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Abstract The issue of variances of different soil variables prevailing at different
sampling scales is addressed. This topic is relevant for soil science, agronomy and
landscape ecology. In multi-stage sampling there are randomness components in each
stage of sampling which can be taken into account by introducing random effects
in analysis through the use of hierarchical linear mixed models (HLMM). Due to the
nested sampling scheme, there are several hierarchical sub-models. The selection of the
best model can be carried out through likelihood ratio tests (LRTs) or Wald tests, which
are asymptotically equivalent under standard conditions. However, when the compar-
ison leads to a restricted hypothesis of variance components, standard conditions are
not maintained, which leads to more elaborated versions of LRTs. These versions
are not disseminated among environmental scientists. The present study shows the
modeling of soil data from a sampling where sites, fields within sites, transects within
fields, and sampling points within transects were selected in order to take samples from
different vegetation types (open and shade). For soil data, several sub-models were
compared using Wald tests, classic LRTs and adjusted LRTs where the distribution
of the test statistic under the null hypothesis is the Chi-square mixture of Chi-square
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distributions. The inclusion of random effects via HLMM and suggested by the latest
version of LRT allowed us to detect effects of vegetation type on soil properties that
were not detected under a classical ANOVA.

Keywords Bulk density · Likelihood ratio test (LRT) · Texture ·
Total organic carbon · Variance components

1 Introduction

In environmental studies of soil and vegetation the fact that usually no fixed experi-
mental design can be set up and the high spatial variability of soil variables make it
challenging to meet requirements of traditional statistical methods oriented to com-
parisons of means. Lardy et al. (2002), despite the high number of samples, found few
differences in C and P stocks of soils by applying classic ANOVA models. Similarly,
Feral et al. (2003) could only detect statistically significant differences in C contents
of soils in the extreme sites of a climatic gradient using traditional lineal models.
Ringrose et al. (1998) already showed that vegetation and soil C data had very high
variation coefficients (59–67 %), and despite the high intensity of sampling, few differ-
ences could be detected. Wang et al. (2007) used one-way ANOVA in paired samples
under and outside tree canopy to evaluate the effect of canopy at different soil sites in
a rainfall gradient, but the results referred to one site at a time. It is generally acknowl-
edged that relationships between variables may change in sign or magnitude from one
scale to another [i.e., scale dependence; (Wiens 1989; Levin 1992)]. Therefore soil
scientists have to deal with a set of uncertainties from the design and sampling stage to
the analysis of mean differences among conditions of interest. A number of methods
of multi-scale analysis have been used to characterize and quantify variability in soil
data (Pelletier et al. 2009a).

The stratification of sampling according to expected variation has shown to improve
the ability to detect changes in C stocks (Post et al. 2001) and other key environmen-
tal variables, and Heim et al. (2009) suggest a paired sample approach with a very
intensive sample pattern (n ≥ 25) at each site. Other methods include the classical
geostatistical analysis (Wang et al. 2009) and the use of multivariate methods to assess
the multi-scale variability of relationships between variables (Pelletier et al. 2009b).
A disadvantage of conventional geostatistical analysis is that it might fail to identify
the spatial dependence correctly when sampling locations are very irregularly dis-
tributed within a region (Lark 2005). Therefore the residual variability between and
within sampling sites needed to contrast treatment means may be poorly modeled with
classical geostatistical approaches.

A convenient way to compare two treatment conditions taking into account the high
variability and correlation in the data is through a linear model taking into account
the multi-stage nature of the sampling. In multi-stage sampling there are randomness
components in each stage of sampling which can be considered at the modeling stage
by introducing random effects through the use of hierarchical linear mixed models
(HLMM) which allow modeling the underlying variability for a more precise inference
about the treatment effects than those obtained from classical geostatistical techniques
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in soil analyses. Even though HLMM constitute an efficient form of statistical analysis
for inferring the effects of conditions of interest in multi-stage sampling (Raudenbush
and Bryk 2002; Snijders and Bosker 2000),they are rarely used in environmental and
ecological studies. In multi-scale studies, the units of analysis are nested within levels
of single-factor random samples, and the levels of that factor are nested within the
levels of another factor of greater hierarchy, and so on and so forth until the high-
est level. Level 1 is the level with the lowest hierarchy and it represents the lowest
partition of the hierarchy; level k is the level with the highest hierarchy when there
are k factors that define the sampling stages. For example, in a soil study for which
various sample sites are randomly selected, within which even more sample sites are
randomly selected, and from which several samples are extracted at a specific depth,
each soil sample (unit of analysis) is nested within (or belongs exclusively to) a sam-
ple point, and consequently is also nested within the sample site to which that point
belongs. In this two-stage sample, the Level 2 model will consider the effect of the
site and sample-point factors, while the Level 1 model will only consider the effect of
the site factor (the factor with the highest hierarchy); in other words, it will classify
the samples only by site, and as a result, samples taken from different points within
the same sample site will belong to the same partition.

This type of sampling strategy generates correlated data, since it is assumed that
data from a single class are more similar to each other than to data from different
classes. This phenomenon of data aggregation due to such partitions is not compatible
with the assumption of data independence, and thus it should be taken into account
(via the modeling of the corresponding variance and covariance structure) in order to
effectively compare the means of the conditions of interest, which are usually repre-
sented in a model by fixed effects. This way, models of analysis have both fixed effects
(due to the conditions that one is interested in comparing) and random effects which
are different from the classic error term (due to the type of sampling). The way in
which sampling is done turns out to be a conditioning factor for the analysis of the
effects of interest, since the variability of observations among and between the groups,
or classes, defined by the sampling strategy can be very different.

When using classical inference based on the sampling strategy, variance structure
is examined through the calculation of error estimators obtained according to the
sampling strategy used and which are independent of the data (Cochran 1980). In
contrast, in the context of HLMM, inference is done through the modeling of these
variance components and their covariates based on the identification of the model that
best adjusts to the group of data under study (Balzarini 2002). The modeling of the
variance structure of the data does not only provide interpretations regarding random
variation due to sampling, but also allows for the identification of over-parameter-
izations or under-parameterizations that could lead to inefficiencies in the inference
about fixed effects.

In analyzing data generated by multi-stage sampling, HLMMs allow us to deter-
mine whether the variations within each level of the hierarchical structure (different
sample stages) have an impact on the dependent variable measured in level 1 of the
data. Several models, each one associated with the hierarchical structure up to a spe-
cific level, are potential candidates for the analysis of a single group of data. Each
model is nested within another, and the model found in the level below a given model
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in the hierarchy is said to be the reduced model of the one above it. The group of fixed
effects and/or covariance parameters of the reduced model can be obtained through
the imposition of restrictions on the model of greatest hierarchy, also known as the
reference model. If we assume that the parameters of the fixed effects do not change,
models can be compared to each other by assuming that certain variance and/or covari-
ance parameters are equal to zero. In order to select the “best” model, that is, a model
that is parsimonious in the number of variance parameters used and also best explains
the variability in the dependent variable, tools based on hypothesis proofs of variance
components are used (Searle et al. 1992). Among the formal tools used are procedures
based on the normal asymptotic theory, such as the Wald test, and procedures based
on the Likelihood ratio test (LRT) (Cox and Hinkley 1990).

This paper illustrates the performance of the three statistical tests used to evaluate
variance components in the context of an HLMM used to deal with uncertainties due
to hierarchical sampling. The motivation for using these models arose from a study
based on multi-stage sampling designed to evaluate the effect that vegetation patches,
determined by the presence or absence of tree canopy, have on different soil properties
in the Caldenal savanna of Central Argentina. The objective is to identify the variance
structure of the linear model that best describes the variation among the data, in order
to produce precise estimates regarding the effect of vegetation patch on soil texture,
bulk density and C contents.

2 Materials and methods

2.1 Data

The group of data used in the illustration comes from a multi-stage sampling soil
study carried out in the Caldenal, in the province of La Pampa, Argentina (between
63◦ and 66◦ W longitude and between 35◦ and 39◦ S latitude). The vegetation in the
area of study is an open forest of Prosopis caldenia with gramineous arboreal strata.
At present, it is possible to differentiate two well-defined vegetation patches: those
without tree canopy and those shaded by tree canopy. In the patches without canopy,
forage species predominate and bovine foraging is concentrated here; thus a permanent
extraction of plant biomass predominates, which accounts for the scarce deposit of
litter and the heterogeneous distribution of material that returns to the ground, which
could modify the soil’s properties. In contrast, the patches with shaded by canopy,
where non-forage species predominate, foraging is scarce, and thus soil exhibits a
greater level of homogeneity.

2.2 Multi stage sampling scheme

Data come from a multi-stage sampling soil study carried out in the study area. Within
the area, six sites were selected according to differences in soil texture, topography
and vegetation structure. Within each site, lots were set up, and transects of 100 m
each were randomly established in the lots. In each transect, three sampling points
were established, with approximately 30 m distance between points. The hierarchy
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of multi-stage sampling is defined as follows: site (level 4), lots within sites (level 3),
transects within lots (level 2), and sampling points within transects (level 1). In each
point, vegetation patches were identified (open and canopy-shade vegetation) and soil
samples were taken at two depth levels (1: 0–06 m and 2: 0.06–0.12 m). The following
soil variables were evaluated: Texture, Bulk Density (BD) and Total Organic Carbon
(TOC).

2.3 Soil analyses

Soils core samples were taken at 0–6 and 6–12 cm depth and after drying, BD (g cm−3)

was determined on all soil samples by determining dry weight of the soil cores, before
grinding them to pass a 2 mm sieve. The soil clay and silt content (Texture, %) of each
sample was determined by the hygrometer method of Bouyoucos (Gee and Bauder
1986). Carbon contents of bulk soil (TOC, %) were determined by oxidation with
potassium dichromate in acid medium at 120 ◦C, and colorimetric valuation (Soon
and Abboud 1991).

2.4 HLMM and significance tests

The following HLMMs were adjusted for each independent depth level:

A. Level 4 model

Yi jklmn = μ + τi + S j + L(S)k( j) + T (L)l(k) + P(T )m(l) + εi jklmn

B. Level 3 model

Yi jklmn = μ + τi + S j + L(S)k( j) + T (L)l(k) + εi jklmn

C. Level 2 model

Yi jklmn = μ + τi + S j + L(S)k( j) + εi jklmn

D. Level 1 model

Yi jklmn = μ + τi + S j + εi jklmn

E. Model without random effects

Yi jklmn = μ + τi + εi jklmn

where,
Yi jklmn is the value of the soil variable in patch i, site j, lot k, and transect l, and at
sample point m, it is the nth observation
μ is the general mean
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τi is the effect (considered to be fixed) of the ith vegetation patch of interest
S j is the random effect associated with site j (Level 4)

S j ∼ N
(

0, σ 2
si te

)

L(S)k( j)is the random effect associated with the lot k within site j (Level 3)

L(S)k( j) ∼ N
(

0, σ 2
lot

)

T (L)l(k) is the random effect associated with transect l within lot k (Level 2)

T (L)l(k) ∼ N
(

0, σ 2
tran sec t

)

P(T )m(l) is the random effect associated with sample point m within transect l (Level 1)

P(T )m(l) ∼ N
(

0, σ 2
point

)

εi jklmn is a random error term with normal distribution and mean and variance equal
to zero

εi jklmn ∼ i id(0, σ 2)

The significance of the variance components at level k was evaluated by compar-
ing the level k model to the level k + 1 model, and by comparing the model without
random effects to the model with only one variance component. Different hypothesis
test approximations for variance components were used: Wald test, likelihood ratio test
(LRT) with a Chi-square distribution and degrees of freedom equal to the difference
in the number of parameters of the models that are compared (Littell et al. 2005), and
a LRT but with an asymptotic Chi-square mixture of Chi-square distributions, under
the null hypothesis (Molenberghs and Verbeke 2007).

The LRT statistic was calculated by extracting the log-likelihood of the reference
model to the log-likelihood of the nested model:

−2 log

(
Lnested

Lre f erence

)
= −2 log(Lnested) − (−2 log(Lre f erence)) (1)

In Eq. (1), Lnested refers to the value of the likelihood function evaluated at the
estimates for restricted maximum likelihood (REML) (Searle et al. 1992) of the param-
eters in the reduced model (that is to say, that which has a variance component equal
to zero), and Lre f erence is the value of the likelihood function in the reference model
(that is to say, the model with the highest hierarchy level). In the classic hypothesis
contrast and under the assumption of a normal distribution, the LRT statistic asymptot-
ically follows a Chi-square distribution with degrees of freedom equal to the difference
between the number of parameters of the reference model and the nested model to
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which it is compared. In the context of the hypothesis regarding variance components
(greater than or equal to zero), the Chi-square mixture of Chi-square distributions was
used to compare consecutive models from levels 1 to k with two or more degrees of
freedom, taking into account that the models differ in one variance component and
in the covariance(s) of that variance component with the other variance components
associated with the random effects of the reference model. In comparing models A and
B, the significance of the variance associated with Level 4 and the covariances of that
level with levels 1, 2 and 3 are evaluated. When a hypothesis is rejected, one concludes
that the random effect associated with the sampling done in that stage should be kept
in the model.

When comparing models E and D, we used a Chi-square distribution with 0.5
degrees of freedom, because when the comparison involves the model with a random
component vs. the model without random effects, it is assumed that the null hypothesis
of the LRT is a Chi-square mixture of Chi-square distributions with 0 and 1 degrees
of freedom, each with equal weight. In this case, the Chi-square distribution with 0
degrees of freedom is not really a distribution, but a probability mass of 1 for value 0,
and therefore the statistic is evaluated with respect to a Chi-square distribution with
0.5 degrees of freedom (Verbeke and Molenberghs 2000). All the tests were done with
Proc GLIMMIX, SAS version 9.1 (SAS Institute 2008), with the codes found in the
Appendix.

In all the cases in which the LRT statistic was used, and in which its value is suffi-
ciently large (larger than the reference value of the distribution of the statistic), there
is evidence against the reduced model and in favor of the reference model. But if
the likelihood values are very similar in both models, the LRT statistic turns out to
be very small, and therefore there is no evidence that favors the reduced model (null
hypothesis), because when faced with the lack of statistically significant differences,
it is traditionally recommended to select the model with the fewest parameters.

In hierarchical models, it can be observed that the mean and the variance structure
are simplified; the −2 log-likelihood REML increases. Nevertheless, in order to select
the best model, the model with the smallest −2 log-likelihood REML is preferred
since this does not imply an excessive number of unnecessary parameters associated
to each stage of sampling.

In this paper, we analyze the significance of the estimated variance components for
each depth level, beginning with the Level 1 model and up until the Level 4 model.
The model that includes the lowest significant level was selected. Once the best model
was identified, we proceeded to study the differences between the means for the fixed
effects factor, for each one of the three soil variables in the study.

3 Results and discussion

3.1 Model selection

In Tables 1, 2, 3 goodness-of-fit criteria for the each depth level are shown, as are the
results of the three statistical tests used to determine the significance of the variance
components associated with the different sampling stages. For the case of Texture
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Table 1 Adjustment criteria for the comparison of models for the variable Texture

Model Depth Adjustment criteria Comparison between models

−2 log L Res Ref p value
Walda

p value
LRTb

p value
LRTc

A. Level 4 model 963.207 10.381 <0.001

B. Level 3 model 985.170 19.876 A 0.141 <0.001 <0.001

C. Level 2 model 0–6 cm 991.550 21.456 B 0.058 0.067 0.094

D. Level 1 model 1,036.951 30.506 C 0.057 <0.001 <0.001

E. Fixed model 1,375.600 33.578 D <0.001 <0.001

A. Level 4 model 953.543 12.084 0.008

B. Level 3 model 960.477 16.801 A 0.134 0.104 0.136

C. Level 2 model 6–12 cm 968.015 18.271 B 0.117 0.041 0.058

D. Level 1 model 1,016.408 26.556 C 0.057 <0.001 <0.001

E. Fixed model 1,398.900 38.836 D <0.001 <0.001

The selected model at a given depth is shown in bold
−2log L: is −2 times the log of the restricted likelihood; Res: is the residual variance; Ref: indicates the
reference model used for comparison in each row
a Significance of the Wald statistic
b Significance of the LRT statistic with an asymptotic Chi-square mixture of χ2

k and χ2
k+1 distributions,

each with an equal weight of 0.5
c Significance of the LRT statistic with asymptotic distribution χ2

k+1

Table 2 Adjustment criteria for the comparison of models for the variable BD

Model Depth Adjustment criteria Comparison between models

−2log L Res Ref p value
Walda

p value
LRTb

p value
LRTc

A. Level 4 model −262.077 0.008 0.063

B. Level 3 model −259.478 0.009 A 0.232 0.542 0.6268

C. Level 2 model 0–6 cm −258.229 0.009 B 0.113 <0.001 <0.001

D. Level 1 model −245.650 0.011 C 0.073 0.7518 0.002

E. Fixed model −207.500 0.015 D <0.001 <0.001

A. Level 4 model −299.705 0.007 0.313

B. Level 3 model −299.461 0.008 A 0.417 0.987 0.995

C. Level 2 model 6–12 cm −299.406 0.008 B 0.297 0.972 0.992

D. Level 1 model −298.813 0.008 C 0.063 0.590 0.741

E. Fixed model −208.600 0.015 D <0.001 <0.001

The selected model at a given depth is shown in bold
−2log L: is −2 times the log of the restricted likelihood; Res: is the residual variance; Ref: indicates the
reference model used for comparison in each row
a Significance of the Wald statistic
b Significance of the LRT statistic with an asymptotic Chi-square mixture of χ2

k and χ2
k+1 distributions,

each with an equal weight of 0.5
c Significance of the LRT statistic with asymptotic distribution χ2

k+1
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Table 3 Adjustment criteria for the comparison of models for the variable TOC

Model Depth Adjustment criteria Comparison between models

−2log L Res Ref p value
Walda

p value
LRTb

p value
LRTc

A. Level 4 model 1, 030.198 31.636 –

B. Level 3 model 1, 030.198 31.636 A 0.489 1 1

C. Level 2 model 0–6 cm 1, 030.199 31.651 B – 1 1

D. Level 1 model 1, 030.199 31.651 C 0.067 1 1

E. Fixed model 1, 088.200 49.826 D <0.001 <0.001

A. Level 4 model 739.341 4.806 –

B. Level 3 model 739.341 4.806 A – 1 1

C. Level 2 model 6–12 cm 739.341 4.806 B 0.119 1 1

D. Level 1 model 756.177 5.606 C <0.001 <0.001 <0.001

E. Fixed model 877.400 13.341 D <0.001 <0.001

The selected model at a given depth is shown in bold
−2log L: is −2 times the log of the restricted likelihood; Res: is the residual variance; Ref: indicates the
reference model used for comparison in each row
a Significance of the Wald statistic
b Significance of the LRT statistic with an asymptotic Chi-square mixture of χ2

k and χ2
k+1 distributions,

each with an equal weight of 0.5
c Significance of the LRT statistic with asymptotic distribution χ2

k+1

(Table 1), at depth level 1 (0–0.06 m) the level 4 model was chosen, while at depth
level 2 (0.06–0.12 m) the level 3 model was most appropriate. The selection criteria
were applied as follows: the significance of the Wald test corresponds to the random
factor of the highest level included in the model and when one evaluates whether to
keep the same factor in the model, using LRT, the value of the statistic is the difference
between the −2 log-likelihood REML of both models (985.170−963.207 = 21.963).
Wald p value was <0.001 and therefore significant for the level 4 model. Both LRT
tests were significant (p < 0.001), thus the model with the highest level of random
effects was chosen. A different situation was found when analyzing the models for
texture at depth level 2: Using el LRT statistic with asymptotic distribution χ2

k+1 Level
2 would be selected. On the other hand, using Wald test he highest level would have
been included in the analysis. LRT statistic with an asymptotic Chi-square mixture
of χ2

k and χ2
k+1 distributions, each with an equal weight of 0.5 indicated a significant

difference (p = 0.041) between the −2 log-likelihood REML of the models with 3
and 2 random effects therefore the level 3 model was chosen for further analysis of
the data at this depth.

For the variable BD, in both depth levels 1 and 2 and as a function of the Wald
statistic, the chosen model is the one with no random factors (Table 2). In contrast,
when analysis is based on the LRT statistic, the Level 3 model is chosen for depth
level 1, and the Level 1 model is chosen for depth level 2 (Table 2).

For the TOC variable, for depth level 1, when the Wald statistic approximation is
used, the chosen model is the one with no random effects. However, when using the
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tests based on LRT, one chooses the Level 1 model with depth level 1. For depth level
2, when using the Wald test, the selected model is the Level 1 model, and when using
the LRT test, the selected model is the Level 2 model (Table 3).

For all the variables, except for Texture in depth level 2, models with very simplified
variance structures were selected when the Wald test was used. The results coincide
with the critiques of other authors (Pinheiro and Bates 1998; West et al. 2006) regard-
ing the low sensibility of the Wald statistic, especially in cases such as this one, in
which the number of levels for each random factor is low and the true parameter value
is within the limit of the parametric space, under the null hypothesis. The identifica-
tion of the best model to chose for adjusting the experimental data is crucial, since the
over-parameterization of the covariance structure can lead to the inefficient estimation
and poor evaluation of the standard error for the estimation of differences between
means for an effects factor, the under-specification that ignores variance components
due to the sampling strategy can lead to incorrect conclusions.

The LRT statistic with an asymptotic Chi-square mixture of Chi-square distribu-
tions with k and k + 1 degrees of freedom, or with 0.5 degrees of freedom when a
fixed and mixed model are compared, turned out to be the most potent strategy for
identifying the variability due to the sampling strategy. Despite the fact that the p val-
ues associated with the LRT, when dealing with the Chi-square mixture of Chi-square
distributions, were always less than the uncorrected LRT p values, both tests led to
the selection of the same model. The fact that there was a reduction in the p values
suggests that in other applications, disregarding this aspect of distributional correction
could lead to an oversimplification of the covariance structure.

In the application illustrated in this paper, the models were selected in function
of the LRT statistic with asymptotic Chi-square mixture of Chi-square distributions
and are in bold in Tables 1, 2, 3. As can be observed, these models include a random
factor of the lowest significant level and all the factors of a level higher than that one,
regardless of their significance. These factors should remain in the model in order to
maintain the correlated structure of the data introduced by the sampling strategy.

It is noteworthy that the selected model for the variance and co-variance structure
was not the same at different soil depths. This shows that the variability occurs at dif-
ferent scales at the two depths even for one variable. For Texture and BD we found that
at more depth the variation was detected at a higher hierarchical scale, while in surface
samples variability was detected even in the finer scale. For TOC, on the contrary, we
only detected variability at the highest scale. These findings elucidate the processes
that cause variability of the observed soil properties: thus, TOC would be influenced
by large scale processes that relate to changes in soil texture, geomorphology and veg-
etation patches, while BD and Texture at the soil surface would be subject to smaller
scale phenomena such as in this particular case, redistribution of soil particles due to
wind erosion and the trapping of specific size fractions in vegetation patches in the
micro-relief (Pelletier et al. 2009a).

Once the variance structure was modeled for each variable, we studied the effect
of the vegetation patches (fixed factor) contained in the mean structure of the same
model. This unified approximation for the analyses is a substantial practical differ-
ence between the use of HLMM compared to classical geostatistical techniques which
attend the multi-scale variability in a different analytical stage than that used for
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studying average trends, and in this sense they are more efficient in the use of the
available information.

For the variable Texture, differences were found at depth level 1 between soils
covered by different vegetation patches (p < 0.001), but these differences were not
statistically significant at depth level 2 (p = 0.4562) (Table 4). This suggests a dif-
ferential effect of the type of soil cover on the texture of the first soil stratum with
respect to the one with the greatest depth level. With regards to the variables BD and
TOC, significant differences between vegetation patches were observed (p < 0.001)
for two depth levels (Table 4). Since the random effect model showed smaller standard
errors, the amplitude of the confidence interval for the differences in means is always
lower for the selected model than for the model without random effects (Table 4).
This implies that the inference regarding the fixed effects is more precise when the
random components associated with the sampling strategy are included. For the vari-
able Texture, failing to model the variance structure results in finding no differences
between the vegetation patches in depth level 1, while difference are indeed found
when this structure is taken into account. In contrast, for the variable BD, marked
changes regarding the length of the confidence interval are not observed in any of
the depth levels, with or without modeling the covariance structure (Table 4). With
respect to the variable TOC, in depth level 1, it does not have much influence on the
inference regarding the fixed effects of modeling the covariance structure, but it does
in depth level 2, because if the random effects induced by the sampling strategy are
not included, the hypothesis regarding the difference in means between vegetation
patches fails to be rejected, and the reverse occurs in the case that these are indeed
included in the model.

These results coincide with the concepts of (Glasscock et al. 2005) who defined soil
texture as the key determinant in defining plant community sub models for simulating
vegetation dynamics in Texan rangelands. The textural control on herbaceous species
distribution can be attributed to the soil’s hydraulic dynamics that are determined by
texture (Quiroga et al. 1999, 1998). The variation of soil texture at a very small scale
in surface samples could be explained by the relevance of wind erosion in the region
(Buschiazzo et al. 1999). Areas not covered by tree canopy are preferably browsed
by cattle and frequently present higher proportion of bare soil than those under tree

Table 4 Comparison of means and error standard of means comparison at depth level 1 and depth level 2

Depth Texture1 Clay + Silt cont. (%) BD1 (Mg m−3) TOC1 (g kg−1)

Fixed model Selected
model

Fixed model Selected
model

Fixed model Selected
model

0–6 cm
Open 42.7 ± 2.7a 43.7 ± 0.5a 1.16 ± 0.02b 1.16 ± 0.01b 15.3 ± 1.1b 15.3 ± 0.9b

Shade 40.0 ± 2.7a 41.0 ± 0.5b 0.95 ± 0.02a 0.95 ± 0.01a 21.9 ± 1.1a 21.9 ± 0.9a

6–12 cm
Open 42.9 ± 2.9a 43.9 ± 0.5a 1.25 ± 0.02b 1.25 ± 0.01b 11.2 ± 0.6a 11.2 ± 0.3b

Shade 42.4 ± 2.9a 43.4 ± 0.5a 1.18 ± 0.02a 1.18 ± 0.01a 12.2 ± 0.6a 12.2 ± 0.3a

1 Different letters in the same column indicate statistically significant differences (p ≤ 0.05)
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canopy. Wind erosion will transport fine particles at great distances while sand-sized
particles will be trapped by the near-by canopy shaded vegetation, thus producing an
increase in coarser particles in those areas. This process obviously only affects the
soil surface while at greater depth the variability of soil texture will be controlled at a
larger scale, more related to differences in parent material and landscape relief. The
differences in scale, detected through the statistical procedure for BD, with a smaller
scale in surface samples, reflect the effect of litter deposition and tree canopy and,
perhaps less compaction due to cattle grazing in the canopy-shaded areas, while at
greater depth this parameter is not affected by small-scale differences due to vegeta-
tion patches, but more associated to landscape scale differences in texture and TOC
contents. These findings are consistent with those of Feral et al. (2003) and Wang et al.
(2007) who also found higher TOC contents under tree canopies in the Kalahari desert,
with less differences detected between canopy and non-canopy areas than in our study.

4 Conclusions

The proposal to consider an application of HLMM in multiple stage sampling soil
studies is presented as an analytical tool to improve treatment comparison in envi-
ronmental and ecological studies. Variance components related at different scale of
samplings are estimated to consider induced correlation in the data at the same level of
the hierarchical study. To test the significance of variance components, adjustments of
the classical LRT are recommended. The comparison of soil variable means between
vegetation conditions gives a better discrimination of vegetation patch effects when
random factors related to the sampling scheme were included in the linear model.
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Appendix A: SAS code to fit HLMM by sample depth
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Appendix B: SAS codes for obtaining LRT with asymptotic distribution χ2
k+1
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Appendix C: SAS codes for obtaining LRT with asymptotic Chi-square mixture of
χ2

k and χ2
k+1
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