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ABSTRACT
A brain-machine interface (BMI) is a communication system that translates human brain activity into commands, and

then these commands are conveyed to a machine or a computer. It is proposes a technique for features extraction from

electroencephalographic (EEG) signals and afterward, their classi¯cation on di®erent mental tasks. The empirical

mode decomposition (EMD) is a method capable of processing non-stationary and nonlinear signals, as the EEG. The
EMD was applied on EEG signals of seven subjects performing ¯ve mental tasks. Six features were computed, namely,

root mean square (RMS), variance, Shannon entropy, Lempel�Ziv complexity value, and central and maximum

frequencies. In order to reduce the dimensionality of the feature vector, the Wilks' lambda (WL) parameter was used
for the selection of the most important variables. The classi¯cation of mental tasks was performed using linear

discriminant analysis (LDA) and neural networks (NN). Using this method, the average classi¯cation over all subjects

in database is 91� 5% and 87� 5% using LDA and NN, respectively. Bit rate was ranging from 0.24 bits/trial up to

0.84 bits/trial. The proposed method allows achieving higher performances in the classi¯cation of mental tasks than
other traditional methods using the same database. This represents an improvement in the brain-machine commu-

nication system.

Keywords: Brain-machine interface (BMI); Brain-computer interface (BCI); Empirical mode decomposition (EMD);

Feature extraction.
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INTRODUCTION

Some diseases, such as stroke, a®ect the communication

between the brain and the body of people. Such diseases

prevent them to move, to speak or to perform other daily

activities. Consequently, those people cannot (partially

or totally) communicate with their relatives or with the

surrounding environment. Hence, a di®erent communi-

cation way must be provided to people with disabilities.

A brain-machine interface (BMI), or speci¯cally a

brain-computer interface (BCI), is a system that pro-

vides an alternative channel of communication between

the brain and the environment around an individual

having neuromuscular disabilities.1 A principal stage of

a BCI system is the features extraction. This obtains

relevant features from brain signals related to the

intention of the user.

Generally, the brain activity is obtained using elec-

troencephalography (EEG) due to low costs and non-

invasiveness. The EEG measures the activity of many

neurons (attenuated by thick layer of tissue, such as

°uids, bones and skin) and corrupting random noise.2

Di®erent signal processing methods have been proposed

to extract features from EEG signals.

A review of signal processing techniques in feature

extraction on EEG signal used in the BCI ¯eld is shown

in McFarland et al.3 Involving the traditional signal

processing techniques, an extended utilized method is

Fourier transform (FT); which is a helpful technique

for the analysis of linear and stationary signals.

Another method for signal processing is the Wavelet

transform (WT). For the current case, this analysis is

valuable for linear and non-stationary signals. In

practice, these methods are useful when assuming that

the EEG signal is linear and stationary (FT case), or

non-stationary (WT case) for short time periods.

Nevertheless, the EEG signal is essentially nonlinear

and non-stationary, therefore these processing techni-

ques may not be capable of extracting all the features

of EEG signals. The empirical mode decomposition

(EMD) technique has the unique property of dealing

with nonlinear and non-stationary time series.4,5 Con-

tinuous WT and EMD are both analysis methods in

time-frequency domain. The EMD acts essentially as a

¯lter bank resembling those involved in wavelet

decompositions. However, in wavelet analysis this sub-

band ¯ltering is pre-determined and, on the contrary,

in EMD this sub-band ¯ltering is signal dependent.

Details about EMD-wavelet di®erences are described in

Huang et al.4 Hence, EMD is proposed as a tool for

processing and extracting features of EEG signals.

EMD is a relatively new technique and it is currently

employed in many ¯elds, one of which is biomedical

engineering, with a wide acceptance. Indeed, there have

been several applications using EMD, e.g. in ECG de-

noising,6 for analyzing neural data,7 for analyzing re-

spiratory mechanomyographic signals,8 and involving

EEG signals processing, for analyzing hypoxia EEG9

and epileptic seizure detection10 as well.

In the BCI area, EMD has been used to analyze

steady-state evoked potential,11 P300 evoked poten-

tials12 and to extract features from motor-imagery. For

example, EMD was used to detect �-rhythm desyn-

chronization13 and post-movement beta activities from

32-channel EEG data when performing a right index

¯nger movement.14 Besides, EMD was used to study the

active frequency range that corresponds with the motor

imagery of each subject.15 Detection of �-rhythm and

�-rhythm with combination of EMD and wavelet packet

transform is proposed in Yuan et al.16 Recently, EMD

and asymmetries of brain activity was used to detect

mental tasks.17

In this work, the EMD is employed to extract features

from ongoing EEG, aimed at controlling a future BCI.

Preliminary results of the proposed method were already

published.18 The proposed method achieves high accu-

racies in the classi¯cation of mental tasks. Moreover, the

obtained results are higher than reported in related

bibliography and evaluated on the same database.34�36

MATERIALS AND METHODS

Materials

The EEG database utilized in this work was made by

Keirn and Aunon19 and is available online.20 The sub-

jects were seated comfortably in a sound controlled

booth with dim lighting. Electrodes were placed at O1,

O2, P3, P4, C3 and C4 and referenced to electrically linked

mastoids, A1 and A2. The electrodes were connected

through a bank of ampli¯ers (Grass7P511), whose band-

pass analogical ¯lters were set at 0.1�100Hz. The data

were sampled at 250Hz with a Lab Master 12-bit A/D

converter. Signals were recorded for 10 sec during each

mental task and each task was repeated for 10 sessions.

Seven subjects, 21 to 48 years old, participated in the

study involving a total of ¯ve distinct tasks. The subjects

were instructed not to vocalize or make overt movements

while solving the mental tasks:

Baseline Task (Base): There was no mental task to be

performed here. The subject was told to simply relax and

try to think of nothing in particular.

P. F. Diez et al.
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Mathematical Multiplication Task (Math): The subject

was given a non-trivial multiplication problem to solve.

The problems were non-repeating and were designed to

prevent the subject from completing the task before the

end of the 10-sec recording session.

Geometric Figure Rotation (Rot): A three-dimension

block ¯gure was shown during 30 sec to the subject, after

which the drawing was removed and the subject was

instructed to visualize the object being rotated about an

axis. The EEG was recorded during the mental rotation

period.

Mental Letter Composing (Lett): The subject was

instructed to mentally compose a letter to a friend or

relative without vocalizing. Since the task was repeated

several times the subject was told to try to pick up where

he left o® in the previous task.

Visual Counting (Count): The subject was asked to

imagine a blackboard and to visualize numbers being

written on the board sequentially, with the previous

number being erased before the next number was

written and to pick up counting from the previous task.

Hence, the EEG signal of each mental task of 10 sec

was divided into nine segments of 1 sec of duration.

From the original 10-sec signal, the ¯rst and the ¯nal

0.5 sec were discarded to avoid the extreme e®ect of the

¯ltering. The subjects participated in a di®erent number

of sessions, i.e. Subject 5 had 135 segments per mental

task; Subjects 1 and 3 had 90 segments per mental task;

Subjects 2, 6 and 7 had 45 segments per mental task and,

¯nally, Subject 4 had 81 segments per mental task (this

last one is due to some errors in the database).

Methods

A scheme of the proposed method is shown in Fig. 1,

followed by a description of each block.

Preprocessing

This part of the proposed method is just the ¯ltering

stage. The EEG was digitally ¯ltered with a Butter-

worth bidirectional ¯lter of order 10 with a band-pass

between 6 and 40Hz, aiming at analyzing the �-band,

�-band and �-band. The lower cut-o® frequency (6Hz)

was chosen in order to not alter the �-band (8�12Hz)

with the ¯ltering. Thus, a part of the �-band (<8Hz)

was included.

Feature extraction

The feature extraction is divided into two parts; the ¯rst

one is the EMD of the EEG signals, whereas the second

part is the estimation of di®erent time and frequency

parameters or features.

The empirical mode decomposition

If we assume that any signal is composed of a series of

di®erent intrinsic oscillation modes, the EMD4,5 can be

used as a method that carries out this decomposition of

the incoming signal into its di®erent intrinsic modes of

oscillation. Each oscillatory mode is called an intrinsic

mode function (IMF) that can have both the amplitude

and the frequency as a function of time. On account of

this, the EMD method is very appropriate for nonlinear

and non-stationary signals. An IMF is de¯ned as a

function that satis¯es the following two conditions:

(a) In the entire signal, the number of extremes and the

number of zero-crossings must be either equal or

di®er at most by one, and

(b) At any point, the mean value of the envelope de¯ned

by the local maxima and the envelope de¯ned by the

local minima must be zero (or close to zero).

Given the incoming signal xðtÞ, the algorithm of the

EMD is based on a sifting process that can be summa-

rized as follows4:

(1) Identify all the local maxima in the signal and then

interpolate with a cubic spline line, in order to pro-

duce the upper envelope.

(2) Repeat the procedure for the local minima to pro-

duce the lower envelope.

(3) Compute the mean of both envelopes that is desig-

nated as m1.

(4) Extract the detail h1:

h1 ¼ xðtÞ �m1: ð1Þ
(5) If it is necessary, repeat the Steps 1 to 4, and consider

the detail hi as the data, until detail h1 can be con-

sidered an IMF, satisfying the two above conditions.

EEG Filter EMD 

Feature 

Selection
Classifier

RMS 

Variance

Entropy

Fmax 

LZ 

Fcentral

LD 
NN IMF 

6-40 Hz 

Wilks’ 
Lambda 

Fig. 1 (Color online) Scheme of the proposed EEG classi¯cation

method.

Features Extraction Based on the EMD
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(6) After k iterations, the detail hk is an IMF and is

designated as:

IMF1 ¼ hk: ð2Þ
(7) Iterate Steps 1 to 6 on the residual rj in order to

obtain all the IMFs of the signal:

rj ¼ xðtÞ � IMF1 � IMF2 � � � � � IMFj: ð3Þ
The procedure ends when the residual rj is either a

constant, a monotonic slope, or a function with only one

extreme.

The result of the EMD process produces n IMFs and

a residue signal rn. The original signal xðtÞ can be re-

covered as:

xðtÞ ¼
Xn
j¼1

IMFj þ rn: ð4Þ

IMF were extracted using a toolbox for Matlabr,

which is available online.21 Figure 2 illustrates an ex-

ample of the IMFs of an EEG signal, showing that the

lower-order IMFs capture the faster oscillation modes of

the signal, whereas the higher-order IMFs capture the

slower oscillation modes.

Estimated parameters

For the EEG signals of the database, the EMD algorithm

employed usually extracts up to four or ¯ve IMFs and the

residue (¯ve or six signals in total) per each channel

(Fig. 2). Thus, for the analysis the ¯rst four IMF and the

residue were taken, or the ¯rst ¯ve IMF, depending on

the case. Whether the EMD extracts only three IMFs

and the residue, the process creates a ¯fth IMF with

zeros. For each IMF of this ¯ve component signals, dif-

ferent parameters can be computed. The proposed

parameters utilized in this work are the following:

(1) Root Mean Square (RMS)

This parameter is calculated as:

RMSij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
n¼1

jIMFijðnÞj2
vuut ; ð5Þ

where RMSij is the RMS of the ith IMF of the jth

channel; N is the number of samples of each IMF (250

samples); IMFijðnÞ are the values of the ith IMF of the

jth channel at each instant n.

(2) Variance

The variance is calculated from each IMF as:

Varij ¼
1

N � 1

XN
n¼1

ðIMFijðnÞ � IMFijðnÞÞ2; ð6Þ

where Varij is the variance of the ith IMF of the jth

channel, IMFijðnÞ is the mean value of the IMF.

Fig. 2 (Color online) EEG of 1 s decomposed in their respective IMF. XðtÞ is the incoming EEG signal.

P. F. Diez et al.

1350058-4

B
io

m
ed

. E
ng

. A
pp

l. 
B

as
is

 C
om

m
un

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 W
SP

C
 o

n 
08

/2
8/

13
. F

or
 p

er
so

na
l u

se
 o

nl
y.



(3) Entropy

Shannon entropy22 is a measurement of the average

amount of information obtained from a measurement.

For a system A with N possible states fa1; a2; . . . ; aNg
each one with its corresponding probability pðaiÞ, the
Shannon entropy of the system H is:

H ¼ �
XN
i¼1

pðaiÞ log pðaiÞ: ð7Þ

For equiprobable events, the entropy is maximal

(Hmax ¼ logðNÞ) and, if the probability of an event ai is

one and all the other probabilities are zero, the entropy

is minimal (Hmin ¼ 0). Shannon entropy remains un-

changed when adding events with zero probability.

Then, the entropy is normalized in terms of Hmax,

according to:

HN ¼ H

Hmax

: ð8Þ

(4) Lempel�Ziv Complexity Measure

The Lempel�Ziv (LZ) analysis23 is a nonlinear

method that quanti¯es the complexity of a time series by

analyzing its spatio-temporal patterns. This method is

well suited to the analysis of non-stationary biomedical

signals of short length and has already been proven as a

useful tool to measure the complexity of EEG signals in

di®erent areas.24,25

LZ complexity analysis is based on a coarse-graining

of the analyzed signal, i.e. the signal to be analyzed is

ranged into a ¯xed number ’ of quantization levels and

is transformed into a sequence of symbols from 1 to ’.

The quantization procedure transforms the signal into a

sequence of symbols from the limited alphabet of sym-

bols (from 1 to ’). The basic idea of the LZ complexity

analysis is to count the number of distinct patterns P

contained in the given sequence. The sequence is scan-

ned from left to right and the complexity counter P is

increased one unit every time a new subsequence of

consecutive characters arises in the scanning process.

Once the number of distinct patterns P has been

found, the LZ complexity value of the signal C’ can be

obtained by normalizing P as a function of the length of

the analyzed sequence N and the number of quantization

levels ’,

C’ ¼ P log’ðNÞ
N

; ð9Þ

where log’ðNÞ is the ’-base logarithm of N.

(5) Central Frequency

Since each IMF is bandwidth limited, it is interesting

to measure the frequencies of that band. In that way, the

central frequency is proposed as one measurement. The

central frequency of each IMF is the frequency that

contains half the total spectrum energy, i.e. it splits the

spectrum of the IMF into two parts, each one having half

the energy. The spectrum is computed in terms of the

periodogram with a Hamming window of 512 points.

(6) Maximum Frequency

The maximum frequency is the frequency that con-

tains 95% of the energy of the spectrum, and can also be

computed with a periodogram with a Hamming window

of 512 points.

Feature selection

A disadvantage arising at this point is that the feature

vector that would enclose all the features calculated with

the above parameters may be too large, i.e. each feature

vector contains 180parameters (5 IMFs� 6 parameters�
6 channels). Consequently, a feature selection is essential

to do in order to solve this curse-of-dimensionality

inconvenience.26 Therefore, the more important variables

for the analysis should be selected, i.e. the variables that

contribute with more information. This selection is per-

formed with a stepwise method based on the statistical

parameterWilks' lambda (WL).27,28 The WL is chosen to

accomplish the feature selection as it is easy and fast to

compute. In Appendix A, the WL calculation is detailed.

Classi¯er

In order to classify the di®erent mental tasks, two dif-

ferent classi¯ers were implemented; a linear classi¯er

and a nonlinear one with two variations.

Linear Classi¯er :

A linear discriminant (LD) classi¯er is the simplest

classi¯er; which consists of a linear combination of

variables as stated below:

y ¼ �0 þ �1X1 þ �2X2 þ � � � þ �pXp; ð10Þ
where y is the output value of the discriminant function;

�i are the coe±cients of the discriminant function; Xi

are the discriminant variables at each case and p is the

number of variables in the analysis.28

Nonlinear Classi¯er :

As a nonlinear classi¯er, neural networks (NNs) were

chosen. A multilayer perceptron29 with two hidden

layers was implemented using Matlabr. Two di®erent

con¯gurations were chosen: one with more neurons in

the hidden layers than the other one (at each case the

number of neurons used is speci¯ed in the next section).

The NNs were trained with Levenberg�Marquard

backpropagation method, and an early stopping method

Features Extraction Based on the EMD
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was used to stop the training process. In the output

layer, one neuron per each mental state was utilized.

RESULTS

Two approaches were proposed to classify the mental

tasks, in the ¯rst approach the one-versus-one classi¯-

cation scheme (mental tasks classi¯ed in pairs) was used

and in the second one an all-versus-all scheme was

applied, i.e. the ¯ve mental tasks at the same time.

The feature selection is an important issue in order to

solve the curse of dimensionality27 and with the appli-

cation of WL value, the initial feature vector (containing

180 parameters) is reduced to a small number of only

16� 7 parameters (depending on the subject and the

mental tasks) in the one-versus-one classi¯cation

scheme. In the all-versus-all scheme, the feature vector

was reduced to 15� 5 variables. From the whole vari-

ables chosen in the analysis in the all-versus-all scheme,

the RMS parameters (from di®erent IMFs and EEG

channels) represented the 31% of the chosen variables.

On the other hand, variance, LZ, entropy, maximum

and central frequencies parameters were respectively

chosen in the 18%, 16%, 12%, 12% and 11% of the cases.

Generally, only the foremost IMFs (¯rst to third) were

chosen in the analysis.

Table 1 shows the results obtained in the one-versus-

one scheme for each subject. These values are obtained

using a 10-fold cross-validation. In order to obtain more

accurate results, the cross-validation method was re-

peated over four times.

As a result, the values shown in this table are

the average values over results obtained in each cross-

validation. In this table, the NNs had the same number

of neurons as the number of parameters selected by the

WL method in its input, two neurons in its output, and

the two chosen con¯gurations were the 10-5NN (10 and

5 neurons in hidden layers) and 20-10NN (20 and 10

neurons in hidden layers). Furthermore, in Table 1 the

average values are expressed as bit rate (BR) in bits/

trial. The BR expresses the human�machine channel

capacity to transfer information. It is calculated as30:

BR¼ log2ðNÞþP log2ðP Þþ ð1�P Þlog2
1�P

N � 1

� �
: ð11Þ

The average classi¯cation over all subjects with LD

was 91.17% (SD: 5.3%), with 20-10NN was 87.82% (SD:

5.3%) and with 10-5NN was 87.35% (SD: 5.9%). Addi-

tionally, the average values of each subject and the mean

over all subjects are presented in Fig. 3.

In Fig. 4, the results of all-versus-all scheme are

expressed as confusion matrices, but only the results

obtained with the best classi¯er per subject are pre-

sented. Once again, three classi¯ers were used: a LD and

the NN with two di®erent con¯gurations (one with 20

and 10 neurons and the other with 40 and 20 neurons in

their hidden layers, respectively), both NNs with 5

neurons in their output layer. The results are obtained

with 10-fold cross-validation repeated over four times.

In a multi-class classi¯cation problem, the proper

evaluation of the classi¯er is described by its confusion

matrix, which is di±cult to evaluate and to compare

results. Generally, the accuracy classi¯cation (ACC),

calculated from the diagonal values of the confusion

matrix, is reported. Table 2 presents the overall ACC of

the three classi¯ers for each subject. However, the ACC

does not describe the entire result since the values out-

putted from the diagonal are not used. Therefore,

Fig. 3 (Color online) Overall results of each subject and for all subjects in the one-versus-one classi¯cation scheme. The values are expressed as

average results and error bars represent the standard deviation. LD: 20-10NN: neural network with 20 and 10 neurons per hidden layers; 10-5NN:

neural network with 10 and 5 neurons per hidden layers.

Features Extraction Based on the EMD
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Table 2. Overall Results and Kappa Coe±cient for Each Subject in the All-Versus-All Scheme.

LD 40-20NN 20-10NN

Subjects ACC �����Seð����Þ ACC �����Seð����Þ ACC �����Seð����Þ
1 72.83% 0.66 � 0.048 78.33% 0.729 � 0.051 78.28% 0.728 � 0.051

2 67.84% 0.598 � 0.066 58.64% 0.483 � 0.061 59.32% 0.491 � 0.062

3 50.22% 0.378 � 0.04 45.06% 0.313 � 0.038 45.50% 0.319 � 0.038
4 71.94% 0.649 � 0.051 68.38% 0.605 � 0.05 72.19% 0.652 � 0.051

5 59.74% 0.497 � 0.036 57.01% 0.463 � 0.035 63.81% 0.548 � 0.037

6 76.22% 0.703 � 0.05 69.83% 0.623 � 0.048 73.33% 0.667 � 0.049
7 79.66% 0.746 � 0.073 70.11% 0.626 � 0.068 70.45% 0.631 � 0.068

Average 68.35% 0.634 � 0.054 63.91% 0.571 � 0.052 66.13% 0.593 � 0.053

Subject 1 (40-20NN) Subject 2 (LD) 

Base Count Lett Mult Rot Base Count Lett Mult Rot 

Base 88.06 9.44 0.56 0.28 1.67 47.16 28.98 6.25 5.11 13.64 

Count 16.94 42.22 0.28 1.67 38.89 17.61 73.86 3.41 0 6.25 

Lett 0.56 0.56 97.5 0 1.39 16.48 15.91 65.34 0.57 0.00 

Mult 1.39 1.11 0 97.5 0 10.80 11.36 2.27 73.3 0 

Rot 2.78 29.44 0.83 0.56 66.39 8.52 13.64 0 0 79.55 

Subject 3 (LD) Subject 4 (20-10NN) 

Base Count Lett Mult Rot Base Count Lett Mult Rot 

Base 47.50 25.28 3.89 7.5 15.83 73.75 4.06 0.94 3.13 18.44 

Count 16.67 46.11 9.17 6.94 21.11 6.88 67.50 2.81 5.31 16.56 

Lett 16.39 8.33 54.17 8.89 12.22 2.81 5.31 85.31 4.06 3.13 

Mult 15.83 8.89 7.5 56.11 11.67 3.13 4.38 4.38 84.06 4.06 

Rot 19.72 17.78 4.44 10.83 47.22 22.19 21.88 3.13 2.5 50.31 

Subject 5 (20-10NN) Subject 6 (LD) 

Base Count Lett Mult Rot Base Count Lett Mult Rot 

Base 47.20 22.2 7.65 6.34 16.98 70.83 12.22 10 4.17 2.78 

Count 22.39 52.80 7.84 5.6 11.38 12.22 67.78 1.11 2.5 16.39 

Lett 5.6 4.29 78.73 9.7 2.24 6.67 5.56 76.67 5.56 5.56 

Mult 7.65 6.34 14.18 67.72 3.73 0.28 7.50 6.67 80.83 4.72 

Rot 9.52 12.13 2.24 2.99 72.57 5.56 6.67 0 2.78 85 

Subject 7 (LD) 

Base Count Lett Mult Rot 

Base 63.07 28.41 0 0.57 7.39 

Count 27.84 67.05 0 0 6.82 

Lett 2.84 5.11 90.34 0 2.84 

Mult 6.82 2.27 0 87.50 1.70 

Rot 2.27 6.82 0 0 90.34 

Fig. 4 (Color online) Confusion matrices of each subject. Only the best results obtained for each subject are shown. The parenthesis indicates the

classi¯er used to obtain these results.
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another measurement for precision is used in Table 2,

namely, the Cohen's kappa coe±cient.31 This coe±cient

has already been proven established in other areas of

EEG research, such as in sleep classi¯cation research.32

In the BCI area, the kappa coe±cient was introduced in

Ref. 33. The kappa coe±cient takes values between 0

and 1 and can be interpreted on the basis of its value.

Therefore, values ranging from 0 to 0.20 mean a slight

agreement; from 0.21 to 0.40 represent a fair agreement;

from 0.41 to 0.60 indicate a moderate agreement; from

0.61 to 0.80 imply a substantial agreement and values

between 0.81 and 1.00 represent an almost perfect

agreement. Although, this scale is not universally ac-

cepted, it renders a panorama on agreement levels in the

classi¯cation. More details about Cohen's kappa coe±-

cient computation are presented in Appendix B at the

end of this paper.

Another issue analyzed in this work is the amount of

information given by each calculated parameter (RMS,

variance, Shannon entropy, LZ, central frequency and

maximum frequency). For this reason, these parameters

were tested independently, and combinations of them

were tested as well. Table 3 shows these results obtained

with the LD in all-versus-all scheme. Table 3 presents

the most representative combinations (14 out of 63).

The remainder combinations are not shown due to their

poor results achieved and space limitations. The feature

selection using WL parameter is applied in these cases as

well, but the feature vector has 30 components for the

cases of independent parameters, and more components

for the combination among themselves (60 components

for two parameters, 90 components for three para-

meters, etc.). The reduction of components varies for

each subject and for each parameter.

DISCUSSION

The one-versus-one classi¯cation scheme (shown in

Table 1) indicates that the Subject 1 obtained, for all the

classi¯ers, results above 80% for all the possible combi-

nations, excepting for the Rot-Count combination with

lower results, though greater than 70%. Indeed, for some

combinations, a value of 100% of ACC is attained. For

Subject 2, a similar behavior is observed; i.e. greater

results to 83% are obtained using any classi¯er, ex-

cepting for the NNs which obtained, for some combi-

nations, lower results (but greater than 79%). Subject 3

showed the worst overall performance, with results lying

between 70% and 87%, the last one was obtained with

the LD. In the case of Subject 4, the results are similar to

those of Subjects 1 and 2. Subject 5 obtained a low result

in Base-Count combination (70%), but in the remaining

combinations, it attained values greater than 80%.

Subjects 6 and 7 had an average performance of 94% and

97% with LD, respectively; and 89% with the NNs as a

Table 3. Accuracy Classi¯cation and Cohen's Kappa for Some Combination of the Extracted Features per Subject in an
All-Versus-All Scheme.

Subject

RMS Var Ent Fc Fmax LZ RMS-Ent

ACC ���� ACC ���� ACC ���� ACC ���� ACC ���� ACC ���� ACC ����

1 49.78% 0.37 49.78% 0.37 52.22% 0.40 23.78% 0.05 26.89% 0.09 53.78% 0.42 73.8% 0.67

2 40.44% 0.26 42.67% 0.28 43.56% 0.29 33.78% 0.17 32.89% 0.16 39.11% 0.24 59.1% 0.49
3 35.78% 0.20 35.78% 0.20 36.00% 0.20 31.78% 0.15 30.00% 0.13 38.44% 0.23 47.8% 0.35

4 51.61% 0.40 51.61% 0.40 45.43% 0.32 37.28% 0.22 32.84% 0.16 47.16% 0.34 66.2% 0.58

5 44.74% 0.31 44.00% 0.30 44.30% 0.30 28.30% 0.10 25.93% 0.07 44.44% 0.31 56.4% 0.46

6 56.00% 0.45 52.89% 0.41 58.67% 0.48 43.11% 0.29 43.11% 0.29 60.00% 0.50 73.1% 0.66
7 46.22% 0.33 44.00% 0.30 42.22% 0.28 36.89% 0.21 40.89% 0.26 51.56% 0.39 67.1% 0.59

Average 46.37% 0.33 45.82% 0.32 46.06% 0.33 33.56% 0.17 33.22% 0.17 47.78% 0.35 63.4% 0.54

RMS-Fmax Var-Ent-LZ RMS-LZ
RMS-Ent-Fc-

Fmax-LZ
Var-Ent-Fc-
Fmax-LZ

RMS-Var-Ent-
Fmax-LZ

RMS-Var-Ent-
Fc-Fmax-LZ

ACC ���� ACC ���� ACC ���� ACC ���� ACC ���� ACC ���� ACC ����

1 53.8% 0.42 51.8% 0.40 72.22% 0.653 74.4% 0.68 53.8% 0.42 72.9% 0.66 72.9% 0.66

2 46.7% 0.33 43.6% 0.29 60.44% 0.506 64.9% 0.56 57.8% 0.47 65.8% 0.57 64.9% 0.56

3 36.7% 0.21 35.8% 0.20 46.67% 0.333 47.8% 0.35 46.0% 0.33 47.1% 0.34 52.9% 0.41

4 53.3% 0.42 52.6% 0.41 65.93% 0.574 70.4% 0.63 60.7% 0.51 63.5% 0.54 69.9% 0.62
5 46.4% 0.33 47.4% 0.34 55.56% 0.444 59.7% 0.50 49.8% 0.37 54.7% 0.43 60.1% 0.50

6 61.3% 0.52 63.8% 0.55 71.56% 0.644 76.4% 0.71 72.2% 0.65 75.8% 0.70 75.3% 0.69

7 50.7% 0.38 51.6% 0.39 70.22% 0.628 75.6% 0.69 69.3% 0.62 77.3% 0.72 76.4% 0.71

Average 49.8% 0.37 49.5% 0.37 63.23% 0.54 67.0% 0.59 58.5% 0.48 65.3% 0.57 67.5% 0.59

Features Extraction Based on the EMD
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lower performance. The average BR was ranging from

0.24 bits/trials up to 0.84 bits/trial.

In the majority of mental tasks combinations, the

best results were obtained using LD for all subjects. This

fact is easy to note in Fig. 3, where the averaged ACC

results of each subjects are presented. An overall average

over all subjects shows very high performances: 91% for

LD and 87% for both NNs. The ACC attained with this

method were higher than the results documented in

similar works with the same database.34�36 In Ref. 34,

power and asymmetry ratios of EEG bands were used

with an average ACC of 86.5% on four subjects with an

Elman NN. In Ref. 35, autoregressive (AR) modeling

and multilayer perceptron were used with ACC up to

71%. The best result obtained with AR modeling and

support vector machines was 72%.36 Recently, the bi-

variate extension of EMD (BEMD) was used to obtain a

more accurate estimate of the marginalized spectrum for

the calculation of amplitude asymmetry in frequency.17

In that work, the proposed method was tested on four

subjects extracted from the same database used in the

current paper; an average ACC of mental task of 69.05%

was achieved.

In the all-versus-all classi¯cation scheme illustrated

in Fig. 4 and presented in Table 2, the best ACC is

attained with LD for Subjects 2, 3, 6 and 7, with NN-20-

10 for Subjects 4 and 5, and only for Subject 1 the NN-

40-20 obtained the best performance. In this scheme, the

superiority of the LD is not very obvious over the NNs.

Again, Subject 3 obtained the worst results. In the

confusion matrices, we can see that the Count mental

task is greatly confused with the Base and Rot mental

tasks. Indeed, the greatest detriment in the results

comes from this fact. Subjects 1, 3, 5 and 6 confuse

Count mainly with the other two mental tasks, whereas

Subjects 2 and 7 confuse Count with Base and Subject 4

confuses with Rot. The acquisition of EEG signals with

more electrodes located in other positions on the scalp

probably improves the ACC of the confused mental

tasks (Count, Base and Rot).

From Table 2, one can perceive that the kappa

coe±cients resulting from the confusion matrices show

that Subjects 1, 4, 6 and 7 present a substantial agree-

ment (0:61 < � < 0:81) in the classi¯cation. This is in

accordance to ACC values from the ¯rst column of

Table 2, since those subject obtained ACC higher than

70%. Subject 2, with � a bit smaller than 0.61, can be

considered an acceptable result (ACC ¼ 67:84%).

Whereas Subject 5 obtained ACC ¼ 59:74% with � ¼
0:49 indicating a moderate agreement. Finally, Subject 3

did not perform that well (ACC ¼ 50:22% with 0:21 <

� < 0:40 representing a fair agreement).

Table 3 presents an analysis of the amount of infor-

mation added for each parameter and for several com-

binations of them. The parameters RMS, variance,

entropy and LZ had a similar performance, and the

frequencial parameters obtain lower results. The com-

bination of two or more parameters brings along better

results than individual parameters by themselves.

Another fact, worth noting is that when the frequency

parameters are added to any combination of the other

parameters, the results were improved. The variation of

frequency parameters was analyzed in a previous work.35

The best ACC was obtained using the combination of all

parameters, although, using only a few parameters, it is

possible to obtain very similar results. For instance, the

combinations of RMS-Ent-Fc-Fmax-LZ and RMS-Var-

Ent-Fc-LZ allow obtaining average accuracy of 67%

with � ¼ 0:59 in both cases. Moreover, RMS-Var-Ent-

Fmax-LZ obtained 65.3% (� ¼ 0:57) in average, whereas

the combination of RMS-Var-Ent-fc-fmax achieved

66.7% (� ¼ 0:58), as well.

The EMD has the problem of mode mixing and it is

improved using the ensemble EMD (EEMD), which uses

ensemble of mean of IMFs decomposed from noise-added

signals. However, EEMD is more time demanding than

EMD thus EEMD could not be suitable for real-time

BCI applications.

In this work, it has been found that the WL param-

eter allows choosing the more suitable variables in the

analysis, and allows solving the curse-of-dimensionality

by reducing the feature vector of 180 variables into a

small number of 16� 7 variables for each combination in

the one-versus-one scheme, which allows a better ACC.

Generally, only the foremost IMFs (¯rst to third) were

selected by WL, i.e. it is not necessary to extract all the

IMFs of the signal. The use of the feature selection in

order to solve the curse-of-dimensionality problem of the

feature vector is an important aspect of BCI applica-

tions.27 The feature selection through the WL parameter

accomplishes this objective, while being easy and fast to

compute as well. In the all-versus-all scheme, the RMS

represents the most frequently chosen parameter (31% of

times), followed by the variance and the LZ, with 18%

and 16% of times, respectively. The other parameters

were chosen 11% or 12% of times. That means that it is

not necessary to compute all the proposed parameters

because, by using some combination of parameters, it is

possible to reach similar results in the ACC (see Table 3).

Hence, any combination of parameters should contain

the RMS value since it is the most important parameter

in this analysis. The other parameters collaborate in

obtaining higher results in the classi¯cation and thus,

some combinations could achieve similar results.

P. F. Diez et al.
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CONCLUSIONS

In this work, a features extraction method is proposed

for the processing of EEG signals and classi¯cation of

mental tasks. It is based on the EMD and the estima-

tion of several parameters, namely RMS, variance,

Shannon entropy, LZ complexity value, and central

and maximum frequencies. A reduction of dimension-

ality was performed, based on the WL parameter. Two

classi¯cation schemes of mental tasks were tested, the

one-versus-one and the all-versus-all scheme. For both

schemes, two di®erent classi¯ers (LD and NN) were

employed. In the last one, di®erent numbers of neurons

per layer were tested.

This method allows attaining very high results in the

ACC of mental tasks, obtaining performances greater

than 90% for almost all subjects in the one-versus-one

scheme using any classi¯er. In the all-versus-all scheme,

the method reached an ACC higher than 70% for almost

all cases. The LD performs better than NN with this

method, and there was no di®erence between the dif-

ferent topologies of NN used. The results were higher

than those documented in similar works using the same

database.

In future, the proposed method could be imple-

mented for the analysis of the ongoing EEG aimed to

controlling a BCI.
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APPENDIX A. WILKS' LAMBDA

WL measures the ratio of within-group variability re-

specting the total variability on the discriminator vari-

ables, and it is a measurement of the importance of the

functions. In this inverse measurement scale, values close

to 1 indicate that almost all of the variability in the

discriminator variables originates from within-group

di®erences (i.e. di®erences between cases in each group),

whereas values close to 0 indicate that almost all of the

variability in the discriminator variables is due to group

di®erences.27

The WL, in a p-dimensional space constructed with p

variables and with the matrices Bpxp and Wpxp can be

de¯ned as the ratio between their determinants28:

WL ¼ jW j
jBþW j ; ðA:1Þ

where B and W are matrices whose elements represent

the square sum and cross products within-groups and

between groups, respectively. Then, the value of WL is

transformed into the general multivariate statistical F,

which allows contrasting signi¯cant di®erences between

groups:

F ¼ n� g� s

g� 1

1� �sþ1=�s

�sþ1=�s

� �
; ðA:2Þ

where, n; g and s are the number of cases, groups and

selected variables respectively; �s is the WL before

adding a new variable, and �sþ1 results after adding that

variable. To accept a variable in the analysis, the F value

must be higher than 3.84 (namely, \F to enter") and,

once included, the variable is rejected if its F value is

smaller than 2.71 (namely, \F to exit").

APPENDIX B.

KAPPA COEFFICIENT

The kappa coe±cient31 is de¯ned, for an M-class classi-

¯cation problem, from the confusion matrix M. Hence,

we can derive the ACC (overall agreement) as:

ACC ¼ p0 ¼
P

i Mii

N
ðB:1Þ

and the chance expected agreement is:

pe ¼
P

i noi � nio

N2
; ðB:2Þ

where N is the total number of samples, Mii are the

elements on the main diagonal of M, noi and nio are the

sums of each column and each row, respectively. Then,

the estimate of the kappa coe±cient � is:

� ¼ p0 � pe
1� pe

ðB:3Þ

and its standard error Se(�) is measured as:

Seð�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0 þ p2

e �
P

i½noi � nio � ðnoi þ nioÞ�=N3
p

ð1� peÞ
ffiffiffiffiffi
N

p :

ðB:4Þ
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