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Abstract

In this paper we study some aspects of oblique duality between finite sequences
of vectors F and G lying in finite dimensional subspaces W and V, respectively. We
compute the possible eigenvalue lists of the frame operators of oblique duals to F lying
in V; we then compute the spectral and geometrical structure of minimizers of convex
potentials among oblique duals for F under some restrictions. We obtain a complete
quantitative analysis of the impact that the relative geometry between the subspaces V
and W has in oblique duality. We apply this analysis to compute those rigid rotations
U for W such that the canonical oblique dual of U - F minimize every convex potential;
we also introduce a notion of aliasing for oblique dual pairs and compute those rigid
rotations U for W such that the canonical oblique dual pair associated to U-F minimize
the aliasing. We point out that these two last problems are intrinsic to the theory of
oblique duality.
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1 Introduction

A finite sequence F = {f;}ic1, is a frame for a Hilbert space W =2 C? if F spans W, where
L, = {1,...,n}. In this case, a sequence G = {g; }ie1, in W is a (classical) dual for F in W
if the following reconstruction formulas holds:

F=> ot gi=> (f ) fi, feW. (1)

1€l i€l

Hence, frames allow for linear encoding-decoding schemes of vectors in W in terms of linear
generators for WW. Moreover, in case n > d then the set of dual frames for F in W has a rich
structure which plays a key role in applications of finite frame theory to real life situations,
such as signal transmission through noisy channels (see [6][7]). Similarly, applications of finite
frame theory have lead to consider the so-called frame design problems, i.e. the existence
and construction of frames with prescribed properties, based on the flexibility of finite frames
(see 4, (18], 241 27]).

An important aspect of frames is that of its numerical stability; typically, numerical
stability is measured in terms of the spread of the eigenvalues of the so-called frame operator
S of a frame F = {fi}ic1,, that is given by Sz =3, fi ® fi. One of the most important
measures of the spread of the spectrum of Sz is given by the frame potential of F (see [4])
given by FP (F) = >, .o [{fi, fi)|? = tr(S%). Indeed, it turns out that minimizers of the
frame potential - within appropriate sets of frames - minimize the spread of the spectrum of
their frame operators (see [4, B]). Recently, there has also been interest in the structure of
minimizers of the so-called mean squared error of a frame F given by MSE(F) = tr(Sz') -
within convenient sets of frames (see [16]). This raises the question of whether the minimizers
of these two different functionals coincide. It turns out that there is a natural and structural
measure of spread of the spectrum of the frame operators, called submajorization, that has
proved useful in explaining the spectral and geometrical structure of both frame potential
and mean squared error minimizers (see [23] 25, 26]).

In the seminal paper [14] Y. Eldar developed the theory of oblique duality for finite frames,
which is an extended setting for linear encoding-decoding schemes in a Hilbert space W,
based on the notion of consistent sampling. As the starting point for this theory, we consider
W,V C H two subspaces of a finite dimensional Hilbert space #, such that W @ V*+ = H
(ie. WH4+V =H and WENV = {0}). Given a frame F = {f;}ic1, for W and a frame
G = {gi}ic1, for V we say that G is an oblique dual of F if the following reconstruction
formula holds

F=> (f g0t forevery few.
i€ln
The theory of oblique duality has been both developed and extended in several ways (see
[T, 2, 13, @, 15]). On the other hand, it has been successfully applied to study duality for
finitely generated shift invariant systems on L?*(R%) (see [8], 19, 20]).

There are, however, some aspects of oblique duality that remain to be explored, even
in the finite dimensional case. In this paper, based on several tools coming from matrix
analysis, we consider the following problems in oblique duality. On the one hand, we study
the spectral (and geometrical) structure of oblique duals of the frame F for W that lie in
V. In this case, we obtain an explicit description of the eigenvalues of the frame operators
of oblique duals. With this description at hand, we compute the structure of minimizers of
submajorization within the set of oblique duals of F under some restrictions. These optimal



oblique duals for submajorization turn out to minimize the so-called convex potentials (that
include both the frame potential and the mean squared error).

On the other hand, it has been noticed that the relative position of the subspaces V and W
for which W @ V*+ = H plays a key role when comparing oblique duality to classical duality.
This phenomenon has been explored mainly though the angle between the subspaces V and
W. Yet, the angle between the subspaces V and W only provides qualitative measure of the
role of the relative geometry of V and W in the context of V-duality. In this paper, we give a
detailed description of the role of the relative position of ¥V and W in the oblique duality of F
in case the subspaces are finite dimensional. Our analysis relies on a multiplicative Lidskii’s
inequality and it is based on the complete list of the so-called principal angles between V
and W. Our results provide sharp quantitative measures of these relations.

We also consider two problems that are intrinsic to oblique duality. We first notice that
the so-called canonical oblique dual (U - F)¥ of a rigid rotation U - F = {U fi}ier, of F is, in
general, not a rigid rotation of the canonical oblique dual .7:# of F (as opposed to classical
duality). Hence, we compute the rigid rotation Uy of W such that the oblique dual (Uy-F )ff is
optimal with respect to submajorization, among all such rigid rotations. Again, this implies
a family of inequalities in terms of convex potentials that are relevant for numerical analysis
purposes. We also compute the exact value of the aliasing norm of the consistent sampling
corresponding to subspaces V and W and introduce a notion of aliasing for oblique dual
pairs. In this context we compute the optimal rigid rotations U, that minimize the aliasing
of the dual pairs (U - F, (U - F)3) for the fixed frame F.

Throughout the paper we consider finite sequences of vectors F that are frames for finite
dimensional subspaces W of a possibly infinite dimensional Hilbert space H, since this is the
setting that we shall need for future applications of the results herein; on the other hand,
the assumption that H is finite dimensional does not provide any substantial simplification
in the proofs of our results.

The paper is organized as follows. In Section [2] we describe the basic framework of
oblique duality between finite sequences of vectors, together with some basic facts about
convex potentials. In order to deal with these general convex potentials, we also consider
submajorization and log-majorization, which are spectral relations between positive finite
rank operators (or positive matrices). In particular, we include a multiplicative analogue of
Lidskii’s additive inequality that plays a crucial role in this note. In Section [3] we obtain
a convenient parametrization of the set of oblique duals of a fixed frame and use it to
compute the possible eigenvalues of the frame operators of oblique duals. We then compute
the structure of optimal oblique duals for submajorization, under certain restrictions. In
Section [, after recalling some standard notions from functional analysis, we compute the
rigid rotations U of W such that the spread of the eigenvalues of the frame operator of the
oblique dual (U - F )ff is minimal, with respect to submajorization. We also consider the
combination of the problems of Section [3] and Section Ml i.e., the properties of the optimal
oblique dual frame (with norm restrictions) corresponding to the optimal rotation of F. In
Section Bl we compute the exact value of the aliasing norm of the consistent sampling based
on the subspaces V and WV and introduce a notion of aliasing for arbitrary oblique dual pairs
(F,G). In this context, we compute the rigid rotations U of W that minimize the aliasing
for the oblique dual pair (U - F, (U - F)3).



2 Preliminaries

In this section we introduce the notations and basic terminology of frame theory and oblique
duality. We also describe the convex potentials for finite sequences of vectors (that contain,
for example, the Benedetto-Fickus’ frame potential) which will serve as a numerical measures
of the (relative) spread of the eigenvalues of the frame operators. Finally, we describe some
notions from matrix theory that will allow us to deal with these general convex potentials.

2.1 Oblique dual frames and convex potentials

In what follows we consider a fixed complex separable Hilbert space H. We take
M=T, = {1,...,p} for peN or M=N (2)

in such a way that dimH = |M|. Let W be a closed subspace of H. Recall that a sequence
F =A{fi}ier in W is a frame for W if there exist 0 < A < B such that

ANFIP <Y IUF PP BISIP, few. (3)

iel
If only the inequality to the right holds, we say that F is a Bessel sequence.

In general, given a Bessel sequence F = {f;}ic; we consider its synthesis operator Tx €
B(*(I),H) given by T#((a;)icr) = >.;c;ai fi which, by hypothesis on F, is a bounded
linear transformation. We also consider Tx € B(H, (*(I)) called the analysis operator of F,
given by Tx(f) = ((f, fi))ier and the frame operator of F defined by Sr = TxTx. It is
straightforward to check that

(Srf, Y=Y I, fen.
el
Hence, Sz is a positive semidefinite operator; moreover, a Bessel sequence F in W is a frame

for W if and only if S¥ is an invertible operator when restricted to W or, equivalently if T'»
is a surjective operator onto W.

In order to describe oblique duality, we fix two closed subspaces V, W C H such that
WL @V =H, that is such that W+ +V =H and Wt NV = {0}. Hence, W' is a common
(algebraic) complement of W and V. It is well known that in this case Py|y : V — W is a
linear bounded isomorphism so, in particular, we see that dim }V = dim W as Hilbert spaces.
Moreover, the conditions W+ @V = H and W @ V+ = H are actually equivalent.

Fix a frame F = {f;}ies for W. Following [14, [15] (see also [9]), given a Bessel sequence
G ={¢gi}icr in V we say that G is a (oblique) V-dual of F if

g= Z(g, fi)gi=T5T7g forevery geV.
el
It turns out (see [14,[15]) that G is a V-dual of F if and only if Tg T = Py /1, where Pyt
denotes the oblique projection with range V and null space W*. Hence, Ty is surjective onto

V and then G is a frame for V; by taking adjoints in the identity T T = Py, we also get
that jﬁ]:,_z—‘é'< = P;//Wi = PW//Vi ie.

f=Z(f, gi) fi forevery feW.

el



We shall consider the set of oblique V-duals of F given by
Dy(F) = {GeV!':GisaV-dual of F} . (4)

Remark 2.1. Let F = {f;}ic; be a frame for W. If we set ¥V = W then a Bessel sequence
G in W is a W-dual of F if it is a dual frame for F in the classical sense (see [7]) i.e.
15 TF = Py. Hence

Dw(F)=D(F) = {GeW’":Gis adual frame for Fin W} .
Recall that there is a distinguished (classical) dual, called the canonical dual of F, denoted
Ft = {fi#}ig given by f# ST fi forevery 1€l

where S_TF denotes the Moore-Penrose pseudo-inverse of the (closed range operator) Sx. A

In the general setting for oblique duality there also exists a distinguished V-dual for F, the
so- called canonical V-dual which we denote by

.7-"# = {f#l}lg given by fv i = Py f = Py e S fi forevery iel, (5)

where F# = {f#};c; € D(F) denotes the (classical) canonical dual as described in Remark
211 It turns out that the encoding-decoding scheme based on the oblique dual pair (F .7:# )
has several optimality properties (see [14), [15]).

Convex potentials for finite sequences in H

In their seminal work [4], Benedetto and Fickus introduced a functional defined on finite
sequences of (unit norm) vectors, the so-called frame potential, given by

{fz ze]ln Z | f27 f] . (6)

1,5 €ly

In case dimH = p € N then one of their major results shows that tight unit norm frames
- which form an important class of frames because of their simple reconstruction formulas
and robustness properties - can be characterized as (local) minimizers of this functional
among unit norm frames. Since then, there has been interest in (local) minimizers of the
frame potential within certain classes of frames, since such minimizers can be considered
as natural substitutes of tight frames (see for example [3, 23]). Notice that, given F =
{fi}ic1, € H™ then FP (F) = tr S%. Recently, there has been interest in the structure of
frames that minimize other potentials such as the so-called mean squared error (MSE) given
by MSE(F) = tr(Sz') (see [16, 25, 27]). Next, we describe a broad family of potentials
introduced in [23], that contain both the frame potential and the MSE.

In what follows we consider the sets
Conv(Rsg) ={h: [0, c0) = [0, 00) : h is a convex function }

and Convy(Rsg) = {h € Conv(R>g) : h is strictly convex }.



Definition 2.2. Given h € Conv(R>() then the conver potential associated to h, denoted by
P, is defined as follows: for a finite sequence F = {f;}ic1,, € H™ with W = Span{f; : i € L}
and frame operator Sx € B(H)", then

Py(F) = Zh()‘i((S}')W)) :

where d = dim W and (\;((S7)w))ier, € RY, denotes the vector of eigenvalues of the com-
pression (Sr)y € B(W)™, counting multiplicities and arranged in non-increasing order. A

Remark 2.3. With the notations of Definition 2.2] notice that by construction W is a
reductive subspace for Sz, and hence (Sx),y is a well defined positive operator acting on the
finite dimensional subspace WW. Moreover,

Ph<.F) =1tr h((S]:)W)

where h((Sx)w) € B(W)" is obtained by means of the usual functional calculus from the
compression (Sr)y and the trace is taken in the finite dimensional Hilbert space W. There-
fore, in case h € Conv(Rxp) is such that h(0) = 0 we get that

In particular, we see that if h(x) = 2 then P,(F) coincides with the frame potential. A

Fix h € Conv(Rs() and consider its associated convex potential P,. If F = {fi}icr, is a
finite sequence in H™ then P, (F) is a measure of the spread of the eigenvalues of the frame
operator of F. That is, (under suitable normalization hypothesis on F) the smaller the value
P, (F) is, the more concentrated the non-zero eigenvalues of Sr are (see [23], 25 20, 27]).

In order to deal with these general convex potentials we consider the notions of submajoriza-
tion and log-majorization in the next section.

2.2 (Log-)majorization and convex functions

Next we briefly describe sub-majorization, majorization and log-majorization, that are no-
tions from matrix analysis. For a detailed exposition on these relations see [3].

Given x, y € R‘éo we say that x is submajorized by y, and write z <, y, if

k k
Stat <>yt forevay kelg={l,....d},
i=1 i=1

where 2t € RY (respectively 27 € R?) denotes the vector obtained by re-arrangement of
the entries of z € R? in non-increasing (respectively non-decreasing) order. If # <,, y and
trx = Z?Zl T = Z?:1 y; = try, then x is majorized by y, and write z < v.

Log-majorization between vectors in R%o is a multiplicative analogue of majorization in R%O.
Indeed, given z, y € R‘éo we say that x is log-majorized by y, denoted x <iqoq y, if

k k
fo < H yr  forevery kel and H Ty = H yr
i=1 i=1 ‘ ‘

6



It is known (see [3]) that if z, y € Réo are such that x <oy then  <,, ¥ . On the other hand
we write x <y if x; < y; for every ¢ € [;. It is a standard exercise to show that if z, y € Réo
then z<y = o<yt = <1y = T <y ¥

Our interest in majorization is motivated by the relation of this notion with tracial inequal-
ities for convex functions. Indeed, given z,y € R%; and h € Conv(Rxp), then (see for
example [3]):

d

d
1. If one assumes that = < y, then trh(z) = S h(z;) < S h(y) = trh(y) .
i=1 i=1

2. If only = <, y, but the map h is also non-decreasing, then still tr A(z) < tr h(y).

3. If x <, y, h € Convg(R>g) is non-decreasing and tr h(z) = tr h(y), then there exists a
permutation o of I; such that y; = x4 for i € I .

The following result is a multiplicative Lidskii’s inequality for matrices, that also contains a
detailed description of the case of equality. In what follows, given x = (x;)icr,, ¥ = (Vi)icr, €
R? then z oy = (z;yi)ier, € R? denotes the entry-wise product of the vectors. Also, given
a selfadjoint matrix A € My(C) then \(A) € R? denotes the eigenvalues of A, counting
multiplicities and arranged in non-increasing order.

Theorem 2.4 ([26]). Let S € GI(d)" and let X € (RL,)*. Then, for every V € M4(C) such
that A(V*V') = X\ we have that

A(S) 0 AT <1og AV SV*) <1og A(S) 0 X € (RL)F . (7)

Moreover, if \(V.SV*) = (A(S) o AT)¥ (resp. A(V.SV*) = X(S)o ) then there exists an o0.n.b.
{vi}ier, of C* such that

S = Z ANi(S) vi®@v;,  and |V]= Z )\;flﬂ- v; @ v (8)
1€lly i€ly
(resp. S = Zidd Ai(S) v; ®@v; and |V| = Zidd )\1_1/2 v; ® vl-). O

3 Spectral structure and optimal oblique duals

In this section we obtain a simple and explicit description of the eigenvalues of the frame
operators of oblique duals of a fixed frame. We then apply this result to study the existence
and structure of oblique duals that are optimal among oblique duals with some restrictions.

3.1 Spectral structure of oblique duals

Let V and W be closed subspaces of the Hilbert space H such that Wt @V = H. Let
F = {fi}icr be a sequence in W that is a frame for YW. There are several known charac-
terizations of the elements in Dy,(F) (see for example [9]). In what follows we describe a
simple parametrization of Dy(F) in terms of Dy (F) i.e. the classical dual frames for F in
W, which is implicit in [9].



Proposition 3.1. Let V and W be closed subspaces of H such that W+ @V = H. Let
F =A{fi}ier be a frame for W. Then the map

D(F) > {gi}ict = {Pv/jwe gitier € Dy(F)
is a (linear) bijection between D(F) and Dy(F) that sends F# to .7-"#.

Proof. Let G = {gi}ier € D(F) and set G’ = {Py w1 giticr. Then Tgr = Py py1 T and
hence

To Ty = Pyyywr TgTr = Py e Py = Pyt .
Therefore G’ € Dy(F) and the map is well defined. To check that the map is injective, let
G = {gi}ier and K = {ki}icr € D(F) be such that Py, y19; = Py ok for i € I. Then,

PV//WLTQ :PV//WLTIC - PV//WL<TQ—T]C) =0 = R(Tg —TIC) QWJ_ .

But also R(Tg — TIC) Q W, SO R(Tg — TIC) = {0} and Tg = TIC .

Finally we check that the map is surjective. Recall that, since W+ @V = H, then the map
Pyypwrlw @ W — Vis a linear bounded isomorphism. Thus, given K = {k;}icr € Dy(F)
there exists a unique Bessel sequence G = {g;}ie; in W such that P, y1g; = k; for i € I.
Then, Py w1Tg = T and therefore

PV//WL:T;CT;_—IPV//WLTQT;: — PV//WL<TQT;_——P1/\)):O

Since R(Tg Ty — Py) C W then previous equation implies that T; Tx — Py = 0 and hence
G € D(F) is such that {P,, 1 gi}icr = K. O

The previous result allows to obtain several other representations of the V-duals of F from
the classical theory of dual frames for F in W. The following result is an example of this
phenomenon

Corollary 3.2. Let V and W be closed subspaces of H such that W+ @V = H. Let F =
{fi}ier be a frame for W with canonical V-dual frame ]:# = {f#l}lg defined in FEq. (0.
Given any G € V!, then G € Dy(F) <= there exists a Bessel sequence Z = {z;}ier € V!
such that

TzTrf=) {f. fiy =0 forevery feH and G={f5,+z}er.
el
Proof. Let KK = {ki}icr € D(F) be such that G = { P,/ ,y1 ki }icr as in Proposition 3.1l Since
K € D(F), it is well known that there exists a Bessel sequence X = {x;};c; in W such that
K=A{ fi#+xi}i€ r and such that Ty T5 = 0, where T denotes the synthesis operator of X’ (see
for example [7]). Hence, G = {Pv//wl(fi# + x;) }ies which shows that Ty = Tff + Py Ty
with (P Tx)T# = 0 and the result holds for Z = {Py,yy12;}icr € V. The converse is
straightforward. O

From now on, we shall restrict our attention to finite sequences of vectors in H; accordingly,
we shall consider decompositions W+ @ V = H, where V and W are finite dimensional
subspaces of the Hilbert space H.

In what follows, we shall be concerned with the spectral properties of frame operators of
V-duals of F. Thus, we introduce some convenient notations.

8



Definition 3.3. Let V and W be finite dimensional subspaces of the Hilbert space H such
that W @V = H. Let F = {fi}ic1, be a frame for W. We consider

SDy(F) = {Sg=T5T;: GE€Dy(F)} C B(H)" .
the set of frame operators of V-dual frames of F. A

Proposition 3.4. Let V and W be finite dimensional subspaces of the Hilbert space H such
that W- @V =H and let dimV = dim W = d. Let F = {fi}ic1, be a frame for W. Then,

SDy(F) = {Sps +B: BEBM)', RB)CV and 1kB<n-df.

Proof. Given G € Dy(F), Corollary shows that there exists a Bessel sequence Z =
{Zi}ie]ln in V such that Tg = T]_-# -+ TZ and TZ T;— = 0. Notice that T]_-‘;ié = PV//WL T]:# =

Py pwe St Tr which implies that Tz T = 0. Hence,

where Sz € B(H)' is the frame operator of Z, which is a finite rank operator. Since
TzTy = 0 then dimkerTz > d. Therefore, R(Sz) = R(T%) so that R(Sz) C V and
tkSz =rkTz <n-—d.

Conversely, let B € B(H)" be such that R(B) C V and rk(B) < n — d. Then, there exists
Z € B(C", V), such that ZT% =0 and B = ZZ*: indeed, since dim(R(T%)*) = n — d there
exists a partial isometry W € B(C", V) with initial space ker W+ C R(Ts)* and final space
R(B) = R(BY?) so that Z = BY2WW has the desired properties. If we let {e; }icr, denote the
canonical basis of C" and G = {(T' F# Z)e; }bier, then G is a finite sequence in V such that
Tg = Tfif + Z so that

Hence g - D]}(F) and Sg = Sf# —'— ZZ* = S]_—i’: + B, Since ZT;# = 0 D
\Z

Remark 3.5. Let Ag € M4(C)* and consider an integer m < d. Define
U(Ag, m) = {Ag+C: C e MyC)F, tkC<d—m}. 9)

We point out that the spectral structure of the set U(Aq, m) is described in [25]. Indeed,
given p € (R4 then there exists A = Ay + C € U(Ap, m) such that A\(A) = u (i.e. the
eigenvalues of A, counting multiplicities and arranged in non-increasing order, coincide with
the entries of u) if and only if

1. p; > Ni(Ap) for i € I, in case m < 0;
2. i > Ni(Ag) fori € Iy and pg_myi < A\i(Ap) for i € I, , in case m > 1. A

Recall from Eq. (2)) that M C N stands for M = I, or Ml = N in such a way that dim H = |M].
Henceforth, ¢} (M)* denotes the space of sequences A = (\;);jem with \; > X\; > 0 fori, j € M

such that 7 < j and tr(\) £ Y., A < o0.

Let F = {f;}ic1, € H" be a finite sequence with frame operator S € B(H)". Hence, Sr
is a positive semidefinite finite rank operator, with range W = Span{f; : i € [,} C H. Let

9



d = dimW, and let (Sx)y € B(W)' be the compression of Sr to W (see Remark 2.3);
Then, we define

A(Sz) = (A((SFIw))iets, Opa-a) € 4 (MD)*
where (A;((S7)w))ier, € RL, denotes the vector of eigenvalues of the compression (Sx)y €
B(W)*, counting multiplicities and arranged in non-increasing order. It is straightforward
to check that A\(Sx) € ¢} (M)* coincides with the vector of singular values (or s-numbers) of
the compact operator Sx € B(H)™1 (see [28]).

Theorem 3.6 (Spectral structure of V-duals). Let V and W be finite dimensional subspaces
of the Hilbert space H such that Wt ®V = H and let dimV = dimW = d. Let F =
{fi}tic1, be a frame for W and denote )‘(S.Ff) = )\ﬁ = ()‘]#jj)jEM and m = 2d —n. Given

p=(i)iem € CL(M)*, the following conditions are equivalent:
1. There exists G € Dy(F) such that \(Sg) = p;
2. u; =0 fori>d+1 and:
(a) 1 2)\‘7%71. foriely, in case m < 0;
(b) p; 2)\3&71. fori e ly and pg_mi; < )\ﬁi fori el,,, in case m > 1.

Proof. Fix an ONB {v;}icr, of V. Let Ay € M4(C)™ be given by Ay = ((Sf#vj, Vi))i, jely
and let m = 2d —n (so that d — m = n — d). Then A(Sfﬁ) = (AM(A), Op—a) € (€2 (M))*.
Using Proposition 3.4] to each Sg = Sfée + B € SDy(F) we can associate the element
Ag+C € U(Ay, m) where C = ((Bv;, v;) )i jer, € Ma(C)T in such a way that

A(Sg) = (M(Ao+C), Opgy—a) € f}k(l\\/ﬂ)L .

Conversely, if Ag + C € U(Ag, m) then there exists G € Dy(F) such that the matrix
corresponding to Sg as above is Ay + C. Thus, the previous remarks show that

[A(S) : G € Du(F)} = {(MA), Opa) : A€ U(Ag, m)} . (10)
The proof now follows from Eq. () above and Remark B.5] O

Remark 3.7. Using Theorem B0 in case V = W (i.e. classical duality) we recover the
structure of classical duals of a frame F for the Hilbert space W as described in [25]. A

Corollary 3.8. There exists G € Dy(F) which is Parseval in V if and only if:

(a) 12)\]7%7if0ri61[d, in case m =2d —n < 0;

(b) 12)\§7if0ri61[d andlz)\ﬁiforieﬂm, imcased—1>m=2d—n>1.

Proof. Let G be a frame for V. Notice that G is a Parseval in V), i.e. Sg = Py, if and only if
Ai(Sg) =1 for every i € I;. Thus, the result now follows from Theorem [B.6 O

Remark 3.9. With the notations and terminology from Theorem [3.6], notice that Corollary
can be written as follows: there exists G € Dy(F) which is Parseval in V if and only if
Sy <Py and dimR(Py—S#)<d—-m=n—d=dimkerTr .
v v

This last formulation of the existence of Parseval V-duals formally resembles the characteri-
zation in [I8, Proposition 2.4] in case of classical duality. A
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3.2 Optimal oblique duals with norm restrictions

In applied situations, it is desired to characterize the existence (and find explicit methods of
construction) of frames with some prescribed parameters. This kind of problems are referred
to as frame design problems, and they are at the core of finite frame theory (see for example
[4, 5], [16, 23], 25 26, 27] and the recent book [6]).

Let W, V C H be two finite dimensional subspaces such that W@® V+ = H, and let dim W =
dimV = d. Given a fixed frame F = {f;};c1, € W" for W we can ask whether there exists
G € Dy(F) with some prescribed parameters; and in case such a dual exists we would like to
obtain a procedure to construct it. For example, given u € (R%,)* we can ask whether there
exists G € Dy(F) with A\(Sg) = p. Notice that Theorem B.6 above completely solves this
problem; moreover, the proof of Proposition [3.4] contains a procedure to effectively construct
such a dual.

As a consequence of the description of the spectra of elements in S(Dy(F)), we see that if
G € Dy(F) then Sg > S - This last fact implies that the canonical V-dual is optimal with

respect to several criteria (including convex potentials). Yet, from a numerical point of view

the oblique canonical V-dual might not be the best choice of a V-dual for F. For example,

the condition number of the frame operator S+ may not be minimal in Dy(F); indeed,
v

Corollary 3.8 shows that under certain assumptions we can consider a Parseval V-dual of F
(with minimal condition number).

In order to search for alternate V-duals that are numerically robust, we proceed as follows:
for ¢ > tr(S,#) we consider
v

Dy(F) 2 {G={g}ier, €Dv(F): > gl >t}
i€ly,

Notice that if ¢ > tr(S,%) then the canonical V-dual is not in Dy ;(F) and therefore, it is
v
natural to ask whether there is an optimal dual in Dy ;(F). Using the well known identity

D gill® = tx(Sg) = > i (11)
1€y i1€lly

where A\(Sg) = p, we see that Theorem gives a complete solution to a frame design
problem in the sense that it allows to get a complete description of the eigenvalue lists of
the frame operators of elements in Dy ((F).

Remark 3.10. Let 4y € My(C)*, t > tr(Ay) > 0 and consider an integer m < d. Define
U(Ag, m) = {Ag+C: CeMy(C)F, tk(C)<d—m, tr(Ag+C) >t} .

The spectral and geometrical structure of the set U;(Ag, m) is described in [25]; in particular,
there it is shown that there exist <,,-minimizers within this set. Indeed, using the previous
notations, if A(4g) = A = (A)ier, € (RLy)¥, we consider hp, : [Ag, 00) = Rxq given by

d

hm(t) = Z (t - )‘i)+ )

t=max{m,0}+1

where 2t stands for the positive part of . Notice that h,, is strictly increasing; hence there
exists a unique ¢y n,,(t) = ¢ > A4 such that h,,(c) =t —tr A. Then, set

11



L) Z (c=A)T+ M, ..y (e= M)+ Aa) € (R, if m < 0;

2. V)\,m<t) (g ()\1 ) ey )\m, (C_)\m+1)++)\m+17 ey (C—)\d)+—|—)\d> € R%O’ ifm e Hd,1 .
Notice that if ¢ > tr(Ap) then vy ,,(t) € R%,. Then, it turns out that (see [25])
1. There exists AP € Uy(Ag, m) such that A(AP) = vy . (£)};

2. For every A € Uy(Ay, m) then vy ,,(t) <uw A(A);

3. If A= Ay+ B € Uy(Ag, m) then A\(A) = vy ,,(t) if and only if vy ,,(t) = A(Ag) +AT(B)
and there exists an ONB {z; };e1, of C? such that

AO = Z)\Z 2 X z; and B = Z)\d_i—"l(B) AN AN A

i€ly 1€ly

The following result shows that there are structural minimizers of arbitrary (strictly) convex
potentials in Dy (F), i.e. duals G € Dy ((F) that simultaneously minimize every convex
potential. This is interesting from an applied point of view, since evaluations of convex
potentials (e.g. the frame potential as described in Eq. (@) are typically easier to compute
than structural parameters (i.e. computing eigenvalue lists or eigenvectors)

Theorem 3.11 (Optimal duals in Dy ((F)). Let V and W be finite dimensional subspaces
of the Hilbert space H such that W+ @V = H and let d = dimV = dimW. Let F = {f;}ic1,
be a frame for W and set )\171;E =) )‘(S.ij)‘ For every t > tr )\ﬁ there exists v € (1 (M) with
the following minimality properties:

1. There exist Gop, € Dy (F) such that X(Sg,,) = v;
2. For every non-decreasing function h € Conv(Rxq) then

Pu(Gop) < Pu(G) , G ={gi}ier, € Dy «(F) . (12)

Moreover, if we assume further that h € Convs(R>o) and G = {gi}ier, € Dy +(F) attains
equality in (I2), then A\(Sg) = v and there exists an ONB {x;}ie1, for V such that
S]_-#:Z)\ii T XX, and B:SQ_SF\?:ZM*Z'H(B) T, Qx; .
i€lly 1€ly
Proof. Fix {v;};e1, an ONB of V and let Ay € My(C)™ be given by Ay = ( <Sf3e v, vi) ), jel,
Arguing as in the proof of Theorem [B.6 and taking into account the identity in Eq. (III) we
see that

{A(Sg) : G €Dyu(F)} = {(MA), Opg-a) = A € Up(Ao, m)} . (13)

Set A = M(Ay) = (A#,i)ield € R%,, and notice that ¢ > tr)\; set m = 2d — n and consider
Vam(t) € R%, defined as in Remark BI0. Finally, define

v = (am(®). ) € 4.0
If h € Conv(Rsp) is a non-decreasing function then, by Definition 2.2 we get that

Pi(G) = ) h(Xi(Sg)) = tr((Sg)v) for G € Dy(F). (14)

i€lly

Hence, the proof now follows from Eqs. (I3) and (I4]) above, Remark B.I0l and the relation
between submajorization and non-decreasing convex functions described in Section O
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4 Optimal (V,W)-oblique dual pairs with prescribed
parameters

It has long been recognized that for a fixed frame F for W, oblique V-duality offers a much
more flexible theory than classical duality, which comes from the fact that we can choose V
from a large class of subspaces (see [9] for example). Moreover, it has also been noticed that
the relative position of the subspaces V and W for which W@ V+ = H plays a key role when
comparing oblique duality to classical duality. This phenomenon has been studied mainly
though the angle between the subspaces V and W (see [8, O, [14] and the definitions below).
Yet, the angle between the subspaces V and W only provides qualitative measure of the role
of the relative geometry of ¥V and W in the context of V-duality. In what follows, we give
a detailed description of the role of the relative position of ¥V and W in the V-duality of F
in case the subspaces are finite dimensional. Our analysis relies on a multiplicative Lidskii’s
inequality and it is based on the complete list of the so-called principal angles between V
and W. Our results provide sharp quantitative measures of these relations.

4.1 Relative geometry between finite dimensional subspaces

We begin by describing the principal angles and vectors between finite dimensional subspaces.
Let V, W C H be finite dimensional subspaces with dim) = dim W = d. Let Py and Py
denote the orthogonal projections onto V and W respectively. The principal angles

ogelg...gedgg

are defined (see [17,22]) in such a way that the positive finite rank operator | Py Py| € B(H)
satisfies that
M| Pw Pyl) = (cos(6:), ..., cos(a), Opay—a) € L1 (M) .

We say that wy, ..., wg € W (respectively vy, ..., vy € V) are principal vectors (or princi-
pal directions) between V and W if they are an o.n. basis of W (respectively if they are an
o.n. basis of V) such that

| Py Pyy| w; = cos(6;) w; ( respectively| Py Py|v; = cos(6;)v; ) forevery i€l;. (15)

An alternative characterization of principal angles and vectors is as follows: given k € I,
then define inductively

(g, wy) = cos(by) = max max (v, w)

subject to the restrictions

vl =Jw||=1, (v,v;)=0 and (w,w;)=0 for 0<i<k-—1,
where we set vy = wy = 0. Notice that the principal angles between V and WV are a qualitative
measure of the relative position between these subspaces.

Assume further that W+ @V = H. Consider the oblique projection P, //wt - In this case,
there exists a connection between the principal angles and vectors between V and W and
the geometrical and spectral structure of Py/y.. Indeed, it is known (see [1I] and the
references therein) that the Moore-Penrose pseudo-inverse of P,y is given by

(Pyyw2)' = Py Py = [Py jwe|" =Py Pyl and |[(Pype)*|' = [Py Pyl . (16)

13



In this case, since P,y has rank d, then |P, Py| also has rank d and therefore 04 < /2.
Moreover, by Eq. (IH), the principal vectors between V and W satisfy that

1 1
| Py | wi = o (@) w; and [Py pr|v; = Mz}i for every i€l . (17)

Take the polar decomposition Py Py = U |Py Pyy| with the unique partial isometry U €
B(H) with initial space W and final space V. Hence we have that |Py Py| = U |Py Py | U*.
Therefore, given principal vectors {w; }ier, € W? between V and W, in what follows we shall
assume that the corresponding principal vectors {v;}icr, € V? between V and W are given
by v; = U w; for every ¢ € [;. In particular, it holds that

Pyv; =cos(0;)w; and  Pyw; =cos(b;)v; forevery €1y, (18)
because, for example, P, w; = Py Py w; = U |Py Py|w; = cos(6;) U w; = cos(6;) v; .

Remark 4.1 (On two notions of angle between subspaces). There are two different notions
of angle between subspaces in the literature. Next we include their definitions, we compare
them and we also relate them to the principal angles defined above. Hence, consider two
finite dimensional subspaces V, W C H with dimV = dim W = d. Let (6;);e1, denote the
principal angles between V and W.

1. In [29] the authors introduce the angle 6y, yy € [0, 7/2] between V and W defined by

cos (6 = inf P .
(Ov,w) feW,||f||:1|| ol
['herefore,
cos(f 2= inf Py Pwl*f, f) = cos(64)* . 19
(v, w) few,||f||:1<| v Pwl"f 5 ) (6a) (19)

That is, we have the identity 6y = 04. If we assume further that W+ @&V = H then
Eqs. (I7) and (1) provide a simple proof of the identity || P/ || = cos(fy,w) "

2. There is yet another notion of angle between subspaces, the so-called Dixmier angle,
denoted by ¥V € [0, 7/2] and given by

GV’W) = sup |{(v, wy| = || Py Pw|| = cos(6;) .

vEV, weW, ||v||=|lw||=1

cos(

That is, we have the identity 0¥V = 6, . If we assume further that W+ @V = H
then it is well known (see [12]) that [P,/ .| = sin(6¥""V")~! which implies that

sin(§Y"V") = cos(fy, ) and hence we get that

QV,W:W/Q—GV’WL . AN

4.2 Optimal dual pairs by rigid rotations
We begin by fixing the following notations:

Notations 4.2. Throughout the rest of the paper we shall consider

1. YV, W C H two finite dimensional subspaces such that V @ W+ = H;
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2. ZL(WV;W) = (0;)je1, € ([0,7/2)")" principal angles (dimV = dim W = d);
3. {v;}jer, €V, {w;}jer, € W principal vectors in V and W obeying Eq. (I8);
4. F ={fi}ie, € W™ a frame for W with

ASr) =X =(N)iem and )\<Sf§) = )‘Tf = (Ai,i)iEM . A

Consider the Notations 4.2l In order to have an estimate of )\i notice that
Ft =P L F# Ty =P, SLT
v V/ Wt = Lz v/ wt OF LF

and hence

Syp = Pojpwe Sx (Pyypwe)" = Pyjpwa Sy By - (20)

The previous remarks, together with Lidskii’s multiplicative inequalities in Theorem [2.4]
allow us to obtain the following bounds in terms of the spectral structure of Sz and the
principal angles (i.e. the relative geometry) between V and W. We point out that the
bounds given in next result are a quantitative measure of how the relative geometry of the
subspaces V and W impact in oblique duality.

!

el then

Theorem 4.3. Consider the Notations[{.3. If we let = (A1, cos™2(6;))

J -1
H,uj < H )\ﬁj < ( H A Cosz(ej)> , kely. (21)

J€ly J€ly j=d—k+1

Moreover, )\ﬁé = u (resp. )\?j = ()\C;_lj+1 cos 2(04—j4+1) ) <= there exist an o.n.b. in

1)
J€ly
W of principal vectors {w; }icr, between V and W such that

S = Z Ai—j+1(SF) w; @ w;

J€ly
(resp. Sy = Zjel[d Ai(SF) wi ® w;).

Proof. Consider the representation of S # given in Eq. (20). Denote by M = [Py, .| and
let P,y =V M be the polar decomposition. Notice that R(M) = W; hence, M restricted
to (the reducing subspace) W is invertible. On the other hand, since R(Sr#) = W then the
restriction of Srx = S_TF to (the reducing subspace) W is also invertible. Hence, Eq. (20)
implies that

Sf#:V(MS}M) v (22)

Since V' is a partial isometry with initial space W and final space V then, Eq. ([22]) implies
that

A(va) = (A (MW(SJTT)W MW) , Oaj—a ) (23)
where in general Sy, € B(W) denotes the restriction of S to its reducing subspace W. Since

A (S;)W) = (A% A and A(Myy) = (cos(04)7t, ..., cos(61)7"), we see that the result
is now a consequence of Theorem 2.4] (Lidskii’s multiplicative inequalities) and the definition
of log-majorization. O
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Consider the Notations The previous result suggests that we could take advantage of the
relative geometry between the subspaces V and W to construct optimal oblique encoding-
decoding schemes with prescribed properties. Indeed, let U € B(#H) be a unitary operator
such that U(W) C W i.e. W is U-invariant. Hence, we could consider the frame U - F =
{U f;};e1, for W. Notice that U - F preserves essentially every property of F (e.g., linear
relations, eigenvalues list of its frame operator, norms of the elements of the frame, etc). In
particular, (U - F)# = U - F# since Sy.r = UTxT3U* = US#U*; that is, the (classical)
canonical dual frame of U - F in W is the rotation by U of the canonical frame for F in W.
In particular, we get that Sg], r=U S]TEU *. Nevertheless, F and U - F can have quite different
properties with respect to V-duality as shown in the following

Example 4.4. Let H = C? and let {e;, es, e3} denote the canonical basis of H. Set V =
{ea, %} and W = {ey, eo}. Notice that in this case we have that C* =V ¢ W+, Set

F1 = Aey; (cos(w/3),sin(m/3),0)} W,
Fo = {en (cos(m/2 + m/3),sin(m/2 1 7/3),0)} CW

Notice that F, = U - F; where U is the rotation by (the angle) 7/2 in the plane W and
such that Ues = e3. Straightforward computations show that )‘<S(f1)?f) = (8/3;1;0) and

)\(S(B)#) = (3.59;0.74;0). This last fact shows that there is no unitary operator U’ such
4
that U'(V) = V and such that (Fo)} = U'(F)%. A

The previous example shows that the spectral properties of the V-canonical dual of a frame
U - F indeed depend on U and motivates the construction of unitary operators U € B(H)
with U(W) = W, such that the dual pair (U - F, (U - F)¥) induces an optimal encoding-
decoding scheme. As a measure of optimality we could consider the minimization of the
joint convex potential of the pair among all such pairs; but, since the spectral properties of
U - F are independent of U we are left to compute those unitary operators Uy € B(H), with
Up(W) = W, that minimize - for a non-decreasing function h € Conv(Rs>() - the convex
potential P,[(U - F)#] among all unitary operators U € B(H) such that U(W) = W. As we
shall see, there exist structural solutions to this problem.

Theorem 4.5. Consider the Notations[[.2 Let {x;}ic1, € W? be an ONB of W such that
Srxj = Njx; for every j €1y

1. Let Uy € B(H) be a unitary operator such that Uyx; = wy_j11 for every j € Iy. Then
AMS ) = ((605*2(91) A jen O\M|—d> : (24)

2. If h € Conv(R>) is non-decreasing then
Pu((Uy - F)E) = min{P,((U - F)3) : U € B(H) is unitary and , U(W) =W} . (25)
Moreover, if we assume further that h € Convg(R>o) and U - F attains the minimum of

Eq. (23) then there exist principal vectors {w}}jer, and a ONB {x}}ic1, for W such that
Sral =N, and Uxl, =wy_ ;. , for j€ly.
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Proof. Let U € B(H) be any unitary operator such that U(W) = W and let U - F =
{U fi }ie1,- Then, notice that

U-F)f =Pyywe (U-F)* =Py ppyr U-F*
and hence, in general we get that

We can now argue as in the proof of Theorem 3| considering M = |Py,/ 1| (and the polar
decomposition Py =V M) and conclude that

NS ) = ()\(MW(UST Ut ) Opga) (27)

where in general Sy, € B(W) denotes the restriction of S to its reducing subspace W. Using
Eq. (1), if Uy is as in item 1 then

My (Us SLUSw My w; = cos™2(6;) )\Cj_ljle w; for  jely.

Thus, the previous facts together with Eq. (27) show item 1.
In case U € B(H) is a unitary operator such that U(W) = W then Theorem 3] implies that

IT XS, mp) < TT (S , kely. (28)

j€l j€ly

As explained in Section [2.2] Eq. (28]) implies that

D NSume) D AilSyr) o kel (29)

j€l j€ly

If h € Conv(Rxg) is non-decreasing then, by the submajorization relation in Eq. (29), we
conclude that

Py Zh (Uof ) < Zh (UJ-')# ) = h((U}—)i) )

j€ly J€ly

which proves Eq. (20]). Similarly, the final claim follows from Eq. (27) and Lidskii’s multi-
plicative inequality, as stated in Theorem 2.4l and the properties of log-majorization described
in Section O

Consider the Notations 421 Then, the previous theorem describes the rigid rotations Uy
that leave invariant W and such that spectral structure A((Us - F)%) of the oblique canonical
V-dual of Uy - F is optimal with respect to log-majorization.

On the other hand, for a fixed rigid rotation U that leaves invariant YV and for a fixed
t > tr(S(U.f)\;f) Theorem [3.11] describes the spectral structure )\ﬁt(U - F) of those oblique
V-duals G (U) € Dy(U - F) that simultaneously minimize every convex potential within the
set Dy(U - F). It is then natural to wonder whether the spectral structure )\ﬁ,t(Uo - F) of
v (Up) (optimal dual with trace restriction based on an optimal rigid rotation of F) has
some optimality property. In order to tackle this problem we consider the following result.
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Lemma 4.6. Let A = (Ni)ier, , 1t = (pi)ier, € Ry, let m < 0 be an integer and assume that
A < . If we let vy (t) and v, m(t) be as in Remark[3.10 (based on A and v respectively)
for some t > trpu (> tr\) then we have that vy n,(t) < v, m(t).

Proof. Recall that by construction tr(vy ,,(t)) = tr(v,,m(t)) = t. Hence, in case vy ,(t) =

é - 1 the result follows from the well known relation é -1 < p for every p € R? such that

tr p = t. Otherwise (see Remark B.10), there exists 1 < r < d — 1 such that
Unom(t) =1, ..., Ay e-14)  with e <A,

On the other hand we can write v, () = (o, 8) € (R%y)* where

= (i + (¢ — ) )iy € (R;0)¢ and 8= (u; + (¢" — p;)" ) r1 € (Rior)

Therefore, for every k € I, we have that

ZA <Z”Z<Z”Z ("= p)") = Nier, <w @,

ZEHk ZEHk zE]Ik

where we have used that A <, p in the first inequality above. By [24] Lemma 5.6] we
conclude that vy ,,,(t) <w V4, m(t). The result now follows from the equality tr(vy ,(t)) =

tr(vy, m(t)). I

Theorem 4.7. Consider the Notations[4.9 and assume that n > 2d (i.e. 2d —n < 0). Let
{z;}ic1, € W be an ONB of eigenvectors for Sz on W i.e., such that Sz x; = \; x; for every
j €ly. Let Uy € B(H) be a unitary operator such that Uyx; = wq_;+1 for every j € 1 .
Then,

1. IfU € B(H) is a unitary operator such that U(W) = W then tr(S, -f)?f) < tr(S

(Uo U-F} )

2. Ift > tr(S(U.f)\;f) and we let GP(U) € Dy (U - F) (resp. GX(Uy) € Dy (Up - F)) be
the optimal dual as in Theorem [311] then for every h € Conv(Rxo)

Pu(G"(Uo)) < Pu(G*(U)) - (30)

Proof. As explained in the proof of Theorem if U and U, are as above then Eq. (29)
holds. In this case

S 7 Z Ai( Z NS pyz) = tr(S(U-f)fj) ,

j€ly j€ly

which shows item 1. On the other hand, if ¢ > tr(S(U.f)#) > tr(S(UO.F)#) then Eq. (29)
4 v
together with Lemma (.6l and Theorem B.I1] (notice that in this case m = 2d —n < 0) imply

that
> Ni(Sgerwe) <O N(Sgery) . k€l

JElk J€lk

Hence, Eq. (B0) follow from the properties of majorization described in Section and
Definition 2.2 O

We conjecture that Theorem [£.7] is also true in case 2d —n € I;_;. We shall consider this
problem elsewhere.
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5 Aliasing in oblique duality

Let W, V C H be closed subspaces such that V & W+ = H (or equivalently W @ V+ = H).
Recall that in this context the aliasing norm associated to the consistent sampling

fo:PW//vlfa JEH (31)
(see [14] 21]) is given by

P 1L e
AWV = sup  IPwmiel

L e )
ec

Notice that the aliasing norm measures the incidence of the orthogonal complement of W in
the overall (oblique) encoding-decoding scheme in Eq. (B31]) based on these two subspaces. We
can interpret A(WW, V) as a measure of the amount of noise that we would get in the oblique
encoding-decoding scheme when sampling a perturbed signal f + e that has a component
e € W+, This phenomenon is of interest only when V # W (as AW, W) = 0).

Lemma 5.1. Consider the Notations[{.2 Then
1. |PyrPy| v; = sin(6;) v; for every i € 1,.
2. |y Py e | w; = tan®(0;) w; for every i € I,;.

Proof. Recall that with the Notations 4.2 {v;}er, is an ONB of V such that |Py Py| v; =
cos(6;) v; , for i € I;. In this case,

|PyiPy|> = Py — |Py P> = |Py.Py|v=sin(0;)v; forevery i€ly. (33)

To prove item 2, let us fix ¢ € [;. By Eq. (I8) we know that Py Py, v; = Py v; = cos(6;) w; .
On the other hand, recall from Eq. (I6]) that

(PV//WL)T:PV\/PV — PV//Wlwi :COS(ei)_lvi s (34)
since v; € V = (ker Py Py)* and w; € W = R(Pyy P)). Similarly, we get that
BD @ -
PW//VL v, = v//WL(COS(ei)PV//WLU}i) = COS(@Z‘) |PV//WL|2 w; = COS(@Z') 1 w; . (35)
On the other hand,
|PwLP];//WL‘2 - ‘Pwl PV Pv//WL‘Q - Pw//vL ‘PwlPV‘Q PV//WL .
Hence, using the previous remarks and Eq. (33) we get that, for every i € I,
‘PWLPV//WLPwi @ PW//VL |PwLPV|2(COS(9i)_1 Ui)

B3 sin(0,)?

B3
cos(6;) PW//Vl V; = tanz(ﬁi)wi.

This completes the proof. O]

Consider now the Notations , so in particular V, W are finite dimensional. Then, using
that || Py, || = cos(6y) " we get AW, V) < cos(fz)~" (i.e. with the notations of Remark
I we get A(V, W) < cos(by,y) ", see [14]). Nevertheless, the previous bound for AW, V)
is not sharp: in case V = W then AW, W) = 0, yet cos(d;)~' = 1. Next we compute the
exact value of the aliasing norm:
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Corollary 5.2. Consider the Notations[{.3. Then,
AW, V) = tan(b,) .
Proof. By the definition of the aliasing (82)) and Lemma [5.1]
AW Y) = [Py Pl = 11Ps Py || = mas tan(8) = tan(@s) . ©

Consider the Notationsd.2l Let G = {g;}ic1, € Dy(F) i.e., such that Tz T = Py, /y. . Then,
when applying the encoding-decoding scheme induced by the pair (F,G) the orthogonal
complement W+ may also have an incidence in the sampling process; in case V # W, if
we sample the perturbation f + e for f € W and e € W* then, there is a corresponding
perturbation of the coefficients Tj f given by Tge: in this case, the squared norm (energy) of
the perturbation is ||75el|* = (Sg e, ). Thus, we introduce the following

Definition 5.3. Let W, V C H be closed subspaces such that W@V = H. Let F = {fi}ier
and G = {gi }ier be frames for W and V respectively such that G € Dy(F). Then, we define
the aliasing relative to the oblique dual pair (F,G), denoted A(F,G) given by

[T el _ (Sge, e)'’?

= A
eeWL\{0} e]l eeW-\{0} e]l

A(F,G) =

With the notations of Definition (.3 notice that A(F,G) is a normalized measure of the
relative incidence of W= in the analysis of perturbed signals in terms of G, in the sense that

ITgell < A(F.G) llell . eeW™.

There is an alternative interpretation of the aliasing A(F,G) that is as follows: with the
previous notations, let e € W+: then

Tgel® =" lle, g =D I{e, Puegd* = | Tzel”

iel el
where G = {P)y.g;}ic1, is considered as a finite sequence in W+. Therefore,

e, P2\ IT% ]
A(F,G)= sup Z’—Z = sup g

W\ {0} le]? cewn\(oy [lell

can be considered as a measure of the (normalized) residual sampling power of G= Py -G
in W+,

Assume further that F = {fz}zej is a Parseval frame for Wi.e. S = Py. Then, .7:# € Dy(F)
is such that S = = | Py, v+ |%; hence in this case

(Spne,e)t/?

A(}",}"#): sup —Y———— = sup
eeWL\{0} el eeWwL\{0} el

P, n
| 1wy vLell ell — AW, V) .

In opposition to AW, V), the aliasing A(F,G) depends on the particular choice of oblique
dual frames (F, G) considered, and not only on the subspaces V and W. Then, it is natural
to consider the problem of designing frames F and G for W and V respectively, such that
(F,G) is an oblique dual pair and such that A(F,G) is minimum.
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Remark 5.4. Consider the notations Given G € Dy, (F), it is easy to see from Definition
that

A(F.G) = IT5 Pl = || Pws Sg P [|V? (36)
On the other hand, as a consequence of Proposition B.4] we see that Sfée < S =
PwL S]__# Pwl S Pwl Sg PwL . Therefore

A(F, F§) = 1Py Spa Bys |2 < || Pws Sg B |12 = A(F,G) .

That is, in this case the canonical oblique dual pair (F, ]:# ) minimizes the aliasing among

all oblique dual pairs (F,G) for G € Dy(F). A

Consider the notations .21 and let U € B(H) be a unitary operator such that U(WV) = W.
As shown in previous sections, the spectral structure of S(U_ it depends on the choice of such
a unitary. Therefore it is natural to consider the unitary operators U as before, that minimize
the aliasing A(U - F,G) where G € Dy,(U - F). Remark [5.4] shows that in this case we can
restrict attention to the oblique dual pairs of the form (U -F, (U-F )ff ) for a unitary operator
U € B(H) such that U(W) = W. The following result fits into the previous analysis scheme
and links optimal solutions of this problem to optimal solutions of the problem considered
in Theorem

Theorem 5.5. Consider the Notations[4.2 Let {x;}ic1, € W2 be an ONB of eigenvectors
for Sy on W i.e., such that Sy x; = A\jx; for every j € ly.

1. If U € B(H) is a unitary operator such that UMW) =W then

AU-F, (U-F)}) = max taf}ﬁej)
P V|

2. If Uy € B(H) is a unitary operator such that Uy x; = wq_;41 for every j € 1, then

tan(60;

AUy - F, (Uy - ]:)ﬁ) = max alng )
J€ela )\ /2

d—j+1

In particular, the lower bound in item 1. above is sharp.

Proof. Let U € B(H) be a unitary operator such that U(WW) = W. Then, as in the proof of
Theorem [4.5], we have that

S(U-f)?f = Pyywr USzs U" Py jy1
Therefore, by Eq. (36) we deduce that
A((U - F)%, U - F)? = |Pyi Py U Srs U Py jypi Py || - (37)
On the other hand, by Lemma 5.1}, we have that
| Py Py e P w; = tan?(6;) w;  for every i €1y . (38)

In particular, tk(|Pyi Py pye|) = #({i € Iy : 0; > 0}) < k. Let P denote the the
orthogonal projection onto N” = R(|Pyy. Py/y1|) . Then, by the interlacing inequalities (see
[3]) we get that the eigenvalues A(P(USxz#U*)P) = (u;)iem satisty that:

fi > Nkt (Sre) =ANtiyy if 1<i<k and g =0 if i>k+1. (39)
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We apply Lidskii’s multiplicative inequality in Theorem [24] (to the operators acting on N,
where [Py, Py 1| acts as an invertible operator) and get

( tan®(0g—r+i) )ieﬂk o (Ki)ier, =w ()\i(|Pwl Pyywe [ (PU Szs U P) |Pyye PW//VL|))i€Hk

- ()\Z(PWLPV//WL USJ".# U*Pw//vL_Pwl))

k
i€l € R ’

where the last equality follows by taking polar decomposition of Py Py, 1 . In particular,
using the sub-majorization relation, Eq. (87) and the inequalities in ([B9) we see that

AU -F,(U-F)¥)? > max{w} _ max{ﬂ} 7

icly, Ak—it+1 iel, | Ad—j+1

which shows item 1. Fix the unitary Uy € B(#) of item 2. Then (Uy Syx Ug) wi = A,
4

for i € I;. Recall from Eq. B8)) that [Py Py, ye|w; = tan(0;) w; for i € Ig. Then

1 Wj

. tan2(6;) \*
)\(|PWLPV//WL|UOSJ—-#UO |PWLPW//VL|) — ((J) 70M|d> .

)\dfj+1 jely
This shows that canonical oblique dual pair corresponding to Uy - F attains the minimal
aliasing. O

Remark 5.6. Consider the Notations If G € Dy(F) then the compression
(Sg)ws = PwiSg| , € BOWH)*

of Sg to W+ is a (operator valued) measure of the incidence of W+ in the encoding-decoding
scheme based on the oblique dual pair (F,G). By Eq. B0), it follows that A(F,G) =
1(Sg)w||'/?, where ||T| stands for the operator norm of T € B(W%). We can consider
other (natural) scalar valued measures of the form

An(F,G) = tr h((Sg)w+) ,

for h € Conv(R>() non-decreasing and such that ~(0) = 0 (which is well defined since (Sg) 1
is a finite rank positive operator and h(0) = 0). A careful inspection of the proof of Theorem
shows that, with the notations of that result,

AUy - F, (Uy - F)E) < Ap(U - F, (U - F)E)

for every unitary operator U € B(H) such that U(W) = W, i.e. that the rigid rotation Uy
has several other optimal properties. A
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