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ABSTRACT: A kinetic Monte Carlo model of a reversible addition−
fragmentation chain transfer (RAFT) process is presented. The
algorithm has been developed and implemented in Julia for the three
main RAFT theories under current discussion (slow fragmentation,
intermediate radical termination, and intermediate radical termination
with oligomers). Julia is a modern programming language designed to
achieve high performance in numerical and scientific computing. Thanks
to a careful optimization of the code, it is possible to simulate a RAFT
reaction scheme in short computing times for any of the three theories.
The code is benchmarked against other programming languages
(MATLAB, Python, FORTRAN, and C), showing that Julia presents
advantages for this particular system. The model offers an efficient
method for predicting average properties and molecular weight
distributions of the polymer species, including the bivariate molecular weight distribution of the intermediate two-arm adduct.
The proposed model can also be employed to obtain additional detailed information regarding the polymer microstructure at any
reaction time.

1. INTRODUCTION

Controlled radical polymerization (CRP), also called reversible-
deactivation radical polymerization (RDRP) according to the
IUPAC recommendation,1 offers the possibility of synthesizing
materials with controlled molecular structures and well-defined
architectures in operating conditions that are much less
demanding than those required for living ionic polymer-
izations.2 For example, some CRP techniques allow obtaining
copolymers with controlled molecular weight, polydispersity,
composition, and chain architecture under industrial con-
ditions.3 The distinguishing feature of this kind of polymer-
ization is the establishment of a dynamic equilibrium between
propagating radicals and a dormant species. Since this
equilibrium is shifted toward the dormant species, the number
of active chains is several orders of magnitude smaller than that
of dormant species. As a result, chains grow slowly and at
approximately the same speed, resulting in a narrow molecular
weight distribution.
In order to establish this active−dormant species equilibrium,

different approaches may be used. Depending on the type of
approach, three main CRP techniques can be identified:
nitroxide-mediated polymerization (NMP), atom transfer
radical polymerization (ATRP), and reversible addition−
fragmentation chain transfer (RAFT). In this work we focus
on RAFT polymerization. This is a very versatile CRP
technique due to its compatibility with a wide range of
monomers and its relatively mild reaction conditions require-
ments.4

Even though considerable effort has been directed at
understanding the reaction steps of the RAFT process,
fundamental questions regarding the kinetic mechanism remain
without a definite answer.5,6 The basic RAFT polymerization
mechanism is generally accepted. However, it has been
observed that the propagation rate is slowed down by
increasing the concentration of some chain transfer agents
(CTA), notably dithiobenzoate RAFT agents.7 A definite
explanation of this characteristic retardation effect has yet to be
established. The three main theories that have been proposed
to explain this behavior are the following:
1. The slow f ragmentation (SF) model7,8 assumes that the

retardation effect is due to a slow fragmentation of the
intermediate two-arm adduct. The model predicts a rather
small value for the fragmentation constant (kf), which in turn
leads to a large equilibrium constant (K = ka/kf). This is
consistent with the value of K found in experimental works.
However, the model predicts concentrations of propagating
radicals and intermediate adduct radicals that differ significantly
from those found in the experiments.
2. In the case of the intermediate radical termination (IRT)

model,9 the rate retardation is assumed to be caused by a cross-
termination reaction between the adduct radicals and
propagating radicals. This theory accounts for the presence of
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the three-arm polymer detected experimentally, something the
SF theory does not do, but overestimates its concentration.
3. The intermediate radical termination with oligomers (IRTO)

model10 assumes that the cross-termination reaction postulated
in the IRT theory occurs only between adduct radicals and
oligomeric propagating radicals (up to two monomers long).
The value of the equilibrium constant and the concentrations of
the different species predicted by this model are in agreement
with the experimental results. However, this theory predicts
that the retardation effect should occur over the full conversion
range. There is experimental evidence that would seem to
contradict this assertion.11

In this scenario, mathematical modeling becomes a valuable
tool, not only for helping to elucidate the mechanisms of the
RAFT polymerization, but also as a partial substitute and
complement of complex and time-consuming laboratory
experiments. Additionally, it is very useful for the optimization
of the synthesis process. In general, it is possible to divide the
reported modeling techniques used to simulate polymerizations
reactions into two main groups: stochastic and deterministic
methods. The latter are based on the numerical solution of the
underlying set of differential/algebraic equations associated
with the population balances of the system. These methods
have the general advantage of providing reliable and
reproducible results in relatively short computing times. Their
main disadvantages are (i) the amount of information that can
be obtained on the microstructure of the polymer chains is
limited in comparison to stochastic simulations, (ii) the
formulation of the system of equations can result in very
large, convoluted, and stiff systems, (iii) the existence of
numerical noise and error, and (iv) sometimes the need to use
simplification techniques, with the consequent loss of general-
ity.
Several authors have addressed the modeling and simulation

of CRP systems using deterministic techniques. There are
thorough reviews that focus on the different mathematical
modeling approaches for the different types of CRP.12−14

Among the different articles on RAFT polymerization, it is
important to highlight the work by Barner-Kowollik et al.,8,15

who have modeled and studied RAFT polymerizations using
the PREDICI16 commercial software for different chain transfer
agents and proposed the SF theory as a mechanism.
Konkolewicz et al.10,17,18 also modeled the complete molecular
weight distribution (MWD) in RAFT polymerization processes
using the IRTO theory. Zapata-Gonzaĺez et al.19,20 modeled the
MWD in RAFT processes by direct integration of the complete
set of population balances. They studied the application of
numerical solutions to the direct integration of the population
balances, using simplifying assumptions in order to reduce the
complexity of the differential−algebraic equation (DAE)
system. Fortunatti et al.21,22 used probability generating
functions (pgf) to model RAFT polymerizations. Their model
was able to accurately predict the complete MWD and the
bivariate MWD of the two-arm adduct. The use of the pgf
technique allowed obtaining accurate results in short computa-
tional times.
Stochastic modeling approaches are mainly represented by

the Monte Carlo (MC) technique. The advantage of this
approach is that it is relatively simple to implement and can
provide extremely detailed information about polymer micro-
structure and chain topological architecture that is usually not
available with deterministic solutions. However, a disadvantage

of the MC technique is the typically high computational cost
required for obtaining accurate results.
MC methods have been extensively used in polymer reaction

engineering for the prediction of distributed and morphological
polymer properties. There are two recent reviews detailing the
applications of these methods in polymer science.23,24 The two
main approaches for MC simulations of polymerization kinetics
are based on the pioneering works of Gillespie25 and Tobita.26

The vast majority of existing stochastic simulation studies in
polymer science are based on their algorithms.
Drache et al.27 presented a MC algorithm to study the

retardation effect of cumyl dithiobenzoate mediated methyl
acrylate (MA) bulk RAFT polymerization. They used this
model to estimate rate coefficients through fitting of
experimental data. Drache and Drache28 introduced a universal
Monte Carlo simulator, termed “mcPolymer,” that was used to
simulate various examples of CRP, including the three most
important mechanisms (NMP, ATRP, and RAFT). They
focused on the software architecture of the program, including
its data management and optimization approaches. Chaffey-
Millar et al.29 worked on a parallelized Monte Carlo
implementation for the simulation of a complex RAFT
polymerization example. The parallelized approach consisted
in subdividing the initial amount of simulated molecules into
smaller fractions and performing a parallel MC simulation for
each of these fractions on the different workers of the available
multicore processor. The simulations were performed for a
prespecified fraction of the total reaction time (called
“synchronization time”). After this synchronization time had
elapsed, the fractions were merged, the molecules were
subdivided again into new fractions, and they were sent to a
worker to perform the MC simulation again. This procedure
was repeated until the final reaction time was reached.
Regarding computation times of the MC algorithms, the final

simulation time depends on several variables, such as the
reaction mechanism, reaction system, rate parameters, initial
concentrations, final reaction time (or conversion), number of
molecules, and computer hardware. A direct comparison of the
different algorithms needs to be performed on the exact same
system in order to get conclusive results. Nevertheless, some
typical reaction times are provided: Drache et al.27 reported
computation times of 14 min for a RAFT system considering
the IRT mechanism. They used 5 × 108 molecules for this
simulation and reported that their conditions needed 8.95 ×
108 MC iteration steps. The Monte Carlo simulations were
executed by the mcPolymer program (Windows and Linux),
programmed in C++ with a Tcl interface. The calculations were
performed on a computer cluster comprising 20 CPUs (AMD
Athlon XP 1900C to AMD Athlon 64 3200C), running under
SuSE-Linux. Barner-Kowollik et al.29 reproduced, to the best of
their knowledge, the RAFT system presented by Drache et al.27

with an algorithm that ran in approximately 450 s for a system
with 1 × 109 molecules. They introduced a parallelization
approach for the algorithm that, for a system size of 1 × 1010

molecules, produced simulation times of around 5000 s for a
single core simulation, 500 s for a simulation over eight cores,
and 450 s for a simulation over 16 threads (eight cores with
Intel’s Hyper-Threading technology). Drache and Drache28

reported several simulation time values for different CRP
systems. Using 1 × 109 molecules, they reported 61 s and 3.4 ×
108 iteration steps for NMP, 725 s and 2.7 × 109 iteration steps
for ATRP, and 400 s and 1.05 × 109 iteration steps for RAFT
with the IRT mechanism. They also implemented a parallelized
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algorithm for the RAFT polymerization with computation
times similar to those reported by Barner-Kowollik et al.29 They
analyzed the performance of this approach and concluded that,
compared to a single worker implementation, a larger number
of molecules could be used in the parallelized algorithm to
perform a simulation in a shorter time. The larger number of
simulated molecules resulted in smoother concentration−time
curves and better data for statistical analyses. However, the
underlying single MC simulation was not accelerated, and each
processor still needed a certain number of molecules to
produce reliable results.28 In their tests, these authors could not
detect any influence of the synchronization time on the
simulation results. This leads to the conclusion that a single
split of the simulated molecules and a single merge at the final
reaction time would lead to the same results.
Using an approach completely different from that of

Gillespie, Tobita26,30 developed a new class of MC method
that employed appropriate probability density functions. This
method was used for the prediction of macromolecular
characteristics of the polymer, such as the full molecular weight
distributions of the dead and live polymer chains and the spatial
distributions of the branched and cross-linked polymer chains.
The approach led to several publications covering the topics of
branching and cross-linking in batch and continuous reactors,
emulsion polymerization, copolymerization, studies of degra-
dation by random scissions, and cross-linked networks
syntheses among others.
In this work, a kinetic MC model of a RAFT reaction scheme

was developed and explored in a novel programming language
called Julia. The use of this language in combination with
engineering of the program code allowed significant reductions
in computational time. The underlying algorithm is based on
the modeling technique developed by Gillespie.25 Several code
optimization techniques were applied to improve the perform-
ance of the simulation. The so-called exact method was used,
where each molecule in a control volume of the reaction system
is individually represented in the algorithm, and each chemical
reaction is explicitly simulated while the time evolved is
updated at each iteration step. Strategies other than the exact
method have been reported, such as the τ-leaping method,31

presented by Gillespie. This technique allows decreasing
simulation time at the cost of lower accuracy. These strategies
were not included in this work for the sake of obtaining the
highest possible level of detail, but could be considered in
future works. The three mechanistic theories of RAFT
polymerization under discussion (SF, IRT, and IRTO) were
simulated for different conditions and compared using this
model.
The present work is structured in the following manner: first,

a quick overview and introduction of the Julia programming
language is given. Second, the algorithm is described and
explained from a computational and mathematical point of
view. Some of the details and strategies used to improve the
performance of the implementation are also explained. Next,
the effect of the number of molecules on the prediction of the
average properties and the full MWD for the three theories is
discussed. Finally, the results from the implementation of the
same algorithm in four other languages (MATLAB, Python,
FORTRAN, and C) are compared.

2. METHODOLOGY
2.1. Julia Programming Language. Choosing a suitable

programming language becomes very important when working

with time-consuming algorithms. This is the case of MC
simulations, which basically consist of long iteration loops that
become computationally expensive. Additionally, for the
particular implementation considered in this work, large arrays
for data storage are required.
The first and most successful numerical computing language

was FORTRAN (short for “formula translating system”)
released in 1957. FORTRAN accomplished remarkable
advances toward the “translation” of high-level formulas into
low-level machine code. The acceptance of FORTRAN in
many areas of high-performance computing to this day, such as
the LAPACK package for numerical linear algebra, is proof of
its outstanding success.
The outlook of computing in general has changed radically

since then. Most modern scientific computing languages such
as MATLAB and its open-source alternatives Octave and
SciLab, together with R, Python (with NumPy), and others,
have gained widespread popularity over the years, and they all
fall into the category known as dynamic languages or
dynamically typed languages. This means that in these
languages programmers write simple, high-level code without
being required to declare variable types (such as int, float, or
double). Declaration of variable types is characteristic of classic
static languages like C, C++, and FORTRAN, also known as
statically typed languages. This apparently minor difference
gives dynamic languages a major benefit in programmer’s time
(productivity), at the relative expense of usually longer
execution times (performance).
Julia32 is a modern high-level dynamic programming

language designed to achieve high performance in technical,
numerical, and scientific computing. The language was
designed and developed with the objective of providing a
performance similar to that of C while using a high-level
programming style. In order to achieve this, its developers
combined several technologies, such as “multiple dispatch,”
“just-in-time (JIT) compilation,” and “low-level virtual machine
(LLVM) compiler infrastructure,” among others.33,34

Julia may be seen as an open source high-performance
alternative to languages like MATLAB, R, and Python, in
addition to being seen as a high-productivity alternative to C, C
++, and FORTRAN. Moreover, Julia is better suited for general
purpose programming tasks than traditional scientific languages
(C and FORTRAN), because it can be used not only for
prototyping numerical algorithms but also for deploying them.
On top of providing excellent performance, the resulting code
is easier to work with, modify, and maintain.

2.2. Monte Carlo Simulation. The algorithm used in this
work, based on the algorithm presented by Gillespie,25 consists
of six steps: (1) initialization, (2) reaction selection, (3) time
step calculation, (4) reaction simulation, (5) update, and (6)
iteration, which are described below.

Step 1. Initialization. The MC simulation follows the
evolution of the population of molecules in a control volume of
the reaction medium. The system is initialized by setting the
total number of molecules (N) present in the control volume at
time zero (in other words, setting the initial size of the control
volume) and the value of the kinetic constants. In the MC
simulation, reaction rates are defined in units of number of
reacted molecules per unit time, according to an expression of
the type

= =R k X i N1, ...,i i
c

R (1)
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where Ri is the reaction rate of the ith reaction, ki is the
microscopic reaction rate coefficient, Xc is the number of
combinations of molecules that may take part in the ith
reaction, and NR is the number of reaction steps of the kinetic
mechanism. Experimental reaction rates are usually given in
units of moles of reacted molecules per unit volume and unit
time, and are functions of the concentrations of the reacting
species; experimental kinetic constants (kexp) are expressed in
the corresponding units. Therefore, it is necessary to convert
the reported experimental reaction rate coefficients to the
microscopic reaction rate coefficient for each reaction.
Denoting Avogadro’s number as NA and the control volume
of the system as V, this rate coefficient conversion is as
follows.25

For first order reactions

=k kexp (2)

For bimolecular reactions

=k
k
N V

exp

A (3)

for different reacting species and

=k
k

N V
2 exp

A (4)

for identical reacting species.
The control volume of the system is determined by N and

the density of the reaction medium. The density value is an
experimentally obtained physical quantity, while N is chosen by
the user. The value of N is critical in the MC technique since it
affects the performance, reliability, and reproducibility of the
simulation. The selection of the appropriate value of N is
discussed later on.
The reaction rate of the ith reaction is given by eq 1. For the

reactions simulated in the present work, the computation of the
reaction rates can be summarized as follows.
For first order reactions

=R k ni i i (5)

For bimolecular reactions

=R k n ni i i j (6)

for different reacting species and

=
−

R
k n n( 1)

2i
i i i

(7)

for identical reacting species.
In these expressions, ni and nj are the number of molecules of

species i and j. In eq 5 ki has units of s
−1, while in eqs 6 and 7 its

units are s−1·molecule−1.
Step 2. Reaction Selection. The algorithm continues by

choosing the next reaction that will take place in the system.
This selection is random in nature but according to
probabilities obtained from the reaction rates calculated in
step 1. According to Gillespie,25 the occurrence probability (Pi)
of the ith reaction is defined as

=
∑ =

P
R

R
i

i

i
N

i1
R

(8)

Reaction μ will be selected when the following inequality is
satisfied:

∑ ∑< <
μ μ

=

−

=

P r P
i

i
i

i
1

1

1
1 (9)

In this expression, r1 is a uniformly distributed random number
in the interval [0, 1). Random number generation in Julia is
done via the SIMD-oriented fast Mersenne twister (SFMT)
algorithm. This version of the Mersenne twister (MT)
pseudorandom number generator is twice as fast as the original
MT and has better dimensional equidistribution.35

Following this procedure exactly as has been described, Ri
and Pi would need to be evaluated in each iteration as expressed
by eqs 5−8. This is not computationally efficient for two
reasons: (1) Not all the Ri values are modified in each iteration.
Therefore, there is no need to update all of them but only those
affected by the changes in the value of ni. (2) Floating-point
division as expressed in eq 8 is not computationally efficient. It
should be noted that the MC simulation involves millions of
repetitions of the iteration loop. Therefore, the time spent in
any operation is very significant.
The first problem has been addressed in the literature.36 A

reported solution consisted of introducing a dependency graph
which lists the reaction rates that depend on the outcome of
each reaction, enabling the algorithm to identify and modify
only those reaction rates which require updating. A similar
approach is used in this work, but instead of using a
dependency graph to store additional information, the reaction
rates are directly and explicitly updated in the same block of
code where the update of the number of molecules is
performed (step 4 of the MC algorithm). This approach
omits the usage of a dependency graph and does not require
any special data structure. Hence, it saves time and memory
space related to the storage and access time to the graph.
Although it requires more code to be written, this code could
be easily autogenerated thanks to Julia’s native metaprogram-
ming capabilities.
For the second problem, instead of generating a uniform

random number in the [0, 1) interval and comparing this
number with every Pi, a more efficient strategy consists of
generating a random number in the interval [0, Rt], where

= ∑ =R Rt i
N

i1
R , and comparing this new random number

directly with the cumulative values of Ri. In this way, there is
no need to perform floating-point divisions in the order of
millions and a considerable performance increase is achieved.
This strategy can be summarized by the following inequality:

∑ ∑< <
μ μ

=

−

=

R r R R
i

i t
i

i
1

1

1
1 (10)

Equation 10 replaces eq 9 for the reaction selection. Another
improvement in this step of the algorithm was introduced by
Cao et al.37 These authors suggested that, in a system in which
there are reactions that occur considerably more frequently
than others, if the most frequent reactions are moved to the
beginning of the reaction search order, the average search depth
when selecting a reaction is reduced and thus computational
time is substantially reduced. For instance, in the case of free
radical polymerizations, propagation reactions are usually the
most frequent ones to take place, while for RAFT polymer-
izations, addition/fragmentation reactions are also very
frequent. This strategy was used in this work.
Finally, Barner-Kowollik et al.29 suggested reducing the

complexity of the reaction selection by using a binary tree data

Industrial & Engineering Chemistry Research Article

DOI: 10.1021/acs.iecr.6b01639
Ind. Eng. Chem. Res. 2016, 55, 8534−8547

8537

http://dx.doi.org/10.1021/acs.iecr.6b01639


structure. This approach was not used in this work due to the
rather small number of reactions and a high capability of
ordering the most frequent reactions beforehand. However, the
approach could be appropriate for more complex polymer-
izations systems, with a larger number of reactions and more
widely scattered reaction probabilities.
Step 3. Time Step Calculation. Once the reaction has been

selected, the reaction time (t) needs to be updated in order to
consider the amount of time that has elapsed between the
occurrence of this event and the previous reaction in the
system. Following the original Gillespie25 algorithm, this is
done via t = t + Δt, where

Δ =t
r

R
ln(1/ )

t

2

(11)

In eq 11, r2 is another random number generated from a
uniform distribution. Profiling results of preliminary simu-
lations showed that the line of code where eq 11 was performed
was one of the most expensive lines of the entire simulation.
Therefore, its analysis and improvement were worthwhile. It
should be noted that profiling data was acquired using Julia’s
built-in profiler.
One may notice that eq 11 indicates that the time increment

is a random number obtained from an exponential distribution
with a rate parameter λ = Rt. That is

Δ = =t e
e
RR

t

1
t (12)

Here, eRt
is a random number generated according to the

exponential distribution with λ = Rt, and e1 is a random number
generated according to the exponential distribution with λ = 1.
Taking advantage of Julia’s standard library, it is possible to

generate random numbers from an exponential distribution
with λ = 1, which is e1 in eq 12. The elimination of the
logarithm calculation in each iteration improves considerably
the simulation time.
Step 4. Reaction Simulation. In order to carry out the

simulation of the selected chemical reaction, the molecules that
will participate in this reaction are chosen in a random way. For
instance, for a reaction between species A and B, a molecule of
A and a molecule of B are randomly selected from the
population of A and B in the control volume. The computation
time required for the execution of this step, the random
selection of the reacting molecules, is substantial in the total
running time of the algorithm. Barner-Kowollik et al.29 showed
that the data structures used to represent and store the different
species have a strong influence on this execution time.
Therefore, the strategies used are worth explaining.
When the reactant species are unimeric, all molecules of the

same species are identical, and randomly choosing a molecule is
trivial. Hence, unimeric species can be represented in the
algorithm by a single integer variable which stores the number
of molecules of a particular species present in the control
volume.
The case of polymeric reactants is more complicated because

these molecules can have different chain lengths. For example, a
polymer of chain length n is different from another one of chain
length m, even though both belong to the same species. Under
these circumstances, there are various options for the
representation of these molecules in the algorithm. Two of
them will be further explored.

The first option consists of storing each molecule explicitly in
a one-dimensional array. The index of the array corresponds to
the molecule identity, and the value corresponds to the chain
length associated with it. For example, if P is an array that stores
the dead polymer molecules, P(3) = 100 means that the third
dead polymer molecule has a chain length of 100. With this
option, the selection of random molecule has O(1) time
complexity but O(N) space complexity. This highly desirable
constant time complexity means that the time needed for
choosing a molecule is independent of the number of molecules
in the array and is thus independent of the array length. This is
accomplished at the expense of a linear space complexity, which
means that the size needed to store the array in memory
increases linearly with the number of molecules.
The second option consists of storing a compressed

representation, aiming at reducing storage for cases where the
number of molecules is large enough to produce a memory
overflow error or the computer runs out of memory. This is
done at the expense of longer computation times. There are
different data structures that would allow storing this
compressed data. In this work a so-called linear array
representation has been implemented. In this representation
the index of the array corresponds to the chain length and the
value corresponds to the number molecules of that length
present in the system. In this case, P(3) = 100 would mean that
there are 100 dead polymer molecules of chain length 3. For
this situation, choosing a random molecule requires performing
a linear search through the array with O(N) time complexity
but only O(nmax) constant space complexity, where nmax is the
maximum chain length of the species being simulated.
Both options were implemented, and the results obtained

with both of them were compared. It is worth noting that other
representations exist that have been implemented by other
authors.29,38 These options might be considered for more
complex polymerization reactions in future works.
Once the reactant molecules have been selected, the reaction

is simulated. This step is straightforward and only requires
simple arithmetic. First, the number of molecules of the reacted
species are subtracted from the control volume and, in a similar
manner, the produced species are added to the system. Second,
if there are polymeric species involved, the storage arrays need
to be updated.

Step 5. Update. After the selected reaction has been
simulated, the quantities of the molecules involved in that
reaction have changed and therefore the reaction rates need to
be updated. As explained before, since only a given number of
species participate in the selected reaction, not all reaction rates
need to be updated. In order to avoid redundant arithmetic
operations, only those reaction rates which depend on the
number of molecules of the species that were involved in the
previous reaction are updated; the rest remain unchanged.

Step 6. Iteration. All the steps described up to this point
correspond to one iteration of the algorithm. We then repeat
from step 2 (Reaction Selection) until a stopping criterion is
met. Common stopping criteria used were a final reaction time
or conversion reached.

2.3. Computer Hardware and Software. All the
simulations implemented in this work were run on a regular
desktop computer equipped with an Intel Core i5-3330
processor running at 3 GHz and with 8 GB of RAM memory.
Julia Language version 0.3.10 was used to run the Monte

Carlo simulations, and the Gadfly v0.3.12 package within the
Julia environment was utilized for creating the plots. gPROMS
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v3.5.3 was used for the deterministic simulations. The
algorithm performance comparison was performed using
MATLAB version R2011a, and the C and FORTRAN codes
were compiled using the GNU Compiler Collection (GCC)
version 4.9.2.

3. MATHEMATICAL MODEL
Given the theoretical nature of this work, the kinetic
mechanism and the values of the kinetic constants used for
the simulation are those typically found in the literature. The
mathematical model is based on the kinetic mechanism
indicated by the equations listed in Table 1.

The chemical species involved are initiator (I), monomer
(M), active radicals with n units of M (Rn

•), chain transfer agent
(T), inactive radicals with n units of M (TRn), adduct radicals
with two arms of lengths n and m (RnṪRm), and dead polymer
chains of length n (Pn). The same set of constants (ka and kf)
was used for both the pre-equilibrium and the core equilibrium;
nevertheless, using a different set of values for each of these
reaction stages would be straightforward and easily accom-
plished. The initiation constant was assumed to be equal to the
propagation constant (kpi = kp), and the initiator efficiency is
denoted as f. The simulation of the initiator decomposition
reaction requires additional explanation due to the presence of
the initiator efficiency factor ( f). Once this reaction has been
selected to be simulated, the number of molecules of the
initiator is subtracted by 1 from the control volume. After this
step an additional random number in the range [0, 1) is
generated to take into consideration the efficiency factor. If this
random number is less than or equal to f, the reactions
proceeds as stated on Table 1, adding 2 molecules of active
radicals (R0

•) to the control volume. Otherwise, if the random

number is greater than f, 2 molecules of inert species are added
instead. Kinetic constant values that have been previously
reported in the literature19 were used in this work. These values
are detailed in Table 2.

3.1. Calculation of Molecular Properties. Thanks to the
straightforward implementation of the MC simulation and the
simple representation of polymeric molecules in the algorithm,
the calculations of the number-average molecular weight (Mn)
and weight-average molecular weight (Mw) can be performed
using their well-known definitions:

=
∑ ∑

∑ ∑
M

M jn

n
i j i

j

i j i
jn

w,mon

(13)

=
∑ ∑

∑ ∑
M

M j n

jn
i j i

j

i j i
jw

w,mon
2

(14)

In eqs 13 and 14, subscript i represents the different polymeric
species (i.e., i = active radicals, inactive radicals, adduct radicals,
and dead polymer chains), Mw,mon is the monomer molecular
weight, j is the chain length, and ni

j is the number of molecules
of the polymeric species i with chain length j. The value of
superscript j goes from 1 up to the maximum chain length of
species i within the population of the control volume
The complete molecular weight distribution is calculated in a

similar manner:

=
∑

∑ ∑
jn

jn
MWDj

i i
j

i j i
j

(15)

In eq 15 MWDj is the molecular weight distribution of the
overall population of polymeric species expressed in weight
fraction.

4. RESULTS AND DISCUSSION
4.1. Effect of the Number of Molecules. As mentioned

before, the value of parameter N affects the accuracy and
performance of the simulation. This value has to be small
enough for the simulation to run in a reasonable time while
being sufficiently large to yield reliable and accurate results. In
particular, a large enough value is required so that the species
with the lowest concentrations are present in statistically
significant quantities. However, simulation time increases with
N. This happens because, as can be seen from eqs 5−7, all
reaction rates increase with N, and according to eq 11 larger

Table 1. Kinetic Mechanism of RAFT Polymerization

step reaction

initiation ⎯ →⎯⎯ •I 2R
f k,

0
d

+ →• •R M R
k

0 1
pi

propagation + →•
+

•R M Rn

k

n 1
p

pre-equilibrium + →• •R T TRn
k

n
a

⎯ →⎯⎯⎯ +• •TR R Tn
k

n
0.5 f

⎯ →⎯⎯⎯ +• •TR R TRn
k

n
0.5

0
f

core equilibrium + → ̇•R TR R TRn m
k

n m
a

̇ ⎯ →⎯⎯⎯ +•R TR R TRn m
k

n m
0.5 f

̇ ⎯ →⎯⎯⎯ + •R TR TR Rn m
k

n m
0.5 f

termination + →• •
+R R Pn m

k
n m

tc

+ ⎯→⎯ +• •R R P Pn m
k

n m
td

cross-terminationa ̇ + →•
+R TR R Pn m

k
n m0 ( )

ct

̇ + →•
+ +R TR R Pn m s

k
n m s( )

ct

aThe cross-termination reaction is used only in the IRT and IRTO
models. For the IRT model s = 1, ..., ∞ and for the IRTO model s = 1,
2.

Table 2. Kinetic Constants and Kinetic Parameters

parameter value

f 0.5
kd 0.036 h−1

kpi 3.6 × 106 L·mol−1·h−1

kp 3.6 × 106 L·mol−1·h−1

ka 3.6 × 109 L·mol−1·h−1

kf
a 36 h−1

kf
b 3.6 × 107 h−1

ktc 3.6 × 1010 L·mol−1·h−1

ktd 3.6 × 1010 L·mol−1·h−1

kct
a 0

kct
b 3.6 × 1010 L·mol−1·h−1

aSF theory. bIRT and IRTO theories.
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rates result in smaller time steps. In consequence, as the value
of N grows, a greater number of iterations will be required to
reach the specified reaction time or conversion.
In order to find optimal values of N for predicting polymer

properties, 100 simulations were performed with each of the
following values of N, [1 × 107, 1 × 108, 5 × 108, 1 × 109, 5 ×
109, 1 × 1010], for the models based on the three theories under
study (SF, IRT, and IRTO). The stopping criterion used was
the final reaction time (tf), which was set to 34 h. The initial
operating conditions were set to monomer M0 = 5 mol·L−1,
initiator I0 = 5 × 10−3 mol·L−1, and chain transfer agent CTA0

= 5 × 10−3 mol·L−1. Figure 1 shows the outputs of the weight-
average molecular weight (Mw) for the SF model. The dots
represent the average values of the 100 simulations, while the
error bars are the maximum and minimum values obtained in
these simulations. The dashed line represents the value
calculated by the deterministic simulation. Similar figures
were obtained for the number-average molecular weight (Mn)
and the conversion as well as for different sets of operating
conditions. It can be seen that, for this theory, a number of
molecules as low as 1 × 108 was able to represent the system,
yielding accurate and reproducible results.

The situation is different with the models responding to the
IRT and IRTO theories. Figure 2 summarizes the results for the
IRT model. Notice that the plot has been zoomed for the
values of N of 5 × 108 and 1 × 109. A similar result was
obtained with the IRTO model.
The most significant aspect of this data is that values of N

smaller than 5 × 108 fail to return accurate results. It can be
noticed that, for the smaller values of N, the predicted Mw is
lower than its actual value; the same was observed for Mn and
conversion. This was not the case for the SF model, where even
simulations performed with 1 × 107 predicted good values
when averaged.
This behavior has been observed previously for MC

simulations of free radical polymer systems.39,40 It happens
because the number of molecules of the different moieties in a
MC simulation is a discrete value that is a fraction of N. The
species with lowest concentrations in the reacting system may
have zero members in the MC simulation if N is too small,
something that affects all reaction rates in which they are
involved. In conventional free radical polymerization, these
species are the propagating radicals. If N is so small that the
number of radicals in the MC simulation becomes zero,

Figure 1.Weight-average molecular weight from 100 simulations with different values of N for the SF theory. Operating conditions: M0 = 5, I0 = 5 ×
10−3, CTA0 = 5 × 10−3 mol·L−1, tf = 34 h.

Figure 2. Weight-average molecular weight from 100 simulations with different values of N for the IRT theory. Operating conditions: M0 = 5, I0 = 5
× 10−3, CTA0 = 5 × 10−3 mol·L−1, and tf = 34 h.
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propagation cannot take place until another initiation event
occurs, which artificially reduces conversion. Another effect is
that the MC reaction rates in which radicals are involved would
be zero as well. This affects the value of Rt considerably,
resulting in large time step values. As a consequence, the
simulation incorrectly behaves as if the reactions were slower
(since large time steps lead to fewer reaction events within the
same reaction time). In the case of CRP, molecular weight

increases linearly with conversion, so the elimination of radicals
due to the mathematical artifact of an excessively small N would
lead to molecular weights with values lower than expected. In
the IRT or IRTO models, the intermediate adduct fragments
quickly and hence its concentration is low, comparable to that
of propagating radicals. Therefore, its population may also
become zero for low values of N. When this happens, the
RAFT equilibrium between dormant and active species cannot

Figure 3. Scattered and smoothed MWD for different values of N: (a) 1 × 107, (b) 1 × 108, (c) 5 × 108, and (d) 1 × 109. Operating conditions: M0
= 5, I0 = 5 × 10−3, CTA0 = 5 × 10−3 mol·L−1, and tf = 34 h.

Figure 4. Full MWD for the SF theory. Operating conditions: M0 = 5, I0 = 5 × 10−3, CTA0 = 5 × 10−3 mol·L−1, and tf = 34 h.
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be established, and the MC simulation is not statistically
representative of the actual system. On the other hand, in the
SF model the intermediate adduct fragments slowly and its
concentration is much higher than in the models for the other
theories. In consequence, it is not affected so much by relatively
low values of N. In addition, its fragmentation provides a source
of propagating radicals that contributes to maintain a nonzero
population of this species.
Another important point to remark is that different Mw

values have been shown in the previous figures for the SF, IRT,
and IRTO models for the same operating conditions. The same
situation can be observed for Mn and conversion. This is
because the same set of kinetic parameters is used for the three
theories. In case of aiming at predicting experimental data, each
theory would require appropriate fitting of the kinetic
parameters.
The effect of the number of molecules N on the prediction of

the full MWD was considered next. Figure 3 shows the full
MWD obtained with the SF model with values of N between 1
× 107 and 1 × 109. The graph includes the scattered output of
the MC simulations and a smoothed curved obtained from
them. The smoothing was performed by means of a locally
weighted scatterplot regression (LOESS) with a smoothing
factor α = 0.10. As expected, the level of scattering is reduced as
N increases.
In order to validate the MC models, we compared the MC

results with those of an independent method. Figure 4 shows
the smoothed curves obtained from Figure 3, compared with
the MWD computed by direct integration of the corresponding
deterministic system of differential equations.
We used gPROMS v3.5.3 for solving the differential−

algebraic equation (DAE) system by a direct integration
method. This proprietary software uses standard mathematical
solvers for the solution of mixed sets of differential and
algebraic equations. For our particular system the DASOLV
solver was used. This solver is based on variable time step,
variable order backward differentiation formulas (BDF) and is

designed to deal with large, sparse systems. Linear systems are
solved with the MA48 solver, designed for large, sparse, and
asymmetric systems.
One of the limitations of the direct integration method

applied to polymerization reactions is that the size of the
resulting EDO system is proportional to the maximum chain
length value of all species, so using large chain length values
results in large EDO systems. Memory limitations in our
computer system constrained our simulation to a maximum
chain length value of 1800. For the simulation of the SF system,
a value of 1200 was sufficient and yielded a system of 18 082
equations.
As shown in Figure 4, the MWD corresponding to the SF

model is bimodal, with peaks at approximately 430 and 850
chain length units. As N increases, the quality of the prediction
improves. It may be observed in Figure 4 that using N = 1 ×
107 results in an MWD that is not accurate, since the positions
of the peaks are not predicted correctly, and several oscillations
appear in the smoothed distribution at values of chain length
larger than 400. These oscillations are caused by the smoothing
of the highly scattered data predicted with this value of N.
Increasing N to 1 × 108 molecules improves the predicted
MWD considerably. However, it still shows some inexactitudes
in the position of the second peak.
The MWD obtained with N = 5 × 108 and higher reproduce

very well the true distribution. Please note the practically exact
overlapping between the N = 1 × 109 and the deterministic
curve. For N ≥ 5 × 108 all simulations converge to the true
distribution. We conclude that N = 5 × 108 is a good value for
obtaining a representative MWD through the MC simulation of
this reaction system by the SF theory. This simulation took 49 s
to execute on a regular desktop computer equipped with an
Intel Core i5-3330 processor running at 3 GHz and 8 GB of
RAM memory and without using parallelization programming
techniques.
As an example of additional model predictive capabilities,

Figure 5 shows the MWD of the individual polymer species

Figure 5. Contributions to the full MWD from the individual polymer species. Operating conditions: M0 = 5, I0 = 5 × 10−3, CTA0 = 5 × 10−3 mol·
L−1, and tf = 34 h.
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that make up the MWD, i.e. inactive radicals, intermediate two-
arm adduct, and dead polymer. It can be seen that the first peak
of the bimodal MWD of the global polymer corresponds to the
population of inactive radicals, while the second peak
corresponds to that of the intermediate two-arm adduct. It
can be observed that the position of the second peak is twice
the value of the first one, since the adduct is formed by the
union of two molecules from the population represented by the
first peak. Active radicals were not included in Figure 5 because
their concentration is not significant.
The situation for the IRT and IRTO theories is different

again. Figure 6 presents the results for the smoothed MWD for
the IRTO model. The MWD corresponding to N = 1 × 107

was rejected and not included in the graph due to significant
noise and inaccuracy. It can be seen that the simulation with 1
× 108 molecules predicts lower molecular weights compared to
the real distribution, something consistent with the average
molecular weight predictions. However, starting from N = 5 ×
108, the distributions converge with good precision to the true
distribution. Similar results were obtained with the IRT model.
It should be noted that the IRTO (as well as the IRT) model

predicts a unimodal distribution because the fragmentation
constant kf is large and thus the concentration of the two-arm
adduct is low. The peak observed in the MWD distribution
shown in Figure 6 corresponds to the most abundant species of
inactive radicals. The deterministic simulation shown in Figure
6 showed a perfect overlapping with both stochastic simulations
(the ones with 5 × 108 and 1 × 109 molecules) up to the chain
length of 1800. As explained, this is a limitation of the direct
integration method and larger values produced out-of-memory
errors in our computer system. The resulting system of
equations for this model consisted of 21 689 equations. The
simulation times for the deterministic solution were 260 s for
the SF system (Figure 4) and 420 s for the IRTO system
(Figure 6).
4.2. Bivariate Distribution of the Two-Arm Adduct.

One of the distinguishing characteristics of RAFT polymer-
izations is the presence of a two-arm intermediate species. This

species is an adduct of two growing polymer chains that are
linked to the chain transfer agent. Information on the complete
MWD of this intermediate adduct may prove useful in studying
the different proposed mechanisms for RAFT polymerization.
This adduct is described by a two-dimensional (2D)
distribution that takes into consideration the chain lengths of
each of its arms. The attainment of the 2D distribution by the
direct integration approach is prohibitive in terms of memory
requirements of regular desktop computers. Its prediction using
other deterministic simulations is a very laborious task. For
instance, Fortunatti et al.21 used probability generating
functions to model the 2D distribution of the intermediate
adduct. To the best of our knowledge, our work is the first to
report this 2D distribution obtained from a stochastic
simulation.
We show in Figure 7 the bivariate distribution of the two-arm

adduct for the same operating conditions used for Figure 4. It
can be observed that the position of the peak of this bivariate
distribution (chain length of arm 1 = chain length of arm 2 =
425), is half the value of the position of the second peak of the
MWD shown in Figure 4. This is so because the MWD in
Figure 4 corresponds to the MWD considering the total length
of the chains, and most intermediate adduct molecules are
formed by two arms of roughly the same length. It is also
interesting to note the presence of small tails in the MWD
leaving at right angles from the main peak. These tails
correspond to adduct molecules that have acquired one arm
from the short molecular weight tail and the other one from the
most abundant chain length of the inactive species (see Figure
5). The population of adducts with two short arms is extremely
low.
This detailed information about the RAFT system is available

at no extra simulation cost, in the short time of 49 s.
In the case of the IRT and IRTO models, it is more difficult

to obtain the bivariate MWD of the intermediate adduct. Since
the concentration of this adduct is much smaller according to
these theories than with the SF approach, the number of adduct
molecules resulting from MC simulations with N = 5 × 108 or 1

Figure 6. Full MWD for the IRTO theory. Operating conditions: M0 = 5, I0 = 5 × 10−3, CTA0 = 5 × 10−3 mol·L−1, and tf = 34 h.
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× 109 is too small for visualizing the bivariate distribution. The
small number of adduct molecules is too dispersed in the chain
length of arm 1-chain length of arm 2 grid to obtain a smooth
surface. Even with N = 1 × 1012 the number of adduct
molecules is not enough for obtaining the bivariate MWD of
this species, since only a single molecule is predicted for most
combinations of chain lengths of each arm. The simulation with
this value of N took over 7 days of CPU time. A larger value
would be necessary for obtaining a smooth bivariate
distribution. Nevertheless, even though the number of adduct
molecules resulting from the MC simulation of the IRT or
IRTO models with N = 5 × 108 or 1 × 109 is insufficient for a
good estimation of the bivariate MWD of the intermediate
species, it is large enough for predicting accurate values of the
global MWD of the polymer and the average molecular
properties, as was shown before.
4.3. Computation Times. One of the main drawbacks of

MC methods is the high computational time required to obtain

accurate results. Thanks to the use of Julia and the algorithmic
improvements performed, the computational times are
generally better than those reported by other authors for
similar reaction systems without using parallel computing
technologies.28 The time required for each MC simulation is
shown in Table 3. The O(1) representation was used in all the
simulations. For this system and for the three theories studied
in this work, a simulation using N = 5 × 108 that yields good
results takes less than 1 min for the SF theory and around 4
min for the IRT and IRTO theories. This time difference could
be explained by two main factors. First, the larger number of
reactions involved in the IRT and IRTO models makes the
reaction selection slightly more time-consuming. Second, the
fragmentation constant (kf) is significantly larger in the IRT
and the IRTO models than in the SF model. Finally, the cross-
termination constant, kct, also takes a large value and it is not
present in the SF model. These large kinetic constants
contribute to smaller time steps between reaction events,

Figure 7. Surface and contour plots of the bivariate distribution of the two-arm adduct in the SF theory. Operating conditions: M0 = 5, I0 = 5 × 10−3,
CTA0 = 5 × 10−3 mol·L−1, and tf = 34 h.
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resulting in a larger number of iterations to reach the final
reaction time. For instance, the number of iterations of the SF
and IRT simulations for N = 5 × 108 is 8.1 × 108 and 3.3 × 109,
respectively. This is approximately 4 times more iterations for
the IRT model than for the SF one, which is roughly the same
difference observed in the computation times. Similar numbers
were obtained for operating conditions other than those
reported in Table 3.
4.4. Comparison with Other Programming Lan-

guages. Finally, the running time of the two different array
representations (O(1)) and (O(N)) in Julia were compared.
Additionally, the O(1) representation in Julia was compared
with the implementations written in other languages: Python,
MATLAB, FORTRAN, and C. The results for the case of N = 5
× 108 and the SF theory are summarized in Table 4.

It is worth noting that, in the case of Python, a pure CPython
implementation was used employing only the NumPy41

package for the array representation of the molecules. There
are packages for Python that provide speed improvements, such
as Cython42 and Numba; these were not tested but could be
considered in future works.
In MATLAB, the option to provide speed improvements

comes by writing MEX files which can be loaded and executed
by the MATLAB interpreter. MEX files are subroutines written
in C, C++, or FORTRAN, which goes against the purpose of
using pure high-level languages and thus were not tested in this
work. Recent versions of MATLAB make use of a JIT compiler
in order to accelerate for loops as well.
It could be argued that these results are not surprising as they

coincide with the guesses of an experienced programmer. The
fact that this algorithm implementation in Julia is faster than the
one written in C could be surprising and criticized as well. An
experienced C programmer might find ways to adapt the code
to the peculiarities of the language and be able to produce a
faster implementation. In order to make this comparison as
unbiased as possible, the exact same algorithm was coded on
the different languages, without adapting each code to the

strengths of each language. The difficulty of each implementa-
tion is subjective and depends on the experience of the
programmer with each language and also to his or her tendency
to a particular programming paradigm. Finally, it is our opinion
that the code written in Julia is much easier to read, follow, and
debug than that of C or FORTRAN; it provides an outstanding
performance, especially compared to those of Python and
MATLAB.

5. CONCLUSIONS

An efficient kinetic MC simulation was implemented for a
RAFT polymerization system in Julia. Three models were
developed to simulate and analyze the main mechanistic RAFT
theories currently under discussion (SF, IRT, and IRTO). It
was shown that the models are able to accurately predict
average properties like the number- and weight-average
molecular weights and conversion, as well as MWD in just
seconds of running time for the SF theory and under 5 min for
the IRT and IRTO theories.
Simulations with different numbers of molecules were

performed with each of the models, and it was found that for
the studied reaction systems N = 5 × 108 molecules provides
good results for predicting the MWD. It is worth noting that all
computation times were obtained using a regular desktop
computer equipped with an Intel Core i5-3330 processor and 8
GB of RAM memory and without the use of parallelization
techniques.
As a glimpse of the capabilities of MC simulations, the

models are also capable of calculating increasingly complex
properties like the contributions to the full MWD of the
individual polymer species and the full bivariate MWD of the
RAFT intermediate adduct. These complex properties are
usually very laborious to obtain through deterministic
simulations, and to the best of our knowledge, our work is
the first to report them as obtained from a stochastic
simulation.
It would be interesting to apply the developed MC model to

more complex polymerization reactions, such as a RAFT
copolymerization system. The resulting polymer would have a
microstructure with more features that could be of interest,
including copolymer structure, composition, and branching.
Due to the larger number of reactions and microstructure
alternatives present in a copolymerization reaction system, we
could anticipate that a different data structure for the storage of
polymeric molecules and a more efficient reaction selection
algorithm than those used in this work would be required to
maintain an optimal simulation time. The Julia language is
more than capable of handling these complications. Mod-
ifications to the code are simple to perform, and the model can
be easily adapted and modified to simulate different and more
complex reaction systems. The postprocessing needed to obtain
additional properties should be straightforward as well.
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Table 3. Computation Times (in seconds)a

N SF IRT IRTO

1 × 107 0.84 0.34 0.5
1 × 108 9.4 25 33
5 × 108 49 210 271
1 × 109 110 487 568
5 × 109 820 2861 3031
1 × 1010 1752 5541 6314

aOperating conditions: M0 = 5, I0 = 5 × 10−3, CTA0 = 5 × 10−3 mol·
L−1, and tf = 34 h.

Table 4. Implementation Comparisona

implementation time [s]

Julia 49
Julia O(N) 428
MATLAB 225
Python >17000
FORTRAN 178
C 71

aThe O(1) representation was used in all the simulations unless stated
otherwise. Operating conditions: M0 = 5, I0 = 5 × 10−3, CTA0 = 5 ×
10−3 mol·L−1, and tf = 34 h.
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