
Optimal Sensor Network Upgrade for Fault Detection Using Principal
Component Analysis
Leandro P. F. Rodriguez, Marco V. Cedeño, and Mabel C. Sańchez*
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ABSTRACT: The efficiency of a fault monitoring system critically depends on
the structure of the plant instrumentation system. For processes monitored
using principal component analysis, the multivariate statistical technique most
used for fault diagnosis in industry, an existing strategy aims at selecting the set
of instruments that satisfies the detection of a given set of faults at minimum
cost. It is based on the minimum fault magnitude concept. Because that
procedure discards lower-cost feasible solutions, in this work, a new optimal
selection methodology is proposed whose constraints are straightaway defined in
terms of the principal component analysis’s statistics. To solve the optimization
problem, a level traversal search with cutting criteria is enhanced taking into
account that the fault observability is a necessary condition for fault detection
when statistical monitoring techniques are applied. Furthermore, observability
and detection degree concepts are defined and considered as constraints of the
optimization problems to devise robust sensor structures, which are able to
detect a set of key faults under the presence of failed sensors or outliers. Application results of the new strategy to a case study
taken from the literature are provided.

1. INTRODUCTION
When an abnormal event occurs in a chemical plant, the
process deviates from the normal regime. Early detection and
diagnosis of faults while the plant is still operating in a
controllable region help prevent the abnormal situation
progress and reduce the impact of industrial accidents. All
approaches proposed to diagnose faults compare in some way
the observed behavior of the process with a reference model.
Such behavior is inferred from the measurements obtained by
the instruments installed in the plant. Therefore, the efficiency
of the fault monitoring system critically depends on the
structure of the process sensor network (SN).
At first Raghuraj et al.1 and Bhushan and Rengaswamy2

presented directed graphs (DGs)- and signed directed graphs
(SDGs)-based approaches, respectively, to design SNs which
ensure faults observability and resolution for processes
monitored using model-based qualitative methodologies.
Next, an instrumentation design strategy, which considers
reliability as the primary objective and cost as the secondary
one and satisfies the faults observability and resolution criteria,
was proposed by Bhushan and Rengaswamy.3 That technique is
not structural as the previous ones because it uses quantitative
information regarding process faults and sensors failures
probabilities. Later on, Bhushan et al.4 modified that method-
ology to take into account the network robustness to errors in
the SDG and probability data uncertainties, and Kolluri and
Bhushan5 extended the strategy to solve the instrumentation
upgrade and reallocation problems. Other structural techniques
use the information contained in the process DG. In this sense,
Rodriguez et al.6 addressed the optimal design of SNs able to

resolve a set of key failures under the presence of
malfunctioning instruments. With this purpose, the key fault
resolution degree concept was defined. All the aforementioned
optimization algorithms are solved using mixed integer linear
programming codes.
Furthermore, some researchers showed that the installation

of an appropriate SN enhances the process fault diagnosis using
principal component analysis (PCA). In this regard, Wang et
al.7 proposed to locate sensors using the technique proposed in
ref 1 at the design stage. This partially guarantees the detection
and isolation of faults when PCA is applied to monitor the
system behavior on line. Later on Musulin et al.8 analyzed the
design and upgrade of SNs for processes monitored using that
statistical technique. A classic genetic algorithm was applied to
obtain the optimal sensor configuration that minimizes a global
penalty index made up of the sensor network cost (SNc) and
the fault size penalization. This last term was evaluated using
the conservative calculus of the minimum fault magnitude
(FM) detectable using PCA’s statistics, which was provided by
Wang et al.9 Because that calculus is conservative, the strategy
may disregard lower-cost feasible solutions; also, it does not
deal with the robustness of the sensor structure. The design
procedure can be applied to evaluate the performance of SNs of
existing plants or simulated ones. In a similar way, the
optimization algorithms can be used either to select signals of
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processes with an existing instrumentation network or to decide
the best location of sensors if a process dynamic simulation is
available at the plant design stage.
Moreover, Li10 addressed the design of SNs for multistage

flash nuclear desalination plants monitored using PCA. First,
that author simulated the steady state and dynamic behavior of
those plants using the design data. The results showed that the
developed dynamic model was able to characterize the system
dynamic behavior with reasonably good accuracy to study the
control and fault diagnosis of the system. The design of the
optimal SN that satisfies the faults observability and resolution
was addressed using the formulation based on DGs.1 Also,
reliable sensor structures were obtained following the method-
ology proposed in ref 3. An integer linear programming greedy
search heuristic was developed for solving the optimization
problems. The obtained sensor set partially guarantees the
detection and isolation of all the faults.10 A PCA model was
built using simulated data of the nominal operation and used to
monitor the process on line. The differences between the
measurements and their predictions using the PCA model were
used for fault isolation. The capability of the monitoring
technique to detect failures of certain magnitude was not
considered in that work.
In this paper, the optimal upgrade of SNs that are able to

detect a set of predetermined process faults using PCA is
presented. In contrast to the previous works, the fault detection
capability of the network is defined straightaway in terms of the
PCA’s statistics. Consequently, the procedure has a broad range
of application since it can be extended to other statistical
monitoring techniques. The availability of a dynamic model of
the process, which characterizes the system dynamic behavior
with reasonably good accuracy, is required to apply the
proposed methodology. Also, this contribution deals with the
selection of robust sensor structures, which are able to detect a
set of key faults even in the presence of failed sensors or
outliers. For this purpose, the detection degree concept is
defined in this work. Regarding the solution of the optimization
problems, a level traversal search with cutting criteria is used to
solve the mixed integer nonlinear formulations. That solution
scheme is enhanced by incorporating the fault observability
(fault structural determinability) as a linear constraint of the
optimization problems given that the fault observability is a
necessary condition for the fault detection when PCA is
applied.7 Additionally, the application of the proposed
technique to other instrumentation problems is discussed. In
this regard, the design case and the selection of signals from a
set of existing sensors, which provide information about all the
variables affected by the analyzed faults, are considered.
The rest of the paper is structured as follows. In Section 2, a

conservative calculus of the minimum FM detectable using
PCA is briefly revised. New formulations for selecting SNs able
to detect a given set of faults are presented in Section 3. In the
next section, a solution strategy based on an improved level
traversal search is analyzed. In Section 5, the application results
of the technique to a case study taken from the literature are
provided. A Conclusions section ends this Article.

2. CRITICAL FAULT MAGNITUDE

This section briefly introduces the conservative calculus of the
minimum FM detectable9 using the PCA technique which is
used as a constraint of SN design and upgrade problems.8 Also,
why that value is a conservative estimation is discussed.

Traditionally, PCA-based techniques use two statistics to
detect the presence of process failures.11 These are the hotelling
statistic (D) and the squared prediction error (SPE), which are
evaluated using the results of the eigendecomposition of the
correlation matrix, R, of the normal operating data. These are
contained in a matrix X of dimension (M, N), where M and N
represent the number of samples and measurements,
respectively.
During the online process monitoring, the standardized

measurement vector x is used to calculate D as follows

Λ= || ||−D P x1/2 T 2
(1)

where Λ is the diagonal matrix constituted by the eigenvalues of
R associated with the retained principal components, which are
contained in matrix P. That statistic can detect changes in the
correlation structure of the data, while observations that
indicate a behavior significantly different from the usual one
are detected by SPE, which is evaluated as follows:

= || − ||SPE I PP x( )T 2
(2)

The minimum FM detectable using PCA can be estimated
using the expression proposed in ref 9. Let us consider that a
SN is identified by the binary vector q of dimension I, such that
qi = 1 if the i-th variable is measured and qi = 0 otherwise. Also,
let us assume that the matrix θj of dimension (N, Rj) describes
the j-th failure of a given set of J process faults. The variable Rj
stands for the number of measured variables affected by the
occurrence of the j-th failure, and it should be noticed that Rj ≤
N ≤ I. The n-th row of θj has a nonzero element if the fault
affects the n-th measurement. For example, if N = 3, Rj = 2, and
the measured variables 1 and 3 are affected by the occurrence of
the j-th fault, then the elements (1,1) and (3,2) of θj (3,2) are
nonzero. Wang et al.9 pointed out that a fault subspace, which
is roughly defined but contains the essential characteristics of
the fault, works well. Those authors also mentioned that
matrices (j = 1. . .J) can be built using process SDG or
numerical simulations. This last approach was used to obtain
the θj (j = 1. . .J).8

When the j-th process failure occurs, the vector x can be
defined as follows

θ= +x x fj j0 (3)

where x0 is the vector of standardized measurements under
normal operation, and fj represents the vector of standardized
deviations of all measurements affected by the occurrence of
the j-th fault with respect to their normal values. Replacing the
definition of x in eqs 1 and 2, the following expressions are
obtained for the statistics:

θΛ Λ= || || = || + ||− −D q P x P x f( ) ( )1/2 T 1/2 T
0 j j

2 2
(4)

θ= || − || = || − + ||SPE q I PP x I PP x f( ) ( ) ( )( )T T
0 j j

2 2

(5)

If the triangle inequality of the norm is applied to the
expressions of (D(q))1/2 and (SPE(q))1/2 derived from eqs 4
and 5, the following inequalities result

θΛ Λ Λ|| || ≥ ||| || − || |||− −− P x P x P f1 2 T 1/2 T
0

1/2 T
j j

/
(6)

θ|| − || ≥ ||| − || − || − |||I PP x I PP x I PP f( ) ( ) ( )T T
0

T
j j

(7)
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Under normal operating conditions, D1/2 = ∥Λ−1/2PTx∥ and
SPE1/2 = ∥(I − PPT)x∥ vary in the ranges (0, δD,α) and (0,
δSPE,α), respectively, that is 0 ≤ ∥Λ−1/2PTx0∥ ≤ δD,α and 0 ≤ ∥(I
− PPT)x0∥ ≤ δSPE,α, where δD,α

2 and δSPE,α
2 are the critical

values of D and SPE, respectively, and α stands for the
significance level of the tests.
Taking into account the previous formulations, the sufficient

conditions for fault detection, which are based on the analysis
of the square roots of D and SPE values,9 are

θ δΛ|| || ≥ α
− P f 2 D

1/2 T
j j , (8)

θ δ|| − || ≥ αI PP f( ) 2 SPE
T

j j , (9)

The application of the triangle inequality of the norm to the
left-hand sides of the above equations provides the following
inequalities

θ θ δΛ Λ|| || || || ≥ || || ≥ α
− −P f P f 2 D

1/2 T
j j

1/2 T
j j , (10)

θ θ δ|| − || || || ≥ || − || ≥ αI PP f I PP f( ) ( ) 2 SPE
T

j j
T

j j , (11)

from which the j-th minimum FM detectable using both
statistics (∥fDj

∥ and ∥fSPEj
∥) is calculated as follows

θσ δΛ|| || ≥ || || = α
−−f f P2 ( ) Dj D

1 2 T
jmax

1 /
,j (12)

θσ δ|| || ≥ || || = − α
−f f I PP2 (( ) ) SPEj SPE

T
jmax

1
,j (13)

where ∥fj∥ is the fault vector norm, ∥fDi
∥ is the critical fault

magnitude (CFM) in the principal components subspace,
∥fSPEj

∥ is the CFM in the residual subspace, and σmax (arg) is
the maximum singular value of the matrix argument. For Wang
et al.’s approach,9 the statistic’s CFM represents the minimum
FM that it detects.
It should be noticed that the CFM calculations are

conservative. For normal operating conditions, D1/2 values
range from 0 to δD,α, that is 0 ≤ ∥Λ−1/2PTx0∥ ≤ δD,α. Because
the norm of the vector (Λ−1/2PTx0) is assumed exactly equal to
δD,α, the CFM of D is the upper bound of the minimum FM
detectable using this statistic.9 Furthermore, if α is reduced and
δD,α increases, the CFM also increases. The same analysis can
be performed for SPE.

3. OPTIMAL SELECTION OF SENSOR STRUCTURES
FOR FAULT DETECTION PURPOSES

In this section, new formulations for the optimal selection of
sensor configurations from a fault detection perspective are
proposed. At first, the constraints that guarantee the detection
of J faults when the process is monitored using PCA are
considered. Both the FD restrictions8 and the ones introduced
in this work are presented. Then, the fault detection degree
(DD) concept is defined and the constraints that should be
satisfied to fulfill the detectability of a key faults set even in the
presence of failed sensors are established. Finally, new
optimization problems for instrumentation selection are
formulated.
3.1. Fault Detection Constraints. On the basis of the

formulations presented in ref 9, the j-th minimum critical fault
magnitude (MCFMj), which is the minimum FM that can be
detected using the sensor configuration q when the process is
monitored using PCA is defined8

= || || || ||q f fMCFM ( ) min{ , }j D SPEj j (14)

It was considered that a SN is able to detect the occurrence
of the j-th process fault if

≤ = ···f j Jq qMCFM ( ) ( ) 1j supj (15)

To evaluate fsupj (q), process deviation limits (PDLs) for all
the variables are initially set. Those values should not be
surpassed to avoid the occurrence of undesirable events during
process operation. Then, the vector xj

PDL (j = 1. . .J) of
dimension I is evaluated by simulation. It represents the
standardized measurement vector that would be obtained when
one or more measurements reach their respective PDLs and all
the variables are measured (N = I). If xj

PDL(i) > 3, then the i-th
variable is affected by the occurrence of the j-th failure.8 On the
basis of this information, the cause−effect matrix of the process,
A (I,J), is stated. It is made up of binary elements such that aij =
1 if the i-th variable is affected by the occurrence of the j-th
fault, and aij = 0 otherwise. The j-th column of A, aj, is a binary
vector that represents all the variables which reveal the j-th
failure if they are measured. Also, a vector fj

0 is defined such that
if xj

PDL(i) > 3 then fj
0 (i) is the standardized variation of the i-th

variable with respect to its normal value, and fj
0 (i) = 0

otherwise. For a given SN, this vector is used to set a limit for
the j-th FM, fsupj (q), which should not be exceeded due to
operational and safety issues and is expressed as

= || ∗ ||f q f q( ) j
o

supj (16)

where “∗” represents the element by element product between
the two vectors.
Because the CFMs of both statistics are involved in the

calculation of the FM-based restrictions, some solution vectors
q, which are certainly able to detect process faults, are
discarded, as it was indicated in the previous section. That is,
the use of the assumptions ∥Λ−1/2PTx0∥ = δD,α and
∥Λ−1/2PTx0∥ = δSPE,α affects the solution of the optimization
problem. Therefore, different constraints are proposed to
quantify the capability of a SN to detect process failures in this
work. Those are straightaway defined in terms of D and SPE, as
it is explained next.
The j-th fault should be detected before one or more

variables affected by its occurrence reach their respective PDLs,
but if this undesirable situation occurs and only N process
variables are measured, the standardized measurement vector is
a subvector of xj

PDL, denoted as xj
PDL*, and the statistics values

are

Λ= || ||− *D q P x( )j
1/2 T

j
PDL 2

(17)

= || − ||*q I PP xSPE ( ) ( )j
T

j
PDL 2

(18)

Therefore, the SN represented by the vector q is able to
detect the j-th fault before a dangerous event takes place if at
least one of the two statistics, calculated using the eqs 17 and
18, exceeds its critical value. That is, if the following constraint
is satisfied:

δ δ≥ ∨ ≥

=

α αD

j J

q q q q[( ( ) ( )) (SPE ( ) ( ))]

1 . . .

j D j SPE,
2

,
2

(19)
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In this work, the fault detection constraints are defined in
particular for the PCA’s statistics, but the same approach can be
used to state those restrictions for other statistical monitoring
techniques.
3.2. Fault Detection Degree Constraints. To enhance

the ability of the SN to detect key process failures even under
the presence of failed sensors, the detection degree (DD) of a
key fault (KF) is defined as an extension of the resolution
degree6 concept.
A SN has a DD equal to gs for the s-th key fault (s-KF) if this

failure remains detectable even when gs observations, contained
in the set of measurements affected by that fault occurrence, are
not available. In this case, there are ts = (Rs!)/(gs!(gs − Rs)!)
sensor configurations of dimension (Rs − gs) that are able to
detect the s-KF when PCA is applied, where Rs is the number of
variables affected by the s-KF. Therefore, ts conditions for each
KF should be satisfied to guarantee that the SN is able to cope
with the malfunctioning of gs sensors. This is mathematically
formulated as follows

δ δ≥ ∨ ≥

= =
α αD

r t s S

q q q q{[ ( ) ( ( )) ] [SPE ( ) ( ( )) ]}

1 . . . ; 1 . . .

s
r

D
r

s
r

SPE
r

s

,
2

,
2

(20)

where S is the number of KFs, Ds
r (q) and SPEs

r (q) represent
the statistics values when the r-th sensor configuration is
analyzed for the s-KF, and (δD,α

r (q))2 and (δSPE,α
r (q))2 stand

for their critical values.
In this work, similar constraints are also formulated to devise

more robust SNs when the FM approach is applied to analyze
the FD ability of an instrumentation system. In this case, the
DD restrictions are expressed as follows

≤ = =f r t s Sq qMCFM ( ) ( ) 1 . . . ; 1 . . .s
r

s
r

ssup (21)

where MCMFs
r (q) and fsup s

r are the MCFM and the upper FM
for the r-th SN associated with the s-KF, respectively.
3.3. Formulations for the Optimal Upgrade of

Measurements. In this subsection, different instrumentation
selection problems are stated using the previously defined
constraints. Problems based on MCFM-calculations are also
formulated because their solutions are compared with those
obtained using the new constraints in the next section.
At first, the upgrade problem is addressed. Let us consider

that Ω0 is the set of instruments which are already installed in
the process to fulfill different information requirements. If the
detection of the J faults is not satisfied using the measurements
contained in that set, new sensors should be located in the
process. The minimum-cost set of instruments whose
incorporation guarantees the detection of all the process faults
using PCA is obtained by solving the following optimization
problem

δ δ≥ ∨ ≥
=

α αD
j J

c q

q q q q

min

s.t.

[( ( ) ( )) (SPE ( ) ( ))]
1 . . .

j D j SPE

q

T

,
2

,
2

(22)

which involves J nonlinear restrictions and where c stands for
the vector of sensor costs. A zero element of c is associated with
an existing instrument. For the sake of simplicity, the previous
formulation does not take into consideration the existence of
physical difficulties for the installation of sensors in the plant.

If it is also required to detect a set of KFs even when gs
instruments fail, Problem 22 is reformulated by incorporating
the DD constraints represented by eq 20. The resulting
upgrade problem is

δ δ

δ δ

≥ ∨ ≥ =

≥ ∨ ≥ =
=

α α

α α

D j J

D r t
s S

c q

q q q q

q q q q

min

s.t.

[( ( ) ( )) (SPE ( ) ( ))] 1 . . .

{[ ( ) ( ( )) ] [SPE ( ) ( ( )) ]} 1 . . . ;
1 . . .

j D j SPE

s
r

D
r

s
r

SPE
r

s

q

T

,
2

,
2

,
2

,
2

(23)

which comprises (j + Σs = 1
S ts) nonlinear restrictions.

Similar instrumentation upgrade formulations can be derived
if the constraints are defined in terms of the FMs. In
correspondence to Problems 22 and 23, the following upgrade
problems are stated

≤ =f j J

c q

q q

min

s.t.

MCFM ( ) ( ) 1 . . .j

q

T

supj (24)

≤ =

≤ = =

f j J

f r t s S

c q

q q

q q

min

s.t.

MCFM ( ) ( ) 1 . . .

MCFM ( ) ( ) 1 . . . ; 1 . . .

j

s
r

s
r

s

q

T

sup

sup

j

(25)

The solution of Problem 24 satisfies the detection of all the
failures when all the measurements are available. This
formulation involves J nonlinear constraints defined in terms
of the MCFMj and fsupj (j = 1. . .J). Regarding Problem 25, the
incorporation of the DD restrictions, defined by eq 21, to
Problem 24 increases the number of nonlinear constraints to (j
+ Σs = 1

S ts).
With respect to restrictions complexity, it should be noticed

that the evaluation of the MCFMj requires the singular value
decomposition of two matrices (see eqs 12 and 13). In contrast,
it is necessary to calculate the norm of two vectors to obtain Dj
and SPEj values.
Besides, engineers deal with other instrumentation selection

problems. Regarding the design, it can be performed using the
methodology presented in this work if a dynamic simulation of
the process is available to characterize its dynamic behavior
with reasonably good accuracy to study the control and fault
diagnosis of the system.8−10 In this case, all the elements of
vector c are nonzero given that Ω0 is the null vector.
Another issue of interest is the selection of existing signals to

perform PCA monitoring. Let us consider that ES sensors are
already installed in the plant. Those measure the I variables
involved in the cause−effect matrix A and another ones. In
contrast to the upgrade problem, all the instruments that could
be used for the detection of the J faults are already located in
the process, and an optimal subset of them should be selected.
In this work, a lexicographic optimization approach is

proposed to choose the variables contained in A which take
part of the monitoring procedure; that is, the current solution
involves N(q) ≤ I observations. The objective function of
Problems 22−25 is modified as follows

Industrial & Engineering Chemistry Research Article

DOI: 10.1021/acs.iecr.5b02599
Ind. Eng. Chem. Res. 2016, 55, 2359−2370

2362

http://dx.doi.org/10.1021/acs.iecr.5b02599


= + +w N q w qOF [(1 ) ( ) ]N T
T

(26)

where N(q) and wTq are the objectives in decreasing order of
preference,12 wT is the vector of weights assigned to each
measured variable, and wT is the sum of all the individual
weights. By minimizing OFN, the number of signals involved in
the PCA-based monitoring is considered as the primary
objective and the type of instrument as the secondary one.
The weights are assumed by the engineers taking into account
their preferences regarding the different kinds of sensors. For
example, wT may be the vector of sensor costs, which in some
way takes into consideration the advantages and difficulties
associated with the measurement of a variable.

4. SOLUTION PROCEDURE
In this work, an ad-hoc traversal tree search is proposed to solve
the previously defined sensor upgrade problems. The solution

algorithm is based on the Breadth-First/Level Traversal Tree
Search with stopping criteria presented by Nguyen and
Bagajewicz.13 It consists of examining the nodes in a tree
data structure in level-order. The tree is built using the cheapest
candidate (minimum-cost branching criteria), and cost proper-
ties of the different nodes of the tree are exploited to efficiently
prune nonoptimal nodes.
The procedure13 is appropriate to solve the proposed

optimization problems, but the solution scheme can be
improved taking into consideration that the observability
(structural determinability) of a fault is a necessary but not a
sufficient condition to satisfy its detection when the process is
monitored using PCA.9

Let us review the fault observability definition. A failure
diagnosis system should be able to observe the symptoms of
the fault and determine its cause. A fault is categorized as
observable if at least one sensor indicates the existence of the

Figure 1. Flowchart of the ad-hoc traversal tree search.
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abnormal event.1 Given a SN, the observability of the j-th fault
can be verified using the operation of conjunction between the
fault vector aj and the vector q. This failure is observable if the
sum of all the elements of the vector (aj ∧ q) is greater or equal
to 1. Therefore, the observability of all process faults is
formulated as follows6

∑ ∧ ≥ =
=

j Ja q( ) 1 ( 1, ..., )
i

I

ij
1 (27)

where rvj = (aj ∧ q) is defined as the resolution vector (rv) of
the j-th failure, and rvj(i) = 1 indicates that the i-th variable is
measured and affected by the occurrence of that fault. It should
be noticed that the observability of all the failures can be easily
tested using a set of J linear inequalities.
In this work, augmented upgrade problems are solved by

incorporating observability restrictions to Problems 22 and 24
to enhance the traversal tree search efficiency. Those are
formulated as follows

∑

δ δ

≥ =

≥ ∨ ≥
=

α α

=

j J

D
j J

c q

rv q

q q q q

min

s.t.

( ( )) 1 1 . . .

[( ( ) ( )) (SPE ( ) ( ))]
1 . . .

i

I

j D j SPE

q

T

j i
1

,
2

,
2

(28)

∑ ≥ =

≤ =
=

j J

f j J

c q

rv q

q q

min

s.t.

( ( )) 1 1 . . .

MCFM ( ) ( ) 1 . . .

i

I

j

q

T

j i
1

supj (29)

In the Appendix, it is demonstrated that the solutions of
Problems 22 and 28 are equal. The same condition is also
verified when FM constraints are considered (Problems 24 and
29).
It can be observed that the augmented optimization

problems are subject to a set of linear fault observability
restrictions and a set of nonlinear failure detectability
constraints. A two-step procedure is devised to solve those
problems. In Step 1, the minimum-cost SN that satisfies the
observability of all the faults is easily obtained using a mixed
integer linear optimization code. The solution of Step 1 is used
to set: (1) the initial level (IL) of the traversal tree search for
solving the augmented problem and (2) a lower limit for the
cost (lbc). If all the variables contained in the complement of
Ω0 are measured, the total cost of the upgrade instrumentation
project is ubc. This constitutes an upper bound for the SNc,
which is updated when the algorithm finds a feasible node.
In Step 2, the search is initiated by exploring the lower-cost

node of the previously fixed IL. The algorithm goes through
nodes of incremental SNc until one of the cutting criteria are
satisfied.13

To evaluate the feasibility of a node, first its SNc is calculated.
If it is lower than lbc, the current node is disregarded. If it is not
the case, then fault observability restrictions are calculated. If

they are unsatisfied, the current node is ignored because failure
observability is a necessary condition for FD. In contrast, the
computation of detectability constraints continues. In this way,
the computational load is reduced because the evaluation of the
linear constraints is faster than the computation of the
nonlinear ones. If the node satisfies the FD constraints and
its SNc is greater than ubc, it is not taken into consideration.
On the other hand, it constitutes the current solution and is
stored. The ubc is set equal to the cost of that feasible solution,
SNcf. The search continues level by level until one of the
stopping criteria is reached.13

A flowchart of the solution scheme is shown in Figure 1. In
the Appendix, it is also proved that the solutions of the
augmented problems are equal to those obtained using the
developed procedure.
In summary, the efficiency of the existing traversal tree search

with stopping criteria is enhanced using a particular feature of
the design problem; that is, fault observability is a necessary
condition to satisfy its detection. At first, this is used to
determine the search IL of the Step 2, and the lbc. Then, it is
applied to perform a fast analysis about the convenience of
evaluating the detectability restrictions for a given node.
To consider the possibility of sensor malfunctioning, the

observability degree (OD) is defined as follows. A SN has an
OD equal to gs for the s-KF, if this failure remains observable
even when gs observations, contained in the set of measure-
ments affected by the fault occurrence, are not available. In this
case, there exist ts = (Rs!)/(gs!(gs − Rs)!) sensor configurations
of dimension (Rs − gs) that are able to observe the s-KF when
PCA is applied.
Therefore, ts conditions for each KF should be satisfied to

ensure that the SN is able to cope with the malfunctioning of gs
sensors. This is mathematically formulated as follows

∑ ≥ = =
=

r t s Srv q( ( )) 1 1 . . . ; 1 . . .
i

I

ss
r

i
1 (30)

where rvs
r is the resolution vector of the s-KF when gs

observations, affected by the occurrence of this failure, are
unavailable.
The OD concept is used to enhance the solution of Problem

23 taking into consideration that the observability of a fault is a
necessary condition to satisfy its detection even when one or
more observations associated with its rv are unavailable.
Therefore, OD and DD constraints are incorporated as
restrictions to Problem 23, and the following augmented
optimization problem results
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It comprises (j + Σs = 1
S ts) linear constraints that satisfy the

observability of all the faults when no instrument fails and the
observability of a set of KFs when gs observations, which belong
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to their respective rvs, are unavailable. Eq 31 also includes (j +
Σs = 1

S ts) nonlinear restrictions associated with the FD when all
sensors work satisfactorily or not. It is proposed to solve
Problem 31 using the two step procedure previously explained.
First, the minimum cost SN that satisfies the observability and
OD linear restrictions is calculated to set the IL of the traversal
search used to solve the augmented problem and the lbc. Then,
the solution of Problem 31 is obtained by exploring nodes of
incremental cost. When a node is evaluated, the satisfaction of
the linear constraints is verified first to reduce the computa-
tional load. If they are unfulfilled, the current node is
disregarded; if it is not the case, the evaluation of detection
and DD constraints is performed.
A similar augmented optimization problem can be

formulated to take into account sensor malfunctioning when
detectability constraints are expressed in terms of FMs. In this
case, Problem 25 is reformulated by incorporating the OD and
DD restrictions and the following upgrade problem results

∑
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(32)

5. CASE STUDY
In this paper, the Tennessee Eastman Process (TEP)14 is used
to analyze the solutions provided by the different SN upgrade
formulations. The process flowsheet is presented in Figure 2
and comprises five principal units: a jacketed reactor, a

condenser, a vapor/liquid separator, a compressor, and a
stripper. Simulated data of the normal operation of the process
and the dynamic system behavior when certain faults have
occurred were reported in ref 15. Those data are used to
illustrate the application of the upgrade methodologies
proposed in this work. Thus, it is assumed that normal
operating data are obtained from an existing plant, whose
dynamic behavior is characterized with reasonably good
accuracy by means of its dynamic simulation.
The faults associated with this case study are the following15

• Fault 1: Step in yA,4/yC,4 feed ratio, yB,4 constant
• Fault 2: Step in yB,4, yA,4/yC,4 ratio constant
• Fault 3: Step in TCW,R (inlet)
• Fault 4: Step in TCW,C (inlet)
• Fault 5: Step in F1
• Fault 6: Step in C header pressure loss, reduced

availability (Stream 4)
• Fault 7: Slow drift in reaction kinetics
• Fault 8: Sticking in Reactor CW valve

At first, the maximum deviation of each measurement, mdi, is
calculated using normal operating data. Then, a vector xj

PDL is
obtained for each failure considering that PDL(i) = 2mdi (i = 1.
. .I). The variables affected by the occurrence of all those faults
for the selected PDL values are included in Table 1. It also
shows the costs of the available sensors to measure them. In
this case study, the purpose of the instrumentation selection
problem is to upgrade an existing SN. It is considered that the
manipulated variables are measured and their costs are set at
zero.
Table 2 shows the signed cause−effect relationship among

faults and process variables for the selected PDLs values.
Furthermore, the percentage of the total variance reconstructed
by the latent variable model is fixed at 80%.
For this case study, different types of instrumentation

upgrade problems are solved. One class takes into account
only observability and detection restrictions (O+D) (Problems
28 and 29). The other type also includes observability and
detection degree (ODD) constraints (Problems 31 and 32). An

Figure 2. Tennessee Eastman Process flowsheet.
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ad-hoc level traversal search algorithm programmed in Matlab
code is applied to solve the optimization problems. Their
solutions are reported in Tables 3 and 4 for α = 0.05 and 0.03,
respectively. It is interesting to note the following issues:

• The overall result analysis indicates that the maximum
ODD for faults 3 and 8 is equal to 1, while ODD ≤ 2 for
the rest of the failures.

• The total number of binary variables is 34. The total
number of constraints for upgrade problems that involve
(O+D) restrictions is 16 (8 for observability and 8 for
FD). That number increases when ODD constraints
should be also fulfilled. In this sense, the optimization
problems that satisfy the set of conditions closed into
brackets [O+D+ODD3 = 1; O+D+ODD8 = 1], [O+D
+ODD4 = 1; O+D+ODD4 = 2; O+D+ODD5 = 1; O+D
+ODD5 = 2], [O+D+ODD2 = 1], [O+D+ODD2 = 2],
[O+D+ODD6 = 1], [O+D+ODD6 = 2], [O+D+ODD1 =
1], [O+D+ODD1 = 2], [O+D+ODD7 = 1], [O+D
+ODD7 = 2] comprise 20, 22, 24, 28, 32, 72, 42, 94, 50,
and 152 restrictions, respectively.

• The computational time increases with the number of
constraints. It also depends on the approach used to
evaluate the fault detection capability of the network.
Lower computational times are required when the
restrictions proposed in this work are used. For this

example, the achieved reduction factor is 4.3 for
problems subject to (O+D) constraints, and that factor
is 4.6 for the upgrade problem that fulfills (O+D+ODD7

= 2) restrictions.
• In general, the solutions depend on the α values. Higher-

cost SNs are obtained when α decreases for the same set
of restrictions. For example, when the constraints are (O
+D+ODD1 = 1) and α = 0.05 for the statistic-based
approach, the solution set is (PR VF9 VFCW,R TCW,R), but
it is (PR F1 VF9 VFCW,R TCW,R) for α = 0.03.

• Higher-cost SNs are also obtained when FM-based
constraints are applied. This technique assumes that
∥Dλ

−1/2PTx0∥ = δD,α when in fact 0 ≤ ∥Dλ
−1/2PTx0∥ ≤

δD,α. Therefore, the solutions which verify the inequality
∥Dλ

−1/2PTx0∥ < δD,α are discarded. In contrast, those are
considered feasible SNs when statistic-based restrictions
are considered. For example, the SN that fulfills (O+D)
constraints for α = 0.05 (VF9 VFCW,R TCW,R) can not
detect the fault 6 when FM-based restrictions are
evaluated.

• For a given fault, the solution cost increases with the
increment of the ODD requirements. For example, the
SN that satisfies (O+D+ODD2 = 1) restrictions for α =
0.05 when statistic-based constraints are used has four
instruments (F9 VF9 VFCW,R TCW,R) and its cost is 800,

Table 1. Process Variables

process variables notation cost

reactor pressure PR 100
stripper pressure PS 100
flash pressure PF 100
A Feed (Stream 1) F1 300
D Feed (Stream 2) F2 300
E Feed (Stream 3) F3 300
total feed (Stream 4) F4 300
reactor feed rate (Stream 6) F6 300
purge rate (Stream 9) F9 300
compressor work WC 400
A Feed Flow, manipulated variable (Stream 1) VF1 0
D Feed Flow, manipulated variable (Stream 2) VF2 0
E Feed Flow, manipulated variable (Stream 3) VF3 0
total feed flow, manipulated variable (Stream 4) VF4 0
purge valve, manipulated variable (Stream 9) VF9 0
compressor recycle valve, manipulated variable VFR,C 0
reactor cooling water flow, manipulated variable VFCW,R 0
reactor temperature TR 500
flash temperature TF 500
reactor cooling water outlet temperature TCW,R 500
condenser cooling water outlet temperature TCW,C 500
molar fraction of E in Stream 11 xE,11 700
molar fraction of H in Stream 11 xH,11 700
molar fraction of A in Stream 6 yA,6 800
molar fraction of B in Stream 6 yB,6 800
molar fraction of C in Stream 6 yC,6 800
molar fraction of D in Stream 6 yD,6 800
molar fraction of A in Stream 9 yA,9 800
molar fraction of B in Stream 9 yB,9 800
molar fraction of C in Stream 9 yC,9 800
molar fraction of D in Stream 9 yD,9 800
molar fraction of E in Stream 9 yE,9 800
molar fraction of G in Stream 9 yG,9 800
molar fraction of H in Stream 9 yH,9 800

Table 2. Signed Cause−Effect Relationship

variables F1 F2 F3 F4 F5 F6 F7 F8

PR 1 0 0 0 0 0 −1 0
PS 1 0 0 0 0 −1 −1 0
PF 1 0 0 0 0 0 −1 0
F1 1 0 0 0 −1 0 0 0
F2 0 0 0 0 0 0 −1 0
F3 0 0 0 0 0 0 1 0
F4 0 0 0 0 0 −1 0 0
F6 0 0 0 0 0 −1 0 0
F9 0 1 0 0 0 0 1 0
WC −1 0 0 0 0 0 0 0
VF1 1 0 0 0 1 0 0 0
VF2 0 0 0 0 0 0 −1 0
VF3 0 0 0 0 0 0 1 0
VF4 0 0 0 0 0 1 0 0
VF9 0 1 0 0 0 0 1 0
VFR,C −1 0 0 0 0 0 0 0
VFCW,R 0 0 1 0 0 −1 0 1
TR 0 0 1 0 0 −1 0 1
TF 0 0 0 1 0 0 1 0
TCW,R 1 0 0 −1 1 1 0 0
TCW,C 0 0 0 1 0 −1 1 0
xE,11 0 0 0 0 0 0 −1 0
xG,11 0 0 0 0 0 0 −1 0
yA,6 −1 0 0 0 0 0 0 0
yB,6 0 1 0 0 0 0 0 0
yC,6 1 0 0 0 0 0 0 0
yD,6 1 0 0 0 0 0 0 0
yA,9 −1 0 0 0 0 0 0 0
yB,9 0 1 0 0 0 0 0 0
yC,9 1 0 0 0 0 0 0 0
yD,9 0 0 0 0 0 0 1 0
yE,9 0 0 0 0 0 0 −1 0
yG,9 0 0 0 0 0 0 1 0
yH,9 0 0 0 0 0 0 1 0
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while if (O+D+ODD2 = 2) restrictions are imposed, the
solution comprises an additional instrument, yB,9. The
solutions obtained for the FM-based approach also show
the same behavior.

• The solutions only guarantee KFs detectability when
sensors fail. For example, the SN that satisfies (O+D
+ODD6 = 1) statistic-based constraints for α = 0.05 and
α = 0.03 (VF9 VFCW,R TCW,R) can not detect the non-key
faults 4 and 5 if the TCW,R sensor is unavailable.
Moreover, the SN that fulfills (O+D+ODD6 = 1) FM-
based restrictions for α = 0.05 (F6 VF9 VFCW,R TCW,R) is

unable to detect the failures 3 and 8 if the VFCW,R sensor
fails.

Next, the fault detection capabilities of both upgrade
approaches are illustrated for some failures in terms of the
time evolution of D. Let us remember that, when the PCA
monitoring technique is used, it is a common practice to
declare the fault state if D, SPE, or both of them exceed their
critical values during three consecutive time intervals.16 For the
analyzed examples, SPE detects the failure after that D exceeds
its critical value; therefore, only the D charts are presented.

Table 3. Results for α = 0.05

constraints statistic-based solution cost FM-based solution cost

O+D VF9 VFCW,R TCW,R 500 F6 VF9 VFCW,R TCW,R 800
O+D+ODD1 = 1 PR VF9 VFCW,R TCW,R 600 PR F6 VF9 VFCW,R TCW,R 900
O+D+ODD1 = 2 PR PS VF9 VFCW,R TCW,R 700 PR F6 VF9 VFCW,R TF TCW,R 1400
O+D+ODD2 = 1 F9 VF9 VFCW,R TCW,R 800 F6 F9 VF9 VFCW,R TCW,R 1100
O+D+ODD2 = 2 F9 VF9 VFCW,R TCW,R yB,9 1600 F6 F9 VF9 VFCW,R TCW,R yB,6 1900
O+D+ODD3 = 1 F1 VF9 VFCW,R TR TF 1300 F6 VF9 VFCW,R TCW,R TR 1300
O+D+ODD4 = 1 F6 VF9 VFCW,R TF 800 F6 VF9 VFCW,R TF TCW,R 1300
O+D+ODD4 = 2 VF9 VFCW,R TF TCW,R TCW,C 1500 F6 VF9 VFCW,R TF TCW,R TCW,C 1800
O+D+ODD5 = 1 F1 F2 VF9 VFCW,R TCW,R 1100 F6 VF9 VFCW,R TF TCW,R 1300
O+D+ODD5 = 2 F1 F2 VF9 VF1VFCW,R TCW,R 1100 F1 F6 VF9 VFCW,R TF TCW,R 1600
O+D+ODD6 = 1 VF9 VFCW,R TCW,R 500 F6 VF9 VFCW,R TCW,R 800
O+D+ODD6 = 2 PS VF9 VFCW,R TCW,R 600 F6 VF9 VFCW,R TF TCW,R 1300
O+D+ODD7 = 1 PR VF9 VFCW,R TCW,R 600 F6 VF9 VFCW,R TF TCW,R 1300
O+D+ODD7 = 2 PR PS VF9 VFCW,R TCW,R 700 PR F6 VF9 VFCW,R TF TCW,R 1400
O+D+ODD8 = 1 F1 VF9 VFCW,R TR TF 1300 F6 VF9 VFCW,R TR TCW,R 1300

Table 4. Results for α = 0.03

constraints statistic-based solution cost FM-based solution cost

O+D VF9 VFCW,R TCW,R 500 F6 VF9 VFCW,R TCW,R 800
O+D+ODD1 = 1 PR F1 VF9 VFCW,R TCW,R 900 F6 VF9 VFCW,R TF TCW,R 1300
O+D+ODD1 = 2 PR PS F1 VF9 VFCW,R TCW,R 1000 PR F6 VF9 VFCW,R TF TCW,R 1400
O+D+ODD2 = 1 F9 VF9 VFCW,R TCW,R 800 F6 F9 VF9 VFCW,R TCW,R 1100
O+D+ODD2 = 2 F9 VF9 VFCW,R TCW,R yB,9 1600 F6 F9 VF9 VFCW,R TCW,R yB,6 1900
O+D+ODD3 = 1 F1 VF9 VFCW,R TR TF 1300 F6 VF9 VFCW,R TCW,R TR 1300
O+D+ODD4 = 1 F6 VF9 VFCW,R TF 800 F6 VF9 VFCW,R TF TCW,R 1300
O+D+ODD4 = 2 F6 VF9 VFR,C TF TCW,R TCW,C 1800 F6 VF9 VFCW,R TF TCW,R TCW,C 1800
O+D+ODD5 = 1 F1 VF9 TR TCW,R 1300 F6 VF9 VFCW,R TF TCW,R 1300
O+D+ODD5 = 2 F1 VF9 VF1 TR TCW,R 1300 F1 F6 VF9 VFCW,R TF TCW,R 1600
O+D+ODD6 = 1 VF9 VFCW,R TCW,R 500 VF9 VFCW,R TF TCW,R 1000
O+D+ODD6 = 2 PS VF9 VFCW,R TCW,R 600 F6 VF9 VFCW,R TF TCW,R 1300
O+D+ODD7 = 1 F2 VF9 VFCW,R TCW,R 800 F6 VF9 VFCW,R TF TCW,R 1300
O+D+ODD7 = 2 PR F2 VF9 VFCW,R TCW,R 900 PR F6 VF9 VFCW,R TF TCW,R 1400
O+D+ODD8 = 1 F1 VF9 VFCW,R TR TF 1300 F6 VF9 VFCW,R TR TCW,R 1300

Figure 3. D chart for fault 3 (set SN1).
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Regarding the upgrade problem for O+D constraints (α =
0.03), D values when fault 3 occurs are shown on the left-hand
side of Figure 3. Those are obtained when the SN is constituted
by the set of instruments VF9 VFCW,R TCW,R, called set SN1,
which is the solution provided by the statistical-based approach.
A zoom of the previous figure around the fault-detection time
interval is displayed on the right-hand side of that picture. It is
observed that SN1 allows the detection of the fault before the
PDLs are reached. The same information is contained in Figure
4 for the SN formed by the instruments F6 VF9 VFCW,R TCW,R,
called set SN2, which is the solution obtained by the FM-based
approach. Even though SN2 allows the detection of fault 3, its
cost is higher than the corresponding one to SN1 and the
failure is detected after the PDLs are exceeded. Thus, the
installation of the sensor F6 increases the cost of the upgrade
project and no improvement on this fault detection is achieved.
Regarding the upgrade solutions for O+D+ODD6 = 2

constraints when α = 0.03, the set of instruments PS VF9
VFCW,R TCW,R satisfies the detection of all the faults when no
sensor fails and also fault 6 detection when two of those
measurements are unavailable. That sensor set is obtained by
applying the statistic-based approach. Figure 5 presents the D
chart when fault 6 occurs, and the available measurements are

only PS VF9, called set SN3. It can be seen that the fault is
detected before the PDLs are exceeded. In contrast, Figure 6
shows that if two measurements of the set F6 VF9 VFCW,R TF
TCW,R, which is the solution of the same upgrade problem
provided by the FM-based technique, are unavailable, then the
fault 6 is detected after the PDLs are surpassed. In that picture,
the set of working sensors is made up of F6 VF9 TF, called set
SN4.
For the analyzed examples, figures show that the sensor

configurations obtained using both methodologies satisfy the
fault’s detection, both when O+D and O+D+ODDi restrictions
are imposed. This condition has been validated for all the
solutions contained in Tables 3 and 4. Also, it is observed from
Figures 4 and 6 that the sensor networks provided by the FM-
based approach could perform the detection after the fault
magnitudes reach the PDLs. Furthermore, that approach gives
high-cost solutions in general (see Tables 3 and 4).

6. CONCLUSIONS

In this work, the upgrade of minimum cost SNs that fulfill the
detection of a given set of faults when the process is monitored
using PCA is addressed. The technique guarantees that the

Figure 4. D chart for fault 3 (set SN2).

Figure 5. D chart for fault 6 (set SN3).

Figure 6. D chart for fault 6 (set SN4).
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faults are detected before their magnitudes exceed a given
threshold. With this purpose, a new fault detection constraint is
straightaway formulated in terms of the PCA’s statistics. It is
also discussed how that restriction can be used when other
statistical monitoring techniques are applied.
Moreover, the fault DD concept is defined in this work, and

the conditions that satisfy the detectability requirements of a set
of KFs in the presence of malfunctioning sensors are stated and
included as constraints of the SN upgrade problems. These are
subject to nonlinear restrictions (fault detection and DD), and
their solutions can be obtained using a level traversal search
with cutting criteria or stochastic procedures.
Taking into account that the observability of a fault is a

necessary condition for its detection, the efficiency of the
algorithms used to solve the aforementioned optimization
problems can be enhanced by incorporating the observability
and OD constraints to their formulations. In this work, a level
traversal search with cutting criteria is implemented to get the
solution of those augmented problems.
The initial level of the search and a lower bound for the cost

are quickly determined solving the upgrade problem subject
only to a set of linear inequalities constraints, which takes into
account the faults observability and OD requirements.
Moreover, the solution of this linear optimization problem
provides other advantages. When the feasibility of a node is
examined during the solution of the augmented problem, many
unfeasible nodes can be easily discarded if linear constraints are
examined at first. This reduces the computational load of the
solution scheme.
Different upgrade problems are formulated using both

statistic- and FM-based restrictions. From the analysis of the
obtained results, it can be observed that the first approach finds
feasible solutions that the second one discards. For this reason,
the methodology that uses statistic-based constraints provides
lower-cost solutions. Moreover, the results indicate that the SN
cost increases when the requirements on the ODD increase.

■ APPENDIX
At first it is demonstrated that FD is a sufficient condition to
satisfy failure observability.
Let us consider a SN represented by a vector q, which

comprises N measured variables. The j-th fault is detectable by
the PCA monitoring method if eq 19 is satisfied: [(Dj(q) ≥
δD,α

2(q)) ∨ (SPEj(q) ≥ δSPE,α
2(q))] j = 1. . .J, where Dj(q) =

∥Λ−1/2PTxj
PDL*∥2 and SPEj(q) = ∥(I − PPT)xj

PDL*∥2. There-
fore, at least one variable, i.e., the n-th variable, is affected by the
j-th fault occurrence, and the inequality xj

PDL*(n) ≥ 3 > x0(n) is
satisfied. If the n-th element of xj

PDL* corresponds to the i-th
element of xj

PDL (xj
PDL(i) = xj

PDL*(n)), the equality aij = 1 is true,
and the fault observability condition Σi = 1

I (aj ∧ q)i ≥ 1 is also
verified. Consequently, if a SN satisfies FD restrictions, it also
fulfills observability constraints, and Problems 22 and 28 are
equivalent. Then, it is demonstrated that fault observability is a
necessary condition for failure detection.
On the contrary, let us assume that the j-th fault is not

observable but can be detected. If that failure is unobservable,
then Σi = 1

I (aj ∧ q)i ≥ 1; that is, the positions where the
elements of both vectors are equal to 1 are not coincident, i.e.,
for the i-th measured variable, q(i) = 1 and aj(i) = 0.
Because the i-th measured variable is not affected by the

occurrence of the failure (aj(i) = 0), then 3 > xj
PDL(i) > x0(i). If

the i-th element of the vector xj
PDL corresponds to the n-th

element of xj
PDL*, xj

PDL(i) = xj
PDL*(n), the values of both

statistics are lower than their respective critical limits δD,α
2 and

δSPE,α
2; that is, [(Dj(q) < δD,α

2(q)) ∧ (SPEj(q) < δSPE,α
2(q))].

Therefore, eq 19 is not satisfied, and the failure can not be
detected. This refutes the initial assumption. Given that fault
observability is a necessary condition for failure detection, the
minimum cost solution that satisfies the linear observability
constrains (solution of Step 1) sets the initial level of the
traversal tree search used to solve Problem 29.
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