 0.03856)

Females

PC1 PC2 PC3

Eig. Comp. 10.10 Eig. Comp. 2.07 Eig. Comp. 1.58

% Var. 53.17 % Var. 10.89 % Var. 8.34

Cum. % Var. 53.17 Cum. % Var. 64.06 Cum. % Var. 72.40

Correlations Correlations Correlations

RPD 0.98365 (P < 0.00001) L4T 0.59323 (P < 0.00001) DS 0.44009 (P = 0.00024)

SVL 0.98114 (P < 0.00001) VS 0.58998 (P < 0.00001) L4T 0.43991 (P = 0.00025)

TL 0.96497 (P < 0.00001) SAMB 0.53194 (P = 0.00001) NED 0.38899 (P = 0.00136)

AGD 0.95943 (P < 0.00001) LLS 0.50617 (P < 0.00002) SCM 0.26415 (P = 0.03348)

HD 0.95794 (P < 0.00001) ILS 0.48997 (P < 0.00003) HW -0.29218 (P = 0.01819)

HLL 0.95514 (P < 0.00001) SLS 0.45275 (P < 0.00015) DBN -0.32833 (P = 0.00758)

HL 0.95462 (P < 0.00001) DS 0.39710 (P < 0.00106) SAMB -0.53266 (P < 0.00001)

FLL 0.95110 (P < 0.00001) SCM 0.35530 (P < 0.00368) ILS -0.63554 (P < 0.00001)

HW 0.91666 (P < 0.00001)

......continued on the next page
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FIGURE 2. Principal Component Analysis of males including all morphological variables. Three first components and ellipses 
of 95 % confidence around the species barycenter are shown.

The prior probabilities of the linear discriminant analysis for females (N = 65) were: Liolaemus camarones

(0.15385), L. chehuachekenk (0.23077), L. fitzingerii (0.18462), L. shehuen (0.15385), L. xanthoviridis (0.27692). 

The 79.38 % of the variation is explained by the first two axes of the discriminant analysis. The 95 % confidence 

ellipses showed a clear overlap between L. camarones, L. fitzingerii and L. xanthoviridis (Fig. 4.2). Liolaemus 

camarones had the higher classification error rate (4 of 10 individuals, error = 40 %), followed by L. fitzingerii (4 

of 12 individuals, error = 33.33 %), L. chehuachekenk (3 of 15 individuals, error = 20 %), L. xanthoviridis (3 of 18 

TABLE 3. (continued)

Correlations Correlations Correlations

DBN 0.83695 (P < 0.00001)

NED 0.77277 (P < 0.00001)

LLS 0.38211 (P = 0.00168)

SAMB 0.37717 (P = 0.00195)

SLS 0.37521 (P = 0.00207)

VS 0.29014 (P = 0.01905)
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individuals, error = 16.67 %) and L. shehuen (1 of 10 individuals, error = 10 %). Females presented a total of 15 

(23.08 %) misclassified individuals from the 65 analyzed (Table 4).

FIGURE 3. Principal Component Analysis of females including all morphological variables. Three first components and 
ellipses of 95 % confidence around the species barycenter are shown.

Univariate analyses. We analyzed nineteen morphological variables for males, and thirteen showed 

significant differences (9 continuous, 4 discrete, N = 82); for females, eleven (7 continuous, 4 discrete, N = 65) out 

of eighteen variables showed differences. Variables that differed between males of the five species were significant 

for the overall ANOVAs for SVL (F4,77 = 6.363; P = 0.00018), HL (F
4,77 = 7.243; P = 0.00005), HW (F

4,77 = 9.885; 

P < 0.00000), DBN (F4,77 = 4.435; P = 0.00280), NED (F4,77 = 11.071; P < 0.00000); whereas overall ANCOVA 

was significant for HD (F5,76 = 5.8705; P = 0.00036), and RPD (F5,76 = 9.1433; P < 0.00000). The outcome of 

Kruskal Wallis tests showed significant differences for FLL (H (4, n=82) = 21.2636, P = 0.00028), HLL (H (4, n=82) = 

22.9823, P = 0.00013), ILS (H (4, n=82) = 15.2861, P = 0.00414), L4T (H (4, n=82) = 14.0891, P = 0.00702), SAMB (H (4, 

n=82) = 15.6178, P = 0.00358), and DS (H (4, n=82) = 9.8432, P = 0.04315). The variables that showed differences 

among females were significant for the overall ANOVA for SVL (F4,60 = 8.6332; P = 0.00001), HW (F4,60 = 7.6244; 

P = 0.00005), HD (F4,60 = 6.3487; P = 0.00025), DBN (F4,60 = 4.8941; P = 0.00176). The overall of Kruskal Wallis 

tests showed significant differences for HL (H (4, n=65) = 29.9506, P = 0.00001), NED (H (4, n=65) = 22.9193, P = 

0.00013), FLL (H (4, n=65) = 24.9967, P = 0.00005), LLS (H (4, n=65) = 13.1887, P = 0.01039), SLS (H (4, n=65) = 12.2417, 

P = 0.01564), L4T (H (4, n=65) = 10.2872, P = 0.03586), DS (H (4, n=65) = 10.7674, P = 0.02931). Variables with 
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significant difference (P ≤ 0.05) in the post hoc comparisons are summarized in a crosstab for both sexes (Tables 

5–6).

TABLE 4. Individual classification from LDA analysis with continuous variables adjusted by SVL. References: A: 

Liolaemus camarones, B: L. chehuachekenk, C: L. fitzingerii, D: L. shehuen, E: L. xanthoviridis.

TABLE 5. Results of multiple univariate post hoc comparisons among males from the Liolaemus fitzingerii species 

complex. Only significant differences (P ≤ 0.05) between variables are shown. References: SVL: snout vent length, HL: 

head length, HW: head wide, HD: head deep, DBN: distance between nostrils, NED: nostril eye distance, RPD: 

rostral—parietal distance, FLL: fore limb length, TL: tibial length, HLL: hind limb length, ILS: infralabial scales, L4T: 

lamellae of the fourth toe, SAMB: scales around midbody, DS: dorsal scales;*: ANCOVA test, &: ANOVA test, +: 

Kruskal-Wallis test.

Males

Species A B C D E True n Misclassified specimens Error %

A 9 0 2 2 0 13 4 30.77

B 0 8 1 6 4 19 11 57.9

C 2 0 10 1 0 13 3 23.08

D 2 1 0 20 0 23 3 13.04

E 0 2 1 0 11 14 3 21.43

Females

Species A B C D E True n Misclassified specimens Error %

A 6 0 1 0 3 10 4 40

B 0 12 0 3 0 15 3 20

C 3 0 8 0 1 12 4 33.33

D 0 0 1 9 0 10 1 10

E 0 0 3 0 15 18 3 16.67

Species L. camarones

(n = 13)
L. chehuachekenk

(n = 19)
L. fitzingerii

(n = 13)
L. shehuen

(n = 23)
L. xanthoviridis

(n = 14)

L. camarones - HD*, ILS+, L4T+ HW&, HD*, 
RPD*

HW&, HD*, NED&, 
RPD*, FLL+, 
HLL+, L4T+, 
SAMB+, DS+

SVL&, HL&, HW&, 
HD*,DBN&, RPD*, 
FLL+, HLL+, ILS+, 
SAMB+

L. chehuachekenk HD*, ILS+, L4T+ - HL&, HD*, 
NED&, RPD*, 
ILS+

SVL&, HL&, HD*, 
NED&, RPD*, 
FLL+, HLL+

SVL&, HL&, HW&, 
HD*,DBN&, RPD*, 
FLL+, HLL+

L. fitzingerii HW&, HD*, RPD* HL&, HD*, NED&, 
RPD*, ILS+

- RPD*, L4T+, 
SAMB+

HW&, HD*, RPD*, 
FLL+, HLL+, ILS+, 
SAMB+

L. shehuen HW&, HD*, NED&, 
RPD*, FLL+, HLL+, 
L4T+, SAMB+, DS+

SVL&, HL&, HD*, 
NED&, RPD*, 
FLL+, HLL+

RPD*, L4T+, 
SAMB+

- HW&, NED&, 
HLL+, HLL+, DS+

L. xanthoviridis SVL&, HL&, HW&, 
HD*,DBN&, RPD*, 
FLL+, HLL+, ILS+, 
SAMB+

SVL&, HL&, HW&, 
HD*,DBN&, RPD*, 
FLL+, HLL+

HW&, HD*, 
RPD*, FLL+, 
HLL+, ILS+, 
SAMB+

HW&, NED&, 
HLL+, HLL+, DS+

-
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TABLE 6. Results of multiple univariate post hoc comparisons among females from the Liolaemus fitzingerii species 

complex. Only significant differences (P ≤ 0.05) between variables are shown. References: SVL: snout vent length, HL: 

head length, HW: head wide, HD: head deep, DBN: distance between nostrils, NED: nostril eye distance, FLL: fore limb 

length, LLS: lorilabial scales, SLS: supralabial scales, L4T: lamellae of the fourth toe, DS: dorsal scales;*: ANCOVA 

test, &: ANOVA test, +: Kruskal-Wallis test.

FIGURE 4. Lineal Discriminant Analysis with all continuous variables standardized by SVL. Two first discriminant axis and 
ellipses of 95 % confidence are shown. References: Males 1), Females 2).

 

Environmental niche models (ENM)

Maxent. We present maps of probabilistic habitat suitability for each species, determined by their respective 

Maxent point-wise mean model (Fig. 6). After the variable selection process, the variables that the four species had 

in common were BIO3 and ALT. Relative contributions of the environmental variables averages over replicates 

runs to the Maxent model per species are shown in Fig. 5. The variable ALT contributed 31.7 % to the Liolaemus 

fitzingerii model, 12.4 % to L. xanthoviridis, 8.2 % to L. shehuen, and 1.9 % to L. chehuachekenk. The variable 

BIO3 although considered in the four models, had little contribution to them. The environmental variables used for 

all species’ models that had variable levels of contribution were BIO16 in L. chehuachekenk (10.8 %) and L. 

Species L. camarones

(n = 10)
L. chehuachekenk

(n = 15)
L. fitzingerii

(n = 12)
L. shehuen

(n = 10)
L. xanthoviridis

(n = 18)

L. camarones - HL+, NED+, SLS+, 
L4T+

NED+, LLS+, SLS+, 
L4T+, DS+

SVL&, HL+, HW&, 
HD&, DBN&, NED+, 
FLL+

L. chehuachekenk HL+, NED+, SLS+, 
L4T+

- HL+, NED+, DS+ HL+, NED+, DS+ SVL&, HL+, HW&, 
HD&, NED+, FLL+, 
LLS+, SLS+

L. fitzingerii HL+, NED+, DS+ - L4T+ SVL&, HL+, HW&, 
HD&, FLL +, DS+

L. shehuen NED+, LLS+, SLS+, 
L4T+, DS+

HL+, NED+, DS+ L4T+ - HL+, HW&, DBN&, 
FLL+, LLS+, L4T+, 
DS+

L. xanthoviridis SVL&, HL+, HW&, 
HD&, DBN&, NED+, 
FLL+

SVL&, HL+, HW&, 
HD&, NED+, FLL+, 
LLS+, SLS+

SVL&, H+L, 
HW&, HD&, 
FLL+, DS+

HL+, HW&, DBN&, 
FLL+, LLS+, L4T+, 
DS+

--
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shehuen (0 %), BIO4 in L. chehuachekenk (30 %) and L. shehuen (6.6 %), ALT in L. fitzingerii (31.7 %), L. 

xanthoviridis (12.4 %), L. chehuachekenk (1.9 %) and L. shehuen (8.2 %).

FIGURE 5. Relative contributions of the environmental variables to the Maxent models. Values shown are averages over 
replicate runs.

The average test AUC on training data for Liolaemus chehuachekenk for the replicate runs was 0.973 (± 0.024 

SD). The mean response and the standard deviation of how each environmental variable affects the Maxent 

prediction for this species, showed that BIO2, BIO3, BIO4 and ALT had the highest variation (results nor shown); 

meanwhile the highest relative contributions to the model from averages over replicate runs were from BIO8, 

BIO4, BIO16 and BIO17 (Fig. 5). The results of the Jackknife tests on variable importance showed that the 

environmental variable with highest gain when used in isolation was BIO18, which consequently appeared to have 

the most useful information by itself (graphics not shown). The environmental variable that decreases the gain the 

most when omitted was BIO8, which therefore appeared to have higher proportion of information not present in the 

other variables. The average test AUC on training data for the replicate runs in L. fitzingerii was 0.982 (± 0.008 

SD), and the mean response and the standard deviation on how each environmental variable affects the Maxent 

prediction showed that BIO8 and BIO2 had the highest variation. The highest values of relative contributions to the 

model from averages over replicate runs were from BIO13, ALT, BIO8 and BIO2 (Fig. 5). The Jackknife test 

output of variable importance showed BIO13 as the environmental variable with highest gain when used in 

isolation, thus it appeared to have the most useful information by itself. The environmental variable ALT is the 

variable that decreases the gain the most when omitted, thus ALT had the most information that was not present in 

other variables. The average test AUC on training data for the replicate runs of L. shehuen was 0.988 (± 0.002 SD) 

and the mean response and the standard deviation on how each environmental variable affects the Maxent 

prediction, showed that BIO3 had the highest variation values. The highest relative contributions to the model from 

averages over replicate runs were BIO15, BIO9 and BIO13 (Fig. 5). The Jackknife test of variable importance 

showed that BIO13 was the environmental variable with highest gain when used in isolation, thus it appeared to 

have the most useful information by itself. The environmental variables that decrease the gain the most when 

omitted were BIO9, BIO15 and ALT; hence those variables appeared to have information that was not present in 

the other variables. The average test AUC on training data for the replicate runs in L. xanthoviridis was 0.997 (± 

0.001 SD). The mean response and the standard deviation of how each environmental variable affects the Maxent 

prediction showed that ALT had the highest variation. The highest relative contributions to the model from 

averages over replicate runs were from BIO13, BIO6, ALT, BIO9 and BIO8 (Fig. 5). The results of the Jackknife 

test of variable importance indicated that the environmental variable with highest gain when used in isolation was 
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BIO13, which consequently appeared to have the most useful information by itself. The environmental variables 

that decreased the gain the most when omitted were BIO6, BIO9 and BIO8, thus those appeared to have 

information that was not present on the other variables.

Principal components analysis. The principal component analysis including species with all environmental 

variables, revealed that the first three components explained 88.67% (PC1 = 45.03 %, PC2 = 27.32 %, PC3 = 16.32 

%) of the variation. The individuals’ space showed that PC1 contrasts Liolaemus chehuachekenk and L. shehuen

with L. fitzingerii and L. xanthoviridis, and that PC2 contrasts L. chehuachekenk and L. fitzingerii with L. shehuen

and L. xanthoviridis (Fig. 7, left panel). We graphically present the differences between species’ localities with 95 

% confidence ellipses around barycenter of each species, which showed a clear separation between them (Fig. 7, 

left panel). The first principal component depicted a strong positive correlation with BIO6, BIO11, BIO14, BIO18 

and BIO17, and negative correlations with BIO3, BIO4, BIO7, BIO2 and ALT. Positive correlations for PC2 

correlations are more strongly represented by BIO10, BIO8, BIO1, BIO5 and negative correlations for BIO15, 

BIO12, BIO13, BIO16, BIO19, while for PC3 was strongly correlated with BIO15, BIO18 and BIO17 (Table 8).

In the variables' space, PC1 contrasts mostly precipitation variables (BIO18, BIO14, BIO6 and BIO17) with 

temperature and altitude variables (ALT, BIO3 and BIO9) with an negative correlation. The variables' interactions 

for PC2 contrasts temperature that were negatively correlated with precipitation (BIO10 vs. BIO15; BIO5 with 

BIO12, BIO13, BIO16 and BIO19). The PC3 showed a negative correlation between BIO5 vs. BIO14, BIO17 and 

BIO18. The barycenter values of the environmental variables per species are shown in Table 7.

TABLE 7. PCA barycenter values from environmental variables per species. References: ALT: Altitude, BIO1: Annual 

Mean Temperature, BIO2: Mean Diurnal Range (Mean of monthly (max temp–min temp), BIO3: Isothermality (P2/

P7)*(100), BIO4: Temperature Seasonality (standard deviation*100), BIO5: Max Temperature of Warmest Month, 

BIO6: Min Temperature of Coldest Month, BIO7: temperature Annual Range (P5–P6), BIO8: Mean Temperature of 

Wettest Quarter, BIO9: Mean Temperature of Driest Quarter, BIO10: Mean Temperature of Warmest Quarter, BIO11: 

Mean Temperature of Coldest Quarter, BIO12: Annual Precipitation, BIO13: Precipitation of Wettest Month, BIO14: 

Precipitation of Driest Month, BIO15: Precipitation of Seasonality (Coefficient of Variation), BIO16: Precipitation of 

Wettest Quarter, BIO17: Precipitation of Driest Quarter, BIO18: Precipitation of Warmest Quarter, BIO19: Precipitation 

of Coldest Quarter, A: Liolaemus camarones, B: L. chehuachekenk, C: L. fitzingerii, D: L. shehuen, E: L. xanthoviridis. 

Units: Altitude: meters, Temperature: Celsius degrees, Precipitation: mm.

Variable B C D E

ALT 799.89 100.27 812.60 188.15

BIO1 9.50 10.81 10.16 12.38

BIO2 13.40 10.16 13.81 11.74

BIO3 49.12 46.73 48.87 47.43

BIO4 543.23 463.50 563.31 503.74

BIO5 24.72 22.72 25.64 25.48

BIO6 -2.57 0.98 -2.61 0.72

BIO7 27.29 21.74 28.25 24.76

BIO8 3.37 5.57 5.89 7.02

BIO9 15.19 12.51 15.97 9.65

BIO10 16.19 16.28 17.06 18.43

BIO11 2.82 5.05 3.24 6.12

BIO12 192.44 213.27 176.80 182.77

BIO13 29.00 27.47 19.70 24.23

BIO14 7.78 11.87 10.10 9.92

BIO15 42.56 29.32 21.16 31.83

BIO16 78.33 76.47 54.00 63.69

BIO17 26.33 39.00 34.70 32.08

BIO18 30.11 43.07 38.90 39.23

BIO19 67.44 66.33 46.30 52.15
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FIGURE 6. Probabilistic maps of habitat suitability for each species, determined by maximum entropy modelling.
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FIGURE 7. Principal Component Analysis of species localities with 19 Bioclim and altitude variables. Three first components 
are shown for the localities's and variables's spaces. Ellipses of 95 % confidence were plotted around the species's localities.

TABLE 8. Results of the correlations between the PCs and the variables obtained from the PCA performed with the 

values of BIOCLIM and altitude.

PC1 PC2 PC3

Variable correlation P value Variable correlation P value Variable correlation P value

BIO6 92.55% ≤ 0.00001 BIO10 77.12% ≤ 0.00001 BIO15 71.64% ≤ 0.00001

BIO11 77.65% ≤ 0.00001 BIO8 69.06% ≤ 0.00001 BIO18 -63.46% ≤ 0.00001

BIO14 66.80% ≤ 0.00001 BIO1 63.00% ≤ 0.00001 BIO17 -66.85% ≤ 0.00001

BIO18 64.16% ≤ 0.00001 BIO5 62.33% ≤ 0.00001

BIO17 63.97% ≤ 0.00001 BIO15 -67.53% ≤ 0.00001

BIO3 -90.25% ≤ 0.00001 BIO12 -69.10% ≤ 0.00001

BIO4 -93.44% ≤ 0.00001 BIO13 -79.65% ≤ 0.00001

BIO7 -93.97% ≤ 0.00001 BIO16 -84.29% ≤ 0.00001

BIO2 -95.34% ≤ 0.00001 BIO19 -87.38% ≤ 0.00001

ALT -97.01% ≤ 0.00001
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Manova. The overall MANOVA analysis using PC scores and species as categorical variables showed 

differences between species in the bioclimatic and topographic variables (Wilks´ λ = 0.00752, F3, 43 = 71.695, P ≤ 

0.00001). We detect statistically significant separation between species when the PC axis considered species as 

factor (PC1 axis: F3, 43 = 199.19, P < 0.00001; PC2 axis: F3, 43 = 27.043, P < 0.00001; PC3 axis: F3, 43 = 15.683, P < 

0.00001). Furthermore, pairwise comparisons by subsetting species showed differences between all the pairs for 

the four species (L. chehuachekenk vs. L. fitzingerii: Wilks´ λ = 0.04135, F1, 22 = 154.19, P < 0.00001); L. 

chehuachekenk vs. L. shehuen: Wilks´ λ = 0.10447, F1, 17 = 42.859, P < 0.00001); L. chehuachekenk vs. L. 

xanthoviridis: Wilks´ λ = 0.05556, F1, 20 = 102, P < 0.00001); L. fitzingerii vs. L. shehuen: Wilks´ λ = 0.00380, F1, 23

= 1832.4, P < 0.00001); L. fitzingerii vs. L. xanthoviridis: Wilks´ λ = 0.04301, F11, 26 = 177.99, P < 0.00001); L. 

shehuen vs. L. xanthoviridis: Wilks´ λ = 0.01212, F1, 21 = 516.03, P < 0.00001).

Discussion

The discovery of cryptic species considering multiple approaches is decisive for correct classification and 

biodiversity conservation (Beheregaray & Caccone 2007; Schlick-Steiner et al. 2010). This is the first detailed 

integrative analysis that combines extensive statistical analyses based on external morphology and environmental 

niche models (ENMs) between all species of the Liolaemus fitzingerii complex. While morphometric analyses 

were able to detect some differences between the five taxa, the ENMs showed clear differences between the four 

taxa that were possible to compare. The continuous and lepidosis characters presented some differences between 

the species; the morphological tests had dissimilar performance in detecting them and were non-conclusive in 

terms of supporting the diagnosis for some of the species. The ENMs allowed a clear spatial differentiation 

between four of the species’ potential distributions and also their probable suitable habitats as the set of individual 

environmental variables important for the presence of each species were different. Precipitation of Wettest Quarter 

(BIO16), Temperature Seasonality (BIO4) and Altitude were the variables in common for the analyzed taxa, that 

contributed most to the models of the four species. In addition to this, an important variable was Mean Temperature 

of Wettest Quarter (BIO8) which had an important contribution for three of the four taxa. The Precipitation of 

Wettest Month (BIO13) was the variable with the highest gain when used in isolation for three species models. 

Only the L. chehuachekenk model presented Precipitation of Warmest Quarter (BIO18) as the variable with the 

highest gain when used in isolation.

Morphological analyses. In the Liolaemus taxonomic literature, it is usual to find new species descriptions 

(Ocampo et al. 2012) with descriptive values (often in tables) as the only evidence to support the new species 

hypothesis. Our results for this type of basic statistical approach, showed that they do not contribute to detect clear 

differences between species of this complex. Many continuous and discrete variables had mean, SD, minimum and 

maximum values that clearly overlap, not showing differences among taxa, a pattern that is commonly found in 

other Liolaemus complexes (Abdala 2005; Scolaro & Cei 2006; Nori et al. 2010). Also it has been found that these 

continuous morphological variables have large latitudinal variation (Cruz et al. 2005; Pincheira-Donoso et al.

2007b, 2008), and present high phenotypic plasticity influenced by the environment (Cruz et al. 2005; Naya & 

Bozinovic 2006; Canale & Henry 2010). Thus, we consider that using these parameters as the only operational 

criteria to delimit species without other kind of statistical, repeatable and objective analyses, coupled with no other 

evidence rather than subjective and qualitative observed differences (e.g., coloration patterns), is useless to propose 

a robust hypothesis and diagnosis of a new Liolaemus species.

Previous works that have analyzed morphological variables using principal component analysis for delimiting 

Liolaemus' species are scarce (Breitman et al. 2011b; Aguilar et al. 2013). The principal component analysis is 

used to find in a multivariate context, a set of standardized orthogonal linear combinations that together explain the 

variation in the original variables (Crawley 2007). This analysis explains differences between individuals, but not 

between levels of a factor and these variables must be strongly correlated (Luo et al. 1999; Harlow 2005). The 

results of PCA for males and females in the space of individuals, showed three partially overlapping groups 

considering as a reference the 95% ellipses of confidence (Figs. 2–3, left panels). These results do not present 

conclusive evidence to differentiate the five species in the individual's space. In congruence with this, similar 

results were published for Liolaemus (Breitman et al. 2011a; Aguilar et al. 2013) and other taxa (see Barata et al.

2012; Ahmadzadeh et al. 2013; Camp et al. 2013). On the contrary, PCA is a great tool for understanding what 
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variables are the most that contribute to the morphological variation (Claude 2008), as well as the interactions 

between variables (Abdi et al. 2013). Continuous variables explained most of the morphological variation in PC1 

for both sexes (DBN, HW, NED), while the variation in PC2 and PC3 was mainly explained by the lepidosis 

variables (SAMB, L4T, VS; Table 3, Fig. 2–3). According to Iezzoni & Pritts (1991), the PCA could be used to 

assess which variables explain most variability between individuals and use them to make other post hoc 

comparative analyses; while Berner (2011), considers that PCA-based approaches are inappropriate for size 

correction and should be abandoned in favor of methods using univariate general linear models, with an adequate 

independent body size metric as covariate.

Taxonomic studies focusing on closely related species and new species descriptions frequently include 

discriminant analysis (e.g., Scolaro et al. 1985; Passos et al. 2009; Medina et al. 2013), and levels of 

misclassification are variable depending on the study group (for Liolaemus examples, see Breitman et al. 2013). 

Linear Discriminant Analysis is often used to emphasize differences between groups with the weights given by the 

prior, which may differ from their prevalence in the dataset (Venables & Ripley 2002; McLachlan 2004) and find 

linear combinations of variables that describe intergroup differences (Claude 2008). The LDA for continuous 

variables standardized by SVL, were not robust enough to detect the five taxa a priori included in this group. The 

misclassification rate was high and showed a clear graphic overlap between some species (L. camarones and L. 

fitzingerii both sexes, Fig. 4, Table 4). Also, LDAs showed the lowest classification error rate for both sexes of L. 

xanthoviridis, but were not effective to classify and assign specimens of L. chehuachekenk and L. shehuen, 

especially between males (Fig. 4, Table 4). On the contrary, these last two species compared with univariate tests 

showed major differences in continuous variables. The species of the L. fitzingerii complex were moderately 

discriminated with LDAs analyses performed with standardized continuous variables, thus under this statistically 

context, this kind of characters are not completely useful for diagnosing cryptic or closely related species. 

Several works have analyzed morphological differences between lizard populations using univariate analyses 

(Lamborot et al. 2003; Metzger & Herrel 2005; Pincheira-Donoso et al. 2007a; Pincheira-Donoso & Scolaro 

2007), but only a few manuscripts used them for a new species description (Vega et al. 2008; Breitman et al. 2011a; 

2011b). This kind of tests allow to analyze simple measurements individually, and they are very easily 

implemented with little knowledge (Claude 2008); they also allow to make adjustments to overcome biases from 

other variables, fulfill statistical assumptions (Harlow 2005), and show which variables are different among the 

species. The univariate results and comparisons among males, showed that most of the differences were mostly 

represented by continuous variables; and some species presented only few differences in head size (e.g., three 

variables for Liolaemus fitzingerii vs. L. camarones, Table 5). On the contrary, multiple univariate comparisons 

between females showed at least one significant difference for lepidosis variables in each comparison, except for L. 

fitzingerii vs. L. camarones, that had no differences (Table 6).

Based on morphological analyses implemented here, some species showed clearly different morphologies, 

while others were almost not possible to differentiate. 1—The species with more differences across comparisons 

were: Liolaemus xanthoviridis (PCA, LDA and univariate analyses with differences in 16 variables), L. shehuen

(LDA and univariate analyses with differences in 14 variables) and L. chehuachekenk (PCA, LDA only for females 

and univariate analyses with differences in 14 variables). Liolaemus xanthoviridis showed for both sexes, the 

lowest LDA classification error rate and the univariate results showed that it has the largest number of variables 

with significant differences compared to the other species. 2—Species that although it was difficult, were detected 

as statistically different are: L. fitzingerii from L. chehuachekenk (PCA, LDA, and univariate analyses with 

differences in six variables) and L. shehuen (LDA and univariate analyses with differences in three variables). 

3—Liolaemus fitzingerii and L. camarones may differ in color pattern and some descriptive measures, but almost 

none of the variables were statistically different. These two taxa showed an overlap in PCA and LDA for 

individuals of both sexes, coupled with univariate analyses that showed no significant differences between females, 

while males only differed in three head variables (HW, HD and RPD). Although coloration pattern could be a 

useful diagnostic character, if it is not analyzed through appropriate and reproducible analyses (e.g., Corso et al.

2012; Teasdale et al. 2013), subjective detected differences on coloration are not strong evidence to hypothesize 

new Liolaemus taxa, especially for species complexes (see Escudero et al. 2012). With all the classical 

morphological analyses implemented here, we detected more significant differences between females than among 

males, even though males are usually used to detect differences and describe new lizard taxa for this and other 

related Liolaemus complexes.
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Although in recent years, numerous lizard papers have approached morphological studies based on multiple 

statistical analyses within the integrative taxonomy paradigm (e.g., Barata et al. 2012; Kaliontzopoulou et al. 2012; 

Vasconcelos et al. 2012; Ahmadzadeh et al. 2013), this approach has been scarcely implemented in Liolaemus

lizards (Aguilar et al. 2013; Breitman et al. 2013). If we compare the performance of the three types of statistical 

morphological analyses we implemented for the Liolaemus fitzingerii group, our PCA results are in agreement with 

Claude (2008) and Harlow (2005) as they proved to be a robust analysis for highly correlated variables, especially 

when performed with associated p-values (Lê et al. 2008). Therefore, to identify the variables that best delimit 

Liolaemus species, we consider PCA a better and more adequate multivariate approach than LDA, to test 

differences between continuous variables. Moreover, in agreement with Berner (2011) we consider that using a 

prior exploration through a PCA followed by univariate analyses would be the most appropriate approach to find 

morphological differences between taxa. Most of the variability detected by our PCA analysis was explained by 

continuous variables, which were also the ones with more variation in the univariate analyses. Although it would 

be tempting to recommend their use, continuous variables should be used with caution, since previous works on 

lizards reported a strong association with different temperatures and latitudes (see Oufiero et al. 2011). On the 

contrary, if the goal of the study is to classify individuals of previously defined groups or Liolaemus species, we 

consider that this analysis is relatively difficult to use with the original variables, because its usage should be 

thorough and careful to meet all the required assumptions. Another constraint in this regard, is that the LDA 

analysis is to classify individuals (Claude 2008), rather than determine which variables differentiate the taxa. The 

LDA was used for comparing specimens that are geographically separated, diagnosed and designated a priori as 

different species, thus while the graphics may seem conclusive for separating taxa, the misclassification rates were 

high for some of them. Consequently, we consider that LDA should be used and interpreted with care and cannot 

be presented as the single morphological analysis to compare taxa and should not be use as the solely analysis to 

support a hypothesis of a new Liolaemus species.

Only a few works used univariate analyses of continuous variables (Pincheira-Donoso et al. 2007a; Pincheira-

Donoso & Scolaro 2007; Vega et al. 2008), or combined continuous and discrete variables (Breitman et al. 2011a; 

2011b), for the assessment of species boundaries and diagnosis of new Liolaemus species. There are also some 

morphological studies on lizards that applied statistical analyses to detected differences in closely related species, 

and in order to perform parametric tests (i.e., ANCOVAs, MANOVAs), have standardized of all variables by SVL 

(e.g., Kaliontzopoulou et al. 2005), but without specifying if this decision was validated on previous corroboration 

of bias produced by variable interactions. As a final consideration, we consider that diagnosis of new Liolaemus

taxa increase their power when they incorporate this univariate analyses (e.g., Breitman et al. 2011a; 2011b), with 

prior models testing the influence or collinearity within morphometric variables, and in combination with other 

lines of evidence, they are very useful to support a new species hypothesis.

Environmental niche modeling analyses. The usage of ENMs for delimiting species in the Liolaemus

taxonomic literature is scarce (Fontanella et al. 2012; Aguilar et al. 2013), although they have been used more in its 

sister genus Phymaturus (Debandi et al. 2012; Scolaro et al. 2013). The environmental niche models presented rely 

on the principle of maximum entropy (Phillips et al. 2006) to calculate the most likely distribution of the studied 

taxa based on presence records (Elith et al. 2011). Therefore modeled area of potential distribution of each species, 

represent a set of unique environmental and climatic conditions for their type localities and surroundings. The 

species of the L. fitzingerii complex for which it was possible to implement ENMs analyses (all except L. 

camarones), showed clear ecological differences between them. Although the sampling scheme we used for 

selecting localities for the ENM analyses could have biased the results, we consider that our decision was based on 

the difficulty of assigning certain individuals to a particular taxon, thus we feel confident on the inferences we can 

make based on these results. Although our work represents a great advance in the knowledge of the ENMs for this 

species complex, the complete picture is still limited, since more sampling is needed to analyze a potential spatial 

overlap of L. camarones with the other taxa.

Previous findings showed a remarkable evolutionary flexibility of thermal biology for Liolaemus genus 

(Espinoza et al. 2004). The Mean Temperature of Wettest Quarter was the most important contributor to three of 

the four species models. These species of lizards are excellent thermoregulators (Medina et al. 2012), so this 

bioclimatic variable might be an important factor in selecting microhabitat (Rodríguez-Serrano et al. 2009) and 

feeding habits (Espinoza et al. 2004). Recently, phylogeneticaly based analyses, suggested that modifications of 

thermal physiology and behavioral compensation of thermal ecology, including microhabitat selection is wide 
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spread in Liolaemus (even in sister species, see Rodríguez-Serrano et al. 2009). The Precipitation of Wettest Month 

is also a variable with high contribution for three of the four studied species. On the contrary, previous works did 

not find a phylogenetic signal for rainfall between closely related Liolaemus species (Medina et al. 2012). The 

precipitation influence on Liolaemus species have not been studied from an eco-physiological approach as has been 

done with the temperature, hence we consider necessary future works to evaluate how these type of variables could 

influence ecophysiological processes, activities or their microhabitat (e.g., foraging and oviposition).

Both the ENMs, and statistical analyses (PCA and MANOVA) performed on bioclimatic variables, showed 

that these four species have differences in environmental conditions characterizing their ecological niches. Many 

studies have used ecological niche models to assess differences between close taxa (Gvoždík et al. 2008; Crespi et 

al. 2010; Rivera et al. 2011; Scolaro et al. 2013). Moreover, a few studies on contact areas between species 

(Martínez-Freiría et al. 2008) and based on few localities (Pearson et al. 2007) were able to find differences in 

bioclimatic variables. Consequently, we consider that this kind of analyses could contribute to the effort of 

detecting differences between very closely related taxa within the integrative taxonomy paradigm.

Integrative taxonomy. In summary, the results of multivariate and univariate morphological analyses based 

on continuous and meristic variables for both sexes, showed moderate differences in four species (Liolaemus 

chehuachekenk, L. fitzingerii, L. shehuen and L. xanthoviridis) out of the five included in the L. fitzingerii complex. 

Additionally, the ENMs also differentiated these four species from each other. Liolaemus camarones is only known 

from its type locality, which precluded niche model analyses, and all the surrounding areas are considered as part of 

the distribution range of three of the other species of this complex; and morphological analyses implemented here 

did not detect statistically significant differences from the other four species of this complex. Thus, based on the 

integrative taxonomy approach, our combined morphological results and environmental niche models strongly 

support the species’ status of four previously described taxa within the L. fitzingerii complex and no support was 

found for the hypothesis of L. camarones being a different species. This work has demonstrated the utility of 

repeatable and objective analyses within the integrative taxonomy paradigm for a species complex of the lizard 

genus Liolaemus, providing robustness to hypothesis testing and diagnoses. 

The main challenge for implementation of multiple repeatable analyses to support the diagnosis of a new 

species most probable is the selection of variables, analyses and operational criteria. This decision could lead to 

different results, especially on taxa with closely related or cryptic species (see Bickford et al. 2007; Vasconcelos et 

al. 2012) with wide geographic distribution, or with the use of the term “morphospecies” (sensu Krell 2004). In 

consonance with such problems, several papers presented the current problems of describing new species as a stage 

of taxonomic crisis (Dayrat 2005; Agnarsson & Kuntner 2007; Wägele et al. 2011) and several methods’ reviews, 

as well as new theoretical proposals have been postulated to deal with the challenge of delimitating species 

(Marshall & Sites Jr 2003; Padial et al. 2010). Morphological analyses performed with the authors’ commitment to 

give appropriate treatment of variables and validation of statistical assumptions, undoubtedly contribute to test the 

validity of new taxa hypotheses and also to the repeatability that science advocates (see Kaiser et al. 2013). 

Furthermore, the ENMs methods are widely used to find bio ecological differences between taxa (e.g., Rivera et al.

2011; Debandi et al. 2012; Wooten & Gibbs 2012), and based on the results presented here we consider that if used 

as additional analyses, they may contribute to differentiate cryptic species. These complementary analyses 

associated to species descriptions, are needed to sustain robust new species hypotheses and taxonomic changes, 

since this basic information has major impact on biogeographic (Corbalán & Debandi 2008; Vera-Escalona et al.

2010) and conservation (Corbalán et al. 2011; Katzner et al. 2011a; 2011b) studies. Recent analyses that included 

museum-based collections data showed numerous cases of lizard population extinctions worldwide (Sinervo et al.

2010), which coupled with the taxonomic crisis (Agnarsson & Kuntner 2007; Wägele et al. 2011), enhance the 

value of the results of the integrative taxonomy approach presented here and will make a useful contribution to new 

described Liolaemus taxa in the future.
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APPENDIX. Specimens examined. Methods applied are given in bold capitals, country in plain capitals, provinces in italics 
capitals, departments in regular italics, species in bold italics and localities in plain text.

MORPHOLOGY: Liolaemus camarones (n = 23):—ARGENTINA: CHUBUT: Florentino Ameghino: Bahía Camarones, 
Playa Elola (44°50'19.0''S 65°43'23.0''W): LJAMM-CNP 2464, 2500, 2502-4. 1 Km S from entrance Playa Elola Road 
(44°48'56.3''S, 65°44'43.3''W): LJAMM-CNP 15128-30. 3 Km S from entrance Playa Elola Road (44°49'55.0''S, 
65°44'12.8''W): LJAMM-CNP 15122-4, 15131-35. Provincial Route 1, 31 km S Camarones, 1 km E La Isabel Ranch entrance 
(44°55'55.1''S, 65°59'19.0''W): LJAMM-CNP 11736-39, 11744-46. MORPHOLOGY & ENM: Liolaemus chehuachekenk

(n = 34):—ARGENTINA: CHUBUT: Cushamen: Provincial Route 13, 8 km N El Molle (42°09'02.7''S, 69°33'37.0''W): 
LJAMM-CNP 5926-32. Gastre: Provincial Route 58, 13.5 km N El Escorial (42°59'34.5''S, 68°35'35.6''W): LJAMM-CNP 
12356, 12383-90, 12393, 12395-96, 12398-99, 12409-12, 12959. Provincial Route 4, 47.6 km W Gan Gan (42°25'58.6''S, 
68°48'35.8''W): LJAMM-CNP 6742-43. Provincial Route 49, 30 km S Gastre (42°31'02.5''S, 69°12'8.5''W): LJAMM-CNP 
5961-65. Languiñeo: Provincial Route 12, 3 km E Gualjaina river bridge (42°40'50.6''S, 70°22'20.1''W): LJAMM-CNP 8851. 
Liolaemus fitzingerii (n = 25):—ARGENTINA: SANTA CRUZ: Deseado: 1 Km W Tellier (47°39'12.5''S, 66°03'05.8''W): 
LJAMM-CNP 2918-20, 4891. Provincial Route 14, 3.9 km E junction Provincial Route 68, 2.4 km E El Polvorin Ranch 
(47°07'03.4''S, 66°28'46.9''W): LJAMM-CNP 9681-90, 9692. Provincial Route 47, 55.4 km SW Tellier, 3 km S over Deseado 
river bridge (47°51'01.2''S, 66°37'19.8''W): LJAMM-CNP 9828-31. National Route 3, junction with Deseado river 
(47°12'38.0''S, 67°16'47.6''W): LJAMM-CNP 2891-92, 4875-77. Provincial Route 43, 30 km S Pico Truncado (46°54'27.7''S, 
67°33'21.3''W): LJAMM-CNP 4612. Liolaemus shehuen (n = 33):—ARGENTINA: CHUBUT: Telsen: Laguna de Vaca path, 
3.5 km S junction Provincial Route 4 (42°27'52.6''S, 67°19'51.6''W): LJAMM-CNP 6943-48, 6950-52, 6961. Laguna de Vaca 
road, 2 km S junction Provincial Route 4 (42°23'20.2''S, 67°33'41.3''W): LJAMM-CNP 11023-37. Provincial Route 4, 65.5 Km 
W Telsen (42°22'03.8''S, 67°39'22.0''W): LJAMM-CNP 5520, 5521-25, 5665. Provincial Route 4, 80 km W Telsen 
(42°25'55.0''S, 67°46'4.0''W): LJAMM-CNP 6883. Liolaemus xanthoviridis (n = 32):—ARGENTINA: CHUBUT: Florentino 

Ameghino: Provincial Route 1, 1 Km S Dos Pozos (43°55'37.0''S, 65°24'10.0''W): LJAMM-CNP 2220, 2284-85, 2527-30. 
Provincial Route 1, 10 Km S Dos Pozos (43°59'53.0''S, 65°25'26.0''W): LJAMM-CNP 2427-28, 2505-08, 2658. Provincial 
Route 1, 2.5 Km N Dos Pozos (43°53'15.0''S, 65°26'51.0''W): LJAMM-CNP 2221-2222. Provincial Route 1, 12 Km S Dos 
Naciones ranch (43°47'53.5''S, 65°27'49.3''W): LJAMM-CNP 2418, 2689. Provincial Route 1, 18 km S Dos Pozos Postal 
Office (44°02'01.4''S, 65°28'43.5''W): LJAMM-CNP 14341-42. Provincial Route 32, 4 Km from junction Provincial Route 2 
(44°02'01.0''S, 65°31'37.0''W): LJAMM-CNP 2204. Rawson: Isla Escondida Bay (43°41'55.0''S, 65°20'23.0''W): LJAMM-
CNP 2201-03, 2487, 2551. Isla Escondida beach (43°41'04.4''S, 65°21'57.8''W): LJAMM-CNP 14350. Isla Escondida beach 
(43°41'04.4''S, 65°20'29.2''W): LJAMM-CNP 14351-55. ENMs: Liolaemus chehuachekenk (n = 19):—ARGENTINA: 
CHUBUT: Cushamen: Provincial Route 13, 8 km N El Molle (42°10'24.9''S, 69°33'51.3''W): BYU 48202-03, FML 15105-06, 
MLP.S 2535-36. Gastre: Provincial Route 50, 10 km N El Escorial (43°00'00.2''S, 68°34'14.1''W): LJAMM-CNP 5939, 5936-
38. Provincial Route 58, 39.6 km NE junction Provincial Route 40 (43°07'05.0''S, 68°38'54.2''W): LJAMM-CNP 8832-34. 
Provincial Route 58, 23 km SW junction Provincial Route 59 (43°14'31.6''S, 68°38'20.0''W): LJAMM-CNP 8825-30. 
Liolaemus fitzingerii (n = 18):—ARGENTINA: SANTA CRUZ: Deseado: National Route 3, 10 Km S Caleta Olivia 
(46°33'43.8''S, 67°27'3.6''W): LJAMM-CNP 2895-97, 4879. National Route 3, 6 km N Tres Cerros (48°03'00.8''S, 
67°37'38.3''W): LJAMM-CNP 4637-39. National Route 3, 7 Km N Tres Cerros (48°04'05.9''S, 67°37'50.7''W): LJAMM-CNP 
2871-72. National Route 3, 6 km N Tres Cerros (48°04'03.2''S, 67°37'5.6''W): LJAMM-CNP 4675-78. National Route 3, 10 
Km S Caleta Olivia (46°33'43.8''S, 67°27'3.6''W): BYU 47299, 47300. National Route 3 at Km 2107, ~7 Km N Tres Cerros 
(48°04'05.9''S, 67°37'50.7''W): BYU 47295-96. Magallanes: Provincial Route 47, 19.5 km S junction Provincial Route 87 
(48°22'42.1''S, 67°25'18.8''W): LJAMM-CNP 9983. Liolaemus shehuen (n = 12):—ARGENTINA: CHUBUT: Telsen: Laguna 
de Vaca (42°29'45.1''S, 67°22'53.7''W): LJAMM-CNP 3225. Laguna Sepaucal, path from road to Colonia Sepaucal 
(42°17'45.6''S, 67°22'17.5''W): LJAMM-CNP 3223-24. Provincial Route 4, 41.6 Km W Telsen (42°22'6.9''S, 67°24'7.9''W): 
LJAMM-CNP 5596-99. Road, 45.2 Km W Telsen (42°22'01.7''S, 67°27'38.8''W): LJAMM-CNP 5466. Provincial Route 4, 53.5 
km W Telsen, Mallin Grande Ranch (42°22'54.8''S, 67°28'42.0''W): LJAMM-CNP 6738-40. Provincial Route 4, 74 km E Gan 
Gan (42°22'48.2''S, 67°29'29.1''W): LJAMM-CNP 5465. Liolaemus xanthoviridis (n = 26):—ARGENTINA: CHUBUT:

Florentino Ameghino: Provincial Route 1, 11 km S Dos Pozos, 2 km S La Perla Ranch y Punta Tombo entrance (43°57'57.7''S, 
65°24'21.2''W): LJAMM-CNP 14475-84. Provincial Route 1, 2 km S juntion Provincial Route 32, Santa Magdalena ranch 
(44°03'03.5''S, 65°28'14.9''W): LJAMM-CNP 14497. 20 Km S Provincial Routes 32 y 1 junction (44°10'27.0''S, 
65°25'22.0''W): MLP.S 2460. Rawson: Provincial Route 1, junction Bahia Isla Encondida road (43°40'09.4''S, 65°25'25.6''W): 
LJAMM-CNP 14486-89. Isla Escondida Bay (43°41'55.0''S, 65°21'4.5''W): LJAMM-CNP 2485, 2488. Isla Escondida Bay 
(43°42'29.5''S, 65°21'22.9''W): LJAMM-CNP 14485. Isla Escondida Bay (43°41'55.0''S, 65°21'4.5''W): BYU 48119; MLP.S 
2461.
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