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Particle Filter and
Approximation Error Model
for State Estimation in
Hyperthermia25

26 This work deals with numerical simulation of a hyperthermia treatment of skin cancer as
a state estimation problem, where uncertainties in the evolution and measurement mod-
els, as well as in the measured data, are accounted for. A reduced model is adopted,
based on a coarse mesh for the solution of the partial differential equations that describe
the physical problem, in order to expedite the solution of the state estimation problem
with a Particle Filter algorithm within the Bayesian framework of statistics. The so-
called approximation error model (AEM) is used in order to statistically compensate for
model reduction effects. The Liu and West algorithm of the Particle Filter, together with
the AEM, is shown to provide accurate estimates for the temperature and model parame-
ters in a multilayered region containing a tumor loaded with nanoparticles. Simulated
transient temperature measurements from one sensor are used in the analysis.
[DOI: 10.1115/1.4034064]

27 Introduction

28 State estimation problems have a broad range of applications,
29 including telecommunications, navigation, and biology, to name a
30 few. In state estimation problems, the available measured data are
31 used together with mathematical models for the physical phenom-
32 ena and the measuring devices, in order to sequentially produce
33 estimates of the desired dynamic variables. This is generally
34 accomplished within a probabilistic framework, where the solu-
35 tion of the state estimation problem consists of sequential estima-
36 tions of posterior probability densities of the state variables,
37 through the use of Bayesian filters [1–3]. As new data become
38 available, the posterior probability distribution is updated so that
39 it reflects the current state of the system. Unlike the Kalman filter
40 or its extensions, Particle Filters do not rely on any local lineariza-
41 tion or any prior assumption about the posterior probability
42 density [1–3].
43 Particle Filters make use of the importance sampling technique,
44 which is a generalization of the Monte Carlo method for nonex-
45 plicit probability density functions. The posterior probability den-
46 sity, which is the target of the solution of the state estimation
47 problem, is then represented by a set of samples, referred to as
48 particles, with associated weights [1–3]. Different Particle Filter
49 algorithms can be encountered in the literature, including the sam-
50 pling importance resampling and the auxiliary sampling resam-
51 pling filters. These Particle Filter algorithms may fail in providing
52 simultaneous estimates of the state variables and of the nondy-
53 namic model parameters [4]. Thus, they are mainly used by
54 assuming that the nondynamic parameters are deterministically
55 known. However, in most practical applications, the parameters
56 appearing in the mathematical formulation might be unknown, or
57 at most known with some degree of uncertainty. The problem of
58 simultaneous estimation of state variables and of nondynamic

59model parameters can be handled with the algorithm developed
60by Liu and West [4], also known as Kernel density particle filter
61[5]. In addition to the Liu and West algorithm of the Particle Fil-
62ter, other algorithms were proposed to address such kind of prob-
63lem [6]. However, the Liu and West algorithm is more general
64and can be considered as a benchmark in the current literature [6].
65Though very robust, the computational cost related to the use of
66Particle Filter methods is generally high due to their Monte Carlo
67nature. Indeed, their use for state estimation involving complex
68physical simulations can be prohibitive, especially for applica-
69tions where there is a time constraint for control or decision mak-
70ing. Attempts to reduce the computational cost of Particle Filter
71methods include parallelization [7–10] and model reduction [11].
72In fact, the proposed statistical model reduction technique referred
73to as AEM [12–25] has been recently coupled with the Liu and
74West filter in order to accelerate the solution of a state estimation
75problem applied to a one-dimensional hyperthermia problem [11].
76Planning and/or predictive control of the hyperthermia treat-
77ment of cancer can greatly benefit from the Bayesian state estima-
78tion formalism in order to provide more reliable and
79individualized protocols. Indeed, tissues’ physical properties and
80geometries present a large variability from an individual to
81another, or even for the same individual under different physio-
82logical conditions. Hence, the input data needed for numerical
83simulations involving biological tissues are highly uncertain
84[11,26–34].
85Hyperthermia is a current research topic, highly influenced by
86recent progresses in nanotechnology. Minimally invasive thera-
87pies for cancer constitute a great motivation for the use of nano-
88particles in combination with traditional therapies. In fact, the
89subcellular size and the physical properties of nanoparticles make
90them good candidates for novel therapies. Particularly in the near-
91infrared photo-thermal therapy of cancer, nanoparticles with
92strong absorption properties are used to enhance local heat deposi-
93tion in cancerous regions [35–42]. This treatment modality is of-
94ten used as adjuvant to radiotherapy or chemotherapy, in order to
95improve their efficiencies [42,43]. In special, near-infrared photo-
96thermal therapy of cancer was suggested for superficial tumors,
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97 like skin cancer, due to the limited penetration depth of laser light
98 in tissues [39]AQ4 . Other topics of current research related to the
99 photo-thermal hyperthermia treatment of cancer include the excre-

100 tion and toxicology of nanoparticles (see, for example, Refs.
101 [44–46] for the development of biodegradable nanoparticles), as
102 well as the quantification of the thermal damage imposed on dif-
103 ferent types of cells (see Refs. [47] and [48] for discussions and
104 comparative mathematical models of cell thermal damage). Any-
105 how, reported experimental results and clinical trials have demon-
106 strated the selectivity and the minimally invasive feature of
107 nanoparticles for hyperthermia applications [35–42,44–46,49]. On
108 the other hand, numerical simulations are of major importance in
109 hyperthermia treatment planning and control, in order to minimize
110 damage to normal cells.
111 This work aims at the application of the Liu and West algorithm
112 of the Particle Filter [4] together with the AEM [12–25] for the so-
113 lution of an inverse bioheat transfer state estimation problem. The
114 problem aims at the estimation of the temperature in the hyper-
115 thermia treatment of a subcutaneous tumor loaded with nanopar-
116 ticles, by assuming available local temperature measurements
117 from one sensor. Thermophysical and optical properties appearing
118 in the mathematical formulation of the physical problem, which
119 are modeled in terms of a mixture of Gaussian kernels, are also
120 simultaneously estimated together with the temperature field.

121 Physical Problem and Mathematical Formulation

122 The physical problem under consideration in this paper
123 involves the hyperthermia treatment of a subcutaneous tumor,
124 induced by an external collimated laser beam under constant illu-
125 mination (CW) [50,51]. The skin is represented as an inhomoge-
126 neous cylindrical medium with five layers, where each layer
127 corresponds to a specific tissue, namely: epidermis, dermis, fat,
128 muscle, and a tumor buried in the dermis (see Fig. 1 for geometry
129 and dimensions). The tumor is assumed to be loaded with gold
130 nanorods in order to enhance the hyperthermia effects and to limit
131 such effects to the tumor region.
132 The laser radiation propagation in the skin is modeled in this
133 work with the d-P1 approximation [52,53], even though other
134 more simplified diffusion formulations have been used in the liter-
135 ature for similar cases [54,55]. The laser beam is assumed to be
136 co-axial with the cylindrical skin model so that the problem can
137 be formulated as two-dimensional with axial symmetry. At the
138 external surface of the skin, the incident laser radiation is assumed
139 to be partially reflected (specular reflection), with reflection coef-
140 ficient Rsc. The internal surface of the irradiated boundary is
141 assumed to partially and diffusively reflect the incident radiation,
142 with reflectivity characterized by Fresnel’s coefficient A1, while
143 opacity is assumed for the remaining boundaries. The refractive
144 indexes of the different tissues are assumed constant and
145 homogeneous.
146 The diffuse component of the fluence rate is given by the fol-
147 lowing boundary value problem [52]:

r � �D r; zð ÞrUs r; zð Þ þ
r0s r; zð Þg0 r; zð Þ

btr r; zð Þ
Up r; zð Þŝc

" #

þ j r; zð ÞUs r; zð Þ ¼ r0s r; zð ÞUp r; zð Þ
in 0 < r < Lr and 0 < z < Lz (1a)

�D r; zð ÞrUs r; zð Þ � nþ
1

2A1

Us r; zð Þ

¼ �
r0S r; zð Þg0 r; zð Þ

btr r; zð Þ
Up r; zð Þ

at z ¼ 0; 0 < r < Lr (1b)

USðr; zÞ ¼ 0 at z ¼ Lz; 0 < r < Lr (1c)

rUsðr; zÞ � n ¼ 0 at r ¼ 0; 0 < z < Lz (1d)

USðr; zÞ ¼ 0 at r ¼ Lr; 0 < z < Lz (1e)

148149where

D ¼ 1

3btr

(2a)

r0s ¼ ð1� g2Þrs (2b)

g0 ¼ g

1þ g
(2c)

A1 ¼ ð1þ R2Þ=ð1� R1Þ (2d)

btr ¼ jþ rsð1� gÞ (2e)

150151with g being the anisotropic scattering factor, rs the scattering
152coefficient, while R1 and R2 are the first and second moments of
153Fresnel’s reflection coefficient, respectively.
154The collimated component of the fluence rate follows the gen-
155eralized Beer–Lambert’s law and is given by [52]:

Upðr; z Þ ¼ U0;iðr; zÞ ¼ U0;i�1ðr; di�1ðrÞÞexp ½�b0iðz� ziÞ� (3a)

156157with

b0 ¼ jþ r0s (3b)

158159where the subscript i refers to the layer i, di is the thickness of
160each layer, while zi and U0;i�1 are the axial position at which the
161collimated light enters layer i and the collimated fluence rate at
162this position, respectively. For i¼ 1, we have

U0;1ðr; zÞ ¼ ð1� RscÞEðrÞexp ðb01zÞ (3c)

163164with

EðrÞ ¼ E0; r � Ltumor

0 ; r > Ltumor

�
(3d)

165166The total fluence rate is obtained by adding both diffuse and
167collimated components, that is,

Fig. 1 Sketch of the skin model
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Uðr; zÞ ¼ Upðr; zÞ þ Usðr; zÞ (4)

168169 The heat transfer problem resulting from the laser irradiation of
170 the medium is modeled in terms of the two-dimensional Pennes’
171 equation [56] in cylindrical coordinates with axial symmetry. The
172 internal surface (at z¼ Lz) is assumed to exchange heat with the
173 deeper tissues beyond the computational domain, at a core body
174 temperature Tint, with a heat transfer coefficient hint, while the
175 irradiated surface (at z¼ 0) is assumed to be cooled by air in order
176 to avoid overheating of the skin [40,41,57]. The heat transfer coef-
177 ficient and the temperature of the surrounding medium at z¼ 0 are
178 assumed to vary in the radial direction. Heat transfer is neglected
179 through the lateral surfaces of the medium. The heat transfer prob-
180 lem is then formulated by using position-dependent properties as

q r; zð Þcp r; zð Þ
@T r; z; tð Þ

@t
¼ r � k r; zð ÞrT r; z; tð Þ

� �
þ Q r; z; tð Þ

0 < z < Lz; 0 < r < Lr t > 0

(5a)

kðr; zÞrTðr; z; tÞ � nþ hcðrÞTðr; z; tÞ ¼ hcðrÞTcðrÞ;
z ¼ 0 ; 0 < r < Lr t > 0 (5b)

kðr; zÞrTðr; z; tÞ � nþ hintTðr; z; tÞ ¼ hintTint;

z ¼ Lz ; 0 < r < Lr; t > 0
(5c)

rTðr; z; tÞ � n ¼ 0; r ¼ 0; 0 < z < Lz t > 0 (5d)

rTðr; z; tÞ � n ¼ 0; r ¼ Lr; 0 < z < Lz t > 0 (5e)

Tðr; z; tÞ ¼ Tsðr; zÞ 0 < z < Lz; 0 < r < Lr; t ¼ 0 (5f )

181182 where

Qðr; z; tÞ ¼ qbcp;bxbðr; zÞ½Tb � Tðr; z; tÞ� þ Qmetðr; zÞ þ Qlaserðr; zÞ
(5g)

183184 that includes the heat source due to laser absorption

Qlaserðr; zÞ ¼ jðr; zÞUðr; zÞ (5h)

185186 as well as the heat source due to metabolism and the effect of
187 blood perfusion. The heat source term Qlaser induced by the laser
188 radiation is computed from the fluence rate and the absorption
189 coefficient.

190 State Estimation

191 Inverse problems in which the unknowns are time-dependent
192 are referred to as state estimation or nonstationary inverse prob-
193 lems [1–3,6,12,58–62]. This kind of problem can be encountered
194 in several science and engineering applications. In most of these
195 applications, prior knowledge about the physical phenomena
196 being modeled is available [3]. This knowledge allows for the for-
197 mulation of Bayesian models that involve the prior distributions
198 for the unknown quantities and the likelihood functions relating
199 these quantities to the observations [3]. Within the Bayesian
200 framework, inference on the unknown quantities is based on the
201 posterior probability distribution obtained from Bayes’ theorem
202 [3]. Very often, observations are obtained at some discrete time
203 instants and one is interested in obtaining estimates of the
204 unknown quantities as new observations become available. For
205 such cases, nonstationary inverse problems may be written in the
206 form of evolution and observation models given as stochastic
207 processes [1–3,12]. Evolution and observation models inherently
208 incorporate nondynamic parameters, which might be unknown or

209known with some degree of uncertainty. Thus, these parameters
210may need to be estimated simultaneously with the state variables.
211Let us consider a vector xk that contains all the state variables
212that describe the system at a given time instant tk. We further
213assume the state evolution model and the observation model,
214which are defined by the functions fk and gk, respectively. Thus,
215we can write the evolution model and the observation model,
216respectively, as [1–3]

xk ¼ fkðxk�1; h;wkÞ; k ¼ 1; :::;M (6a)

zk ¼ gkðxk; h; vkÞ; k ¼ 1; :::;M (6b)

217218where h is a vector containing all the nondynamic parameters of
219the model, while wk and vk represent the noises in the state evolu-
220tion model and in the observation model, respectively.
221For the state estimation problem under consideration in this
222work, the state variables in the vector xk ¼ ½Uk;Tk� are the flu-
223ence rates and temperatures at the centers of the finite volumes
224used in the discretization of the forward problem, at time tk, repre-
225sented by the vectors Uk and Tk, respectively. The vector of non-
226dynamic parameters, h, contains all the optical and
227thermophysical parameters appearing in the mathematical formu-
228lation of the forward problem given by Eqs. (1)–(5).
229Given the state-space models of Eqs. (6a) and (6b), the objec-
230tive of the state estimation problem is to obtain information about
231the state vector xk by sequentially estimating in time the posterior
232probability density pðxk; hjz1:kÞ, where z1:k is the set of all meas-
233urements up to time tk, that is, fz1; z2;…; zkg. By assuming that
234the probability density pðx0; hjz0Þ ¼ pðx0; hÞ at the initial time
235t¼ t0 is available, the solution of the state estimation problem is
236obtained with Bayesian filters in two steps: prediction and update
237[1–3,12,58–61]. The prediction step involves the evolution of the
238state variables from time instant tk�1 to tk, by using Eq. (6a), while
239in the update step, the likelihood function, relating the predicted
240observations and the available observations at tk, is taken into
241account. Kalman-like filters approximate the posterior probability
242density as Gaussian. Though such an approach has proved to be
243efficient in different applications, it can have severe limitations
244for highly nonlinear problems. Unlike Kalman filters, sequential
245Monte Carlo Methods, also referred to as Particle Filters, are more
246general and do not rely on any local linearization or any prior
247assumption about the posterior probability density [1–3].
248The Particle Filter method is a Monte Carlo technique for the
249solution of state estimation problems, in which the posterior prob-
250ability density function is represented by a set of random samples
251(particles) with associated weights. As the number of samples
252becomes large, the Monte Carlo characterization becomes an
253equivalent representation of the posterior probability density func-
254tion and the solution approaches the optimal Bayesian estimate.
255The Particle Filter algorithms generally make use of an impor-
256tance density, which is a probability density function proposed to
257represent another one that cannot be exactly computed, that is, the
258sought posterior density in the present case. Then, samples are
259drawn from the importance density instead of the actual density
260[1–3,12].
261For the simultaneous estimation of state variables and nondy-

262namic parameters, let fxi
k; h

i
kg be the particle i at time time tk,

263with associated weight wi
k; i ¼ 1; :::;N, where N is the number of

264particles. The subscript k for the parameter vector h does not rep-
265resent a time dependence of such quantity, but the fact is that it is
266also estimated sequentially, like the state variables x. The weights

267are normalized so that
PN

i¼1 wi
k ¼ 1. The posterior probability dis-

268tribution of the state variables and of the parameters at tk can be
269discretely approximated by [6,61]

pðxk; hkjz1:kÞ �
XN

i¼1

wi
kdðxk � xi

k; hk � hi
kÞ (7)
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where dð:Þ is the Dirac delta function.
270 The joint state and parameter estimation problem is a difficult
271 task. For example, an artificial evolution model for the parameters
272 can be used, such as a random walk, but the particles may quite
273 fast loose diversity. The problem is still an active area of research
274 for Particle Filter methods, but the algorithm of Liu and West [4]
275 is considered as a robust and powerful technique [6]. The algo-
276 rithm of Liu and West for the Particle Filter is based on West’s
277 hypothesis [59] of a Gaussian mixture for the vector of parameters

h [4,63], that is,

pðhjz1:k�1Þ �
XN

i¼1

wi
k�1 Nðhjmi

k�1; h
2Vk�1Þ (8)

278279 where Nð�jm;SÞ is a Gaussian multivariate density with mean m
280 and covariance matrix S, while h is a smoothing parameter.
281 Equation (8) shows that the density pðhjz1:k�1Þ is a mixture of

Nðhjmi
k�1; h

2Vk�1Þ Gaussian distributions weighted by the sam-
282 ple weights wi

k�1. The kernel locations are specified by using the
283 following shrinkage rule [4,6]:

mi
k�1 ¼ A hi

k�1 þ ð1� AÞ�hk�1 (9)

284285 where A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� h2
p

and �hk�1 is the mean of h at time tk�1. The
286 shrinkage factor, A, is computed as [4,6]

A ¼ 3e� 1

2e
(10)

287288 where 0.95< e < 0.99.
289 The steps of Liu and West’s particle filter algorithm [4,6], as
290 applied for the advancement of the particles from time tk�1 to
291 time tk, are presented in Table 1.

292 Nonstationary Approximation Error Approach

293 An implicit assumption made in the state-space model given by
294 Eq. (6) is that both evolution and observation models describe as

295accurately as possible the physical problem under analysis. The
296fulfillment of this requirement might be unpractical from a com-
297putational point of view and makes the state estimation prohibi-
298tive, especially, when complex multiphysical phenomena are
299involved. An alternative is to use techniques of model reduction
300to reduce the computational time and then account for the model-
301ing errors in order to avoid poor estimates of the unknown quanti-
302ties of interest.
303The AEM, first proposed for stationary inverse problems [12]
304and then extended to nonstationary inverse problems [24], is
305effective for handling the effects of model reduction. The method
306was successfully applied to compensate for the use of reduced
307mathematical/computational models in different applications of
308practical interest, including process monitoring, tomography, and
309hyperthermia treatment of cancer [11–25,64–66]. In the nonsta-
310tionary version of the AEM, model reduction error in both evolu-
311tion and observation models is treated as additional noises. These
312errors are then modeled as Gaussian and their statistics (means
313and covariance matrices) are computed based on the probabilistic
314modeling of the prior information available. In this way, the heavy
315computational task is performed before the measurements are
316made.
317Let fr

kðxr
k; h

r;wr
kÞ and gr

kðxr
k; h

rÞ be reduced evolution and obser-
318vation models, respectively, with parameter vector hr and state
319vector xr

k of dimensions smaller than those of h and xk, respec-
320tively, which appear in the accurate models fkðxk; h;wkÞ and

gkðxk; hÞ. For state-space models defined by discrete numerical
321methods of partial differential equations, a natural choice for
322reduced models is the use of coarse meshes. Hence, we consider
323the existence of a linear operator, typically an interpolation map-
324ping Px between a sufficiently refined mesh and a coarse mesh, so
325that xr

k ¼ Pxxk [21–25]. It follows that:

xr
k ¼ fr

kðxr
k�1; h

r;wr
kÞ þ xr

k (11)

326327where xr
k represents the modeling error of the process at time tk

328and is defined as

xr
k ¼ Pxfkðxk�1; h;wkÞ � fr

kðxr
k�1; h

r;wr
kÞ (12)

Table 1 Liu and West’s algorithm [4]

Step 1

Find the mean �hk�1 of the parameters h at time tk�1

Step 2

For i¼ 1,…, N compute mi
k�1 with Eq. (9), draw new particles xi

k from the prior density pðxkjxi
k�1; mi

k�1Þ and then calculate the mean li
k of xk. Use the

likelihood density to calculate the corresponding weights wi
k ¼ pðzkjli

k; mi
k�1Þwi

k�1

Step 3

Calculate the total weight t ¼
P

iw
j
k and then normalize the particle weights, that is, for i¼ 1,…, N let wi

k ¼ t�1 wi
k

Step 4

Resample the particles as follows

Construct the cumulative sum of weights (CSW) by computing ci¼ ci�1þwi
k for i¼ 1,…, N, with c0¼ 0

Let i¼ 1 and draw a starting point u1 from the uniform distribution U[0, N�1]

For j¼ 1,…, N

Move along the CSW by making uj¼ u1þN�1(j� 1)

While uj> ci make i¼ iþ 1

Assign samples x
j
k�1 ¼ xi

k�1, m
j
k�1 ¼ mi

k�1 and lj
k ¼ li

k

Assign parent ij¼ i

Step 5

For j¼ 1,…, N draw samples hj
k from Nðhj

kjm
ij
k�1; h

2Vk�1Þ, by using the parent ij

Step 6

For j¼ 1,…, N draw particles x
j
k from the prior density pðxkjxij

k�1; hj
kÞ, by using the parent ij, and then use the likelihood density to calculate the corre-

spondent weights wj
k ¼ pðzkjxj

k; h
j
kÞ=pðzkjlij

k ;m
ij
k�1Þ

Step 7

Calculate the total weight t ¼
P

jw
j
k and then normalize the particle weights, that is, for j¼ 1,…, N let wj

k ¼ t�1 wj
k

J_ID: HT DOI: 10.1115/1.4034064 Date: 9-July-16 Stage: Page: 4 Total Pages: 13

ID: asme3b2server Time: 10:17 I Path: //chenas03/Cenpro/ApplicationFiles/Journals/ASME/HT##/Vol00000/160130/Comp/APPFile/AS-HT##160130

000000-4 / Vol. 00, MONTH 2016 Transactions of the ASME



PROOF COPY [HT-16-1093]

329330 Similarly, by assuming that the measurement error is additive,
331 the observation model can be rewritten as [21–25]

zk ¼ gr
kðxr

k; h
rÞ þ tr

k þ vk (13)

332333 where tr
k represents the modeling error in the observation model

334 and is given by

tr
k ¼ gkðxk; hÞ � gr

kðxr
k; h

rÞ (14)

335336 Therefore, Eq. (13) becomes

zk ¼ gr
kðxr

k; h
rÞ þ gk; k ¼ 1; 2; :::;M (15)

337338 where

gk ¼ tr
k þ vk (16)

339340 Although analytical expressions of the approximation errors
341 can be derived for linear models, in the case of nonlinear models,
342 such as in this work, one shall rely on sampling techniques to
343 obtain the statistics describing the approximation errors [21–25].
344 The general assumption is that the approximation errors have
345 Gaussian distributions. A Monte Carlo simulation is then per-
346 formed in order to obtain samples xr;i

k and t
r;i
k of the approxima-

347 tion errors. From these samples, one can compute statistics of the
348 approximation errors, such as the means and the covariance matri-
349 ces, and the reduced evolution-observation models given by Eqs.
350 (11) and (15) can be used in the particle filter computations,
351 instead of the complete models given by Eqs. (6a) and (6b).

352 Results and Discussion

353 For the results presented below, we considered the tissues with
354 thicknesses and physical properties given by Table 2 (see also

355Fig. 1) [50,51,68]. AQ5Absorption and scattering coefficients of the tu-
356mor loaded with gold nanorods are shown in Table 3 and were
357computed following the procedure given in Ref. [40], by assuming
358a volumetric concentration 3� 1015 m�3 of nanorods, with peak
359surface plasmon resonance at kSPR¼ 798 nm and aspect ratio
360R¼ 3.9 [69]. The remaining physical properties were assumed as
361not affected by the inclusion of the nanoparticles. The first and
362second moments of Fresnel reflection coefficient for the air–tissue
363interface, with the tissue refractive index of 1.3, are given by
3640.565 and 0.429, respectively [70]. The steady-state version of the
365bioheat transfer problem given by Eq. (5) was solved in order to
366obtain the initial distribution of temperature in the skin model,
367with Qlaserðr; zÞ ¼ 0, hc¼ 10 W/m2 K and hint¼ 50 W/m2 K [40].
368The subcutaneous tumor that is the target of the hyperthermia
369treatment was assumed loaded with gold nanorods and then

Table 2 Thermophysical and optical properties [48,49,63,67]

Tissue Epidermis Tumor Dermis Fat Muscle

Thickness (mm) 0.1 0.75 1.5 2 8

q (kg/m3) 1200 1030 1200 1000 1085

cp (J/kg K) 3589 3852 3300 2674 3800

k (W/m K) 0.235 0.558 0.445 0.185 0.51

Qmet (W/m3) 0 3680 368.1 368.3 684.2

xb (s�1) 0 63� 10�4 2� 10�4 10�4 27� 10�4

j (m�1) 35 122 122 108 54

rs (m�1) 21,270 22,500 22,500 20,200 6670

Table 3 Optical properties of the tumor containing gold
nanorods

Concentration of nanoparticles (m�3) 3� 1015

j (m�1) 177.02

rs (m�1) 22503.46

Table 4 Finite volume meshes

Mesh
Number of control volumes in

the radial direction
Number of control volumes

in the axial direction
Total number

of control volumes Purpose

M1 10 15 150 Reduced model
M2 100 150 15,000 Complete model
M3 200 300 60,000 Synthetic data

Fig. 2 Comparison of the temperatures obtained with the three
different models: (a) transient variation at (r 5 0.6 mm,
z 5 0.73 mm) and (b) along the centerline at t 5 20 s
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370exposed to a collimated uniform laser beam (k¼ 800 nm,
371E0¼ 1.2 W/cm2) during 20 s under CW. A heat transfer coefficient
372hc¼ 500 W/m2 K to a medium at Tc¼ 35 �C was considered for
373radial positions smaller than the tumor radius in order to simulate
374the effect of an active cooling mechanism at the skin surface
375[40,41,57]. The heat transfer coefficient for larger radial positions
376was set to hc¼ 10 W/m2 K [40].
377Both radiation and bioheat transfer problems were numerically
378solved using a finite volume code based on the alternating direc-
379tion implicit method. The code was verified against analytical sol-
380utions for limiting cases. The coupled radiation-bioheat transfer
381problem defined by Eqs. (1) and (5) was solved with three differ-
382ent finite volume meshes, referred to as M1, M2, and M3, with
383the number of volumes shown by Table 4. The most refined mesh,

M3, was used for the generation of the simulated measurements,
384in order to avoid an inverse crime. Meshes M1 and M2 were
385used for the solution of the state estimation problem with the
386reduced and complete models, respectively. Figure 2(a) presents
387the comparison of the transient temperature variation at the posi-
388tion (r¼ 0.6 mm, z¼ 0.73 mm) obtained using these three differ-
389ent meshes for the solution of the coupled radiation-bioheat
390transfer problem. Similarly, Fig. 2(b) presents the temperature dis-
391tributions obtained with these same meshes in the axial direction
392along the centerline, at t¼ 20 s. One can notice in these figures
393discrepancies between the temperature profiles obtained with the
394complete and reduced models. These discrepancies are due to the

Table 5 Prior probability densities for the optical parameters

Optical parameter Mean Standard deviation

Absorption coefficient j0 0.05j0/2.576

Scattering coefficient rs,0 0.05rs,0/2.576

Anisotropy factor g0 0.03g0/2.576

Fresnel’s parameter A1,0 0.001A1,0/2.576

Specular reflectivity Rs 0.01Rs,0/2.576

Irradiance E0 0.05 E0/2.576

Table 6 Prior probability densities for the thermophysical
parameters

Parameter Mean Standard deviation

Thermal conductivity k0 0.05 k,0/2.576

Volumetric heat capacity cp,0 0.05cp,0/2.576

Perfusion coefficient x0 0.05 x0/2.576

Metabolic heat source Qmet,0 0.05 Qmet,0/2.576

Heat transfer coefficients hc,0 0.05hc,0/2.576
hint,0 0.05hint,0/2.576

Fig. 3 Convergence of the mean of the approximation error:
(a) transient variation at (r 5 0.6 mm, z 5 0.73 mm) and (b) along
the centerline at t 5 20 s

Fig. 4 Convergence of the total sample variance of the approx-
imation error: (a) at t 5 1 s and (b) at t 5 20 s
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395 use of the nonconverged finite volume mesh M1. On the other
396 hand, one can note that the mesh M2 is sufficiently refined, since
397 the solution of the complete model graphically matches the solu-
398 tion obtained with mesh M3, which was used to generate the syn-
399 thetic measured data. The results obtained with mesh M3 will be
400 considered as exact for the comparisons performed hereafter.
401 The statistics of the approximation error between the reduced
402 model (mesh M1) and the complete model (mesh M2) were com-
403 puted with a Monte Carlo simulation by assuming the prior proba-
404 bility densities given by Tables 5 and 6 for the physical
405 parameters in the vector h, where the reference values (subscript
406 0) are given by Tables 2 and 3. These prior densities are based on

407literature data [48,49,63,67]. For the Monte Carlo simulation, the
408complete state evolution model was assumed as deterministic. For
409the calculation of the statistics of the approximation error xr

k,
4103000 samples were generated from the prior probability densities
411given by Tables 5 and 6. The convergence of the statistics of the
412approximation error is presented by Figs. 3 and 4. Figures 3(a)
413and 3(b) present the means of the errors at (r¼ 0.6 mm,
414z¼ 0.7 mm) and along the axial direction at r¼ 0 mm and t¼ 20 s,
415respectively, for different number of samples used in the Monte
416Carlo simulation. Figures 4(a) and 4(b) present the variation of
417the trace of the covariance matrix of the approximation error with
418the number of samples, at t¼ 1 s and t¼ 20 s, respectively. Figures

Fig. 5 Exact and estimated temperature distribution at selected times with N 5 250 particles
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419 3 and 4 show that convergence is achieved for the means and co-
420 variance matrices of the approximation error with the number of
421 samples utilized.
422 Once the statistics of the approximation error are computed, the
423 solution of the state estimation problem can be obtained with the
424 computationally fast reduced model, instead of the complete
425 model. For the reduced model, the uncertainties were assumed as
426 additive, that is,

xr
kþ1 ¼ fr

kþ1ðxr
k; h

r
kÞ þ er

kþ1 (17a)

427428 The evolution model is represented separately for the fluence rate,
Uk, and temperature, Tk, as

Ur
kþ1 ¼ Ur

kðhkÞ þ rUeU
kþ1

Tr
kþ1 ¼ Fr

kþ1ðTr
k;U

r
kþ1; hkÞ þ xr

kþ1

(
(17b)

429430 In Eq. (17b), the evolution model for the fluence rate was
431 defined in the form of a random walk, with uncorrelated and
432 Gaussian noise, with zero mean and a standard deviation rU
433 ¼ 1% of its deterministic value. The deterministic values for the
434 fluence rate were obtained from the finite volume solution of
435 problem (1) with mesh M1. The evolution model for temperature

436was obtained from the finite volume solution for problem (5)
437(operator Fr

kþ1 in Eq. (17b)) with mesh M1, and contains uncer-
438tainties given by the approximation error xr

k. The uncertainties in
439the initial temperature distribution are Gaussian, with zero mean
440and a standard deviation of 0.5 �C.
441Transient temperature measurements (zmeas

k
) taken at the posi-

442tion (r¼ 0.6 mm, z¼ 0.7 mm), at a rate of one measurement every
4431 s, are assumed available for the analysis. The measurement
444errors are supposed additive, Gaussian, uncorrelated, with zero
445mean and a constant standard deviation rTmeas

¼ 0.5 �C so that the
446likelihood function written in terms of the reduced model is given
447by

p zmeas
k
jxr

k
; hr� �

/ exp � 1

2
zmeas

k
� gr

k
xr

k
; hr� �
� �gk

� �T
W�1

g

�

zmeas
k
� gr

k
xr

k
; hr� �
� �gk

� �o
(18)

448449where �gk and Wg are the mean and the covariance matrix of gk,
450respectively, which include the statistics of the approximation
451errors and of the measurement errors (see Eq. (16)). Since the
452measurement errors have zero mean and constant standard devia-
453tion rTmeas

, we can write [11]

Fig. 6 Estimated and exact temperature distribution at t 5 20 s: (left) along the radius for a line at z 5 0.7 mm, with Liu and
West and AEM (a), Liu and West without AEM (b); (right) along the centerline, with Liu and West and AEM (c), Liu and West
without AEM (d)
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�gk ¼ �tr
k (19a)

Wg ¼Wtr
k
þ r2

Tmeas
I (19b)

454455 where �tr
k and Wtr

k
are, respectively, the mean and the covariance

456 matrix of approximation error tr
k, while I is the identity matrix.

457 Figure 5 presents the estimated temperature distributions
458 obtained with the Liu and West particle filter at selected time
459 instants, for N¼ 250 particles, by using the reduced model to-
460 gether with the AEM. The solution obtained by the simple reduc-
461 tion of the model (without the AEM) is also shown in this figure,
462 as well as the exact temperatures (obtained with the most refined
463 mesh M3). Figure 5 shows that good estimates of the temperature
464 distributions were obtained when the AEM approach was taken
465 into account. On the other hand, if the AEM is not considered, the
466 agreement between estimated and measured temperatures deterio-
467 rates. Such fact is also apparent from the analysis of Figs.
468 6(a)–6(d), where the estimated temperature distributions are
469 shown along the radial direction for a line at z¼ 0.7 mm and along
470 the axial direction at the centerline.
471 For further assessment of the accuracy of the results obtained
472 with the Liu and West algorithm together with the AEM approach,
473 the estimated transient variations of the temperatures at the

474measurement point, and at a position where no measurements are
475available (r¼ 5.4 mm, z¼ 0.7 mm), are shown in Figs. 7 and 8,
476respectively. For comparison, the exact temperatures are shown in
477these two figures and the simulated temperature measurements are
478included in Fig. 7. One can notice in Figs. 7 and 8 that excellent
479estimates were obtained with small credible bounds if the AEM
480was used. It is interesting to note in Fig. 7(b) that the transient
481temperature variation estimated by the particle filter without the
482AEM follows the noisy measurements and not the exact tempera-
483tures. Furthermore, for a position where no measurements are
484available, as shown by Fig. 8(b), the estimated temperatures do
485not follow the exact ones and increase at a larger rate. Figures 5–8
486demonstrate the sensitivity of the inverse problem solution to
487modeling errors and also show the importance of compensating
488for the effects of model reduction by using the AEM.
489Liu and West’s algorithm for the particle filter allows for simul-
490taneous estimation of the state variables and of the nondynamic
491model parameters. Selected estimated parameters with their asso-
492ciated 99% credible intervals are presented in Fig. 9. The exact
493values of these parameters were also included in this figure for the
494sake of comparison. We note in Fig. 9 that excellent estimates
495were obtained for the parameters, with the exact values falling
496inside the credible intervals. Moreover, one can observe a reduc-
497tion of the credible intervals for some parameters as time

Fig. 7 Comparison of the estimated and exact transient tem-
perature variations with the temperature measurements at the
sensor position (r 5 0.6 mm, z 5 0.7 mm): (a) Liu and West with
AEM; (b) Liu and West without AEM

Fig. 8 Estimated and exact transient temperature variations at
(r 5 5.4 mm, z 5 0.7 mm): (a) Liu and West with AEM; (b) Liu and
West without AEM
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498 increases. Thus, the samples of the corresponding marginal
499 posteriors tend to concentrate around the corresponding exact val-
500 ues as time evolves because of the accumulated information
501 provided by the transient measurements and by the evolution
502 model.

503The computational cost for the solution of the simultaneous
504estimation of parameters and state variables using the complete
505model was of 81 hrs, with 250 particles [29]. On the other hand,
506with the reduced model, the solution was obtained in 47 min,
507which represents a speedup of 100 times. Computational times

Fig. 9 Estimation of selected parameters (subscripts: tum 5 tumor, tum, nps 5 tumor with
nanoparticles, epi 5 epidermis, der 5 dermis, mus 5 muscle, amb 5 surrounding ambient)
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508 refer to codes run under the MATLAB platform, on an Intel(R) Xeon
509 E56445 at 2.40 GHz dual processor with 32 GB of RAM memory.

510 Conclusions

511 This work dealt with the solution of a state estimation problem
512 involving the laser heating of a subcutaneous tumor loaded with
513 nanoparticles. A reduced order model, based on the use of a
514 coarse mesh for the solution of the coupled radiation-bioheat
515 transfer problem, was proposed to speed up the solution of the
516 state estimation problem. The AEM was jointly used with the Liu
517 and West Particle Filter algorithm for the simultaneous estimation
518 of state variables and model parameters. Results obtained with
519 simulated measurements show that the present approach provides
520 excellent results for the estimated quantities. It was also demon-
521 strated that, when the model reduction errors were not accounted
522 for, the estimated quantities were not accurate. Furthermore, the
523 use of the reduced model allowed for large reduction of computa-
524 tional times for the solution of the present state estimation
525 problem.
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Nomenclature532

533 cp ¼ specific heat
534 D ¼ diffusion coefficient for the d-P1 approximation
535 E0 ¼ maximum laser radiation flux imposed at z¼ 0
536 g ¼ anisotropy scattering factor
537 h ¼ heat transfer coefficient
538 k ¼ thermal conductivity
539 Lr, Lz ¼ radius and thickness of the cylinder, respectively
540 N ¼ number of particles for the particle filter
541 Q ¼ volumetric heat source
542 r,z ¼ cylindrical coordinates
543 Rsc ¼ specular reflection coefficient at z¼ 0
544 R1, R2 ¼ first and second moments of Fresnel’s reflection coeffi-
545 cient, respectively

ŝc ¼ direction of propagation of the collimated laser beam
546 t ¼ time
547 T ¼ temperature
548 Ts ¼ initial temperature
549 w ¼ weights
550 x ¼ state vector
551 z ¼ vector of measurements

552 Greek Symbols

btr ¼ transport attenuation coefficient

b0i ¼ reduced total attenuation coefficient of layer i

h ¼ vector containing nondynamic parameters of the model
553 j ¼ absorption coefficient
554 p(a|b) ¼ conditional probability of a when b is given

q ¼ density
rs ¼ scattering coefficient
r0s ¼ reduced scattering coefficient

555 U ¼ total fluence rate
556 Up ¼ collimated component of the fluence rate
557 Us ¼ diffusive fluence rate

xb ¼ blood perfusion rate

558 Subscripts

559 b ¼ blood
560 c ¼ cooling

561int ¼ deeper internal tissues
562k ¼ time instant tk
563met ¼ metabolism

564Superscript

565i ¼ particle index
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621 cle Filter Algorithms Applied to the Temperature Filed Estimation in Hyper-
622 thermia Phantoms,” 1st Thermal and Fluid Engineering Summer Conference,
623 ASTFE, New York, Paper No. TFESC–13764.AQ10

[27] Lamien, B., Orlande, H. R. B., and Eliçabe, G. E., 2015, “Inverse Problem in
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628 Estimation in Bioheat Transfer: A Comparison of Particle Filter Algorithms,”
629 Int. J. Numer. Methods Heat Fluid Flow (in press).

[30] Varon, L. A. B., Orlande, H. R. B., and Elicabe, G., 2015, “Estimation of State
630 Variables in the Hyperthermia Therapy of Cancer With Heating Imposed by
631 Radiofrequency Electromagnetic Waves,” Int. J. Therm. Sci., 98(�),
632 pp. 228–236.

[31] dos Santos, I., Haemmerich, D., Schutt, D., da Rocha, A. F., and Menezes, L.
633 R., 2009, “Probabilistic Finite Element Analysis of Radiofrequency Liver Abla-
634 tion Using the Unscented Transform,” Phys. Med. Biol., 54(3), pp. 627–640.

[32] de Greef, M., Kok, H. P., Correia, D., Borsboom, P. P., Bel, A., and Crezee, J.,
635 2011, “Uncertainty in Hyperthermia Treatment Planning: The Need for Robust
636 System Design,” Phys. Med. Biol., 56(11), pp. 3233–3250.

[33] Liu, J., 2001, “Uncertainty Analysis for Temperature Prediction of Biological
637 Bodies Subject to Randomly Spatial Heating,” J. Biomech., 34(12),
638 pp. 1637–1642.

[34] Liu, J., 2014, “Ways Toward Targeted Freezing or Heating Ablation of Malig-
639 nant Tumor: Precisely Managing the Heat,” 15th International Heat Transfer
640 Conference, IHTC-15, Kyoto, Japan, pp. 1–25.

[35] Xu, X., Meade, A., and Bayazitoglu, Y., 2011, “Numerical Investigation of
641 Nanoparticle-Assisted Laser-Induced Interstitial Thermotherapy Toward Tumor
642 and Cancer Treatments,” Lasers Med. Sci., 26(2), pp. 213–222.

[36] Tjahjono, I. K., and Bayazitoglu, Y., 2008, “Near-Infrared Light Heating of a
643 Slab by Embedded Nanoparticles,” Int. J. Heat Mass Transfer, 51(�),
644 pp. 1505–1515.

[37] Vera, J., and Bayazitoglu, Y., 2009, “A Note on Laser Penetration in Nanoshell
645 Deposited Tissue,” Int. J. Heat Mass Transfer, 52(�), pp. 3402–3406.

[38] Vera, J., and Bayazitoglu, Y., 2009, “Gold Nanoshell Density Variation With
646 Laser Power for Induced Hyperthermia,” Int. J. Heat Mass Transfer, 52(�),
647 pp. 564–573.

[39] Bayazitoglu, Y., Kheradmand, S., and Tullius, T. K., 2013, “An Overview of
648 Nanoparticle Assisted Laser Therapy,” Int. J. Heat Mass Transfer, 67(�),
649 pp. 469–486.

[40] Dombrovsky, L. A., Timchenko, V., and Jackson, M., 2012, “Indirect Heating
650 Strategy for Laser Induced Hyperthermia: An Advanced Thermal Model,” Int.
651 J. Heat Mass Transfer, 55(�), pp. 4688–4700.

[41] Dombrovsky, L. A., Timchenko, V., Jackson, M., and Yeoh, G. H., 2011, “A
652 Combined Transient Thermal Model for Laser Hyperthermia of Tumors With
653 Embedded Gold Nanoshells,” Int. J. Heat Mass Transfer, 54(�),
654 pp. 5459–5469.

[42] Chatterjee, D., and Krishnan, S., 2013, “Gold Nanoparticle—Mediated Hyper-
655 thermia in Cancer Therapy,” Cancer Nanotechnology: Principles and Applica-
656 tions in Radiation Oncology, S. Cho, and S. Krishnan, eds., CRC Press, Boca
657 Raton, FL.

[43] van der Zee, J., 2002, “Heating the Patient: A Promising Approach?,” Ann.
658 Oncol., 13(8), pp. 1173–1184.

[44] Tamarov, K. P., Osminkina, L. A., Zinovyev, S. V., Maximova, K. A., Kargina,
659 J. V., Gongalsky, M. B., Ryabchikov, Y., et al., 2014, “Radio Frequency
660 Radiation-Induced Hyperthermia Using Si Nanoparticle-Based Sensitizers for
661 Mild Cancer Therapy,” Sci. Rep., 4(�), p. 7034.AQ13

[45] Wang, Q., Xie, L., He, Z., Di, D., and Liu, J., 2012, “Biodegradable Magnesium
662 Nanoparticle-Enhanced Laser Hyperthermia Therapy,” Int. J. Nanomed., 7(�),
663 pp. 4715–4725.

[46] Rengan, A. K., Bukhari, A. B., Pradhan, A., Malhotra, R., Banerjee, R., Srivas-
664 tava, R., and De, A., 2015, “In Vivo Analysis of Biodegradable Liposome Gold

665Nanoparticles as Efficient Agents for Photothermal Therapy of Cancer,” Nano
666Lett., 15(2), pp. 842–848.

[47] Pearce, J. A., 2013, “Comparative Analysis of Mathematical Models of Cell
667Death and Thermal Damage Processes,” Int. J. Hyperthermia, 29(4),
668pp. 262–280.

[48] van Rhoon, G. C., 2016, “Is CEM43 Still a Relevant Thermal Dose Parameter
669for Hyperthermia Treatment Monitoring?,” Int. J. Hyperthermia, 32(1),
670pp. 50–62.

[49] Clinicaltrials, 2010, “Pilot Study of AuroLase(tm) Therapy in Refractory and/or
671Recurrent Tumors of the Head and Neck,” National Institutes of Health, �.
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