
ar
X

iv
:1

41
0.

28
09

v1
  [

m
at

h.
FA

] 
 1

0 
O

ct
 2

01
4

Aliasing and oblique dual pair designs
for consistent sampling
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Abstract

In this paper we study some aspects of oblique duality between finite sequences
of vectors F and G lying in finite dimensional subspaces W and V, respectively. We
compute the possible eigenvalue lists of the frame operators of oblique duals to F lying
in V; we then compute the spectral and geometrical structure of minimizers of convex
potentials among oblique duals for F under some restrictions. We obtain a complete
quantitative analysis of the impact that the relative geometry between the subspaces V
and W has in oblique duality. We apply this analysis to compute those rigid rotations
U for W such that the canonical oblique dual of U ·F minimize every convex potential;
we also introduce a notion of aliasing for oblique dual pairs and compute those rigid
rotations U forW such that the canonical oblique dual pair associated to U ·F minimize
the aliasing. We point out that these two last problems are intrinsic to the theory of
oblique duality.
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1 Introduction

A finite sequence F = {fi}i∈In is a frame for a Hilbert space W ∼= Cd if F spans W, where
In = {1, . . . , n}. In this case, a sequence G = {gi}i∈In in W is a (classical) dual for F in W
if the following reconstruction formulas holds:

f =
∑

i∈In

〈f , fi〉 gi =
∑

i∈In

〈f , gi〉 fi , f ∈ W . (1)

Hence, frames allow for linear encoding-decoding schemes of vectors in W in terms of linear
generators for W. Moreover, in case n > d then the set of dual frames for F in W has a rich
structure which plays a key role in applications of finite frame theory to real life situations,
such as signal transmission through noisy channels (see [6, 7]). Similarly, applications of finite
frame theory have lead to consider the so-called frame design problems, i.e. the existence
and construction of frames with prescribed properties, based on the flexibility of finite frames
(see [4, 18, 24, 27]).

An important aspect of frames is that of its numerical stability; typically, numerical
stability is measured in terms of the spread of the eigenvalues of the so-called frame operator
SF of a frame F = {fi}i∈In , that is given by SF =

∑
i∈In fi ⊗ fi. One of the most important

measures of the spread of the spectrum of SF is given by the frame potential of F (see [4])
given by FP (F) =

∑
i, j∈In |〈fi, fj〉|

2 = tr(S2
F). Indeed, it turns out that minimizers of the

frame potential - within appropriate sets of frames - minimize the spread of the spectrum of
their frame operators (see [4, 5]). Recently, there has also been interest in the structure of
minimizers of the so-called mean squared error of a frame F given by MSE(F) = tr(S−1

F ) -
within convenient sets of frames (see [16]). This raises the question of whether the minimizers
of these two different functionals coincide. It turns out that there is a natural and structural
measure of spread of the spectrum of the frame operators, called submajorization, that has
proved useful in explaining the spectral and geometrical structure of both frame potential
and mean squared error minimizers (see [23, 25, 26]).

In the seminal paper [14] Y. Eldar developed the theory of oblique duality for finite frames,
which is an extended setting for linear encoding-decoding schemes in a Hilbert space W,
based on the notion of consistent sampling. As the starting point for this theory, we consider
W, V ⊂ H two subspaces of a finite dimensional Hilbert space H, such that W ⊕ V⊥ = H
(i.e. W⊥ + V = H and W⊥ ∩ V = {0}). Given a frame F = {fi}i∈In for W and a frame
G = {gi}i∈In for V we say that G is an oblique dual of F if the following reconstruction
formula holds

f =
∑

i∈In

〈f , gi〉 fi for every f ∈ W .

The theory of oblique duality has been both developed and extended in several ways (see
[1, 2, 13, 9, 15]). On the other hand, it has been successfully applied to study duality for
finitely generated shift invariant systems on L2(Rd) (see [8, 19, 20]).

There are, however, some aspects of oblique duality that remain to be explored, even
in the finite dimensional case. In this paper, based on several tools coming from matrix
analysis, we consider the following problems in oblique duality. On the one hand, we study
the spectral (and geometrical) structure of oblique duals of the frame F for W that lie in
V. In this case, we obtain an explicit description of the eigenvalues of the frame operators
of oblique duals. With this description at hand, we compute the structure of minimizers of
submajorization within the set of oblique duals of F under some restrictions. These optimal
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oblique duals for submajorization turn out to minimize the so-called convex potentials (that
include both the frame potential and the mean squared error).

On the other hand, it has been noticed that the relative position of the subspaces V andW
for which W ⊕V⊥ = H plays a key role when comparing oblique duality to classical duality.
This phenomenon has been explored mainly though the angle between the subspaces V and
W. Yet, the angle between the subspaces V and W only provides qualitative measure of the
role of the relative geometry of V and W in the context of V-duality. In this paper, we give a
detailed description of the role of the relative position of V and W in the oblique duality of F
in case the subspaces are finite dimensional. Our analysis relies on a multiplicative Lidskii’s
inequality and it is based on the complete list of the so-called principal angles between V
and W. Our results provide sharp quantitative measures of these relations.

We also consider two problems that are intrinsic to oblique duality. We first notice that
the so-called canonical oblique dual (U · F)#V of a rigid rotation U · F = {U fi}i∈In of F is, in
general, not a rigid rotation of the canonical oblique dual F#

V of F (as opposed to classical
duality). Hence, we compute the rigid rotation U0 ofW such that the oblique dual (U0 ·F)#V is
optimal with respect to submajorization, among all such rigid rotations. Again, this implies
a family of inequalities in terms of convex potentials that are relevant for numerical analysis
purposes. We also compute the exact value of the aliasing norm of the consistent sampling
corresponding to subspaces V and W and introduce a notion of aliasing for oblique dual
pairs. In this context we compute the optimal rigid rotations U0 that minimize the aliasing
of the dual pairs (U · F , (U · F)#V ) for the fixed frame F .

Throughout the paper we consider finite sequences of vectors F that are frames for finite
dimensional subspaces W of a possibly infinite dimensional Hilbert space H, since this is the
setting that we shall need for future applications of the results herein; on the other hand,
the assumption that H is finite dimensional does not provide any substantial simplification
in the proofs of our results.

The paper is organized as follows. In Section 2 we describe the basic framework of
oblique duality between finite sequences of vectors, together with some basic facts about
convex potentials. In order to deal with these general convex potentials, we also consider
submajorization and log-majorization, which are spectral relations between positive finite
rank operators (or positive matrices). In particular, we include a multiplicative analogue of
Lidskii’s additive inequality that plays a crucial role in this note. In Section 3 we obtain
a convenient parametrization of the set of oblique duals of a fixed frame and use it to
compute the possible eigenvalues of the frame operators of oblique duals. We then compute
the structure of optimal oblique duals for submajorization, under certain restrictions. In
Section 4, after recalling some standard notions from functional analysis, we compute the
rigid rotations U of W such that the spread of the eigenvalues of the frame operator of the
oblique dual (U · F)#V is minimal, with respect to submajorization. We also consider the
combination of the problems of Section 3 and Section 4 i.e., the properties of the optimal
oblique dual frame (with norm restrictions) corresponding to the optimal rotation of F . In
Section 5 we compute the exact value of the aliasing norm of the consistent sampling based
on the subspaces V and W and introduce a notion of aliasing for arbitrary oblique dual pairs
(F ,G). In this context, we compute the rigid rotations U of W that minimize the aliasing
for the oblique dual pair (U · F , (U · F)#V ).
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2 Preliminaries

In this section we introduce the notations and basic terminology of frame theory and oblique
duality. We also describe the convex potentials for finite sequences of vectors (that contain,
for example, the Benedetto-Fickus’ frame potential) which will serve as a numerical measures
of the (relative) spread of the eigenvalues of the frame operators. Finally, we describe some
notions from matrix theory that will allow us to deal with these general convex potentials.

2.1 Oblique dual frames and convex potentials

In what follows we consider a fixed complex separable Hilbert space H. We take

M = Ip
def
= {1 , . . . , p} for p ∈ N or M = N (2)

in such a way that dimH = |M|. Let W be a closed subspace of H. Recall that a sequence
F = {fi}i∈I in W is a frame for W if there exist 0 < A < B such that

A ‖f‖2 ≤
∑

i∈I
|〈f , fi〉|

2 ≤ B ‖f‖2 , f ∈ W . (3)

If only the inequality to the right holds, we say that F is a Bessel sequence.

In general, given a Bessel sequence F = {fi}i∈I we consider its synthesis operator TF ∈
B(ℓ2(I),H) given by TF((ai)i∈I) =

∑
i∈I ai fi which, by hypothesis on F , is a bounded

linear transformation. We also consider T ∗
F ∈ B(H, ℓ2(I)) called the analysis operator of F ,

given by T ∗
F(f) = (〈f, fi〉)i∈I and the frame operator of F defined by SF = TF T ∗

F . It is
straightforward to check that

〈SFf , f〉 =
∑

i∈I
|〈f , fi〉|

2 , f ∈ H .

Hence, SF is a positive semidefinite operator; moreover, a Bessel sequence F in W is a frame
for W if and only if SF is an invertible operator when restricted to W or, equivalently if TF
is a surjective operator onto W.

In order to describe oblique duality, we fix two closed subspaces V, W ⊆ H such that
W⊥ ⊕ V = H, that is such that W⊥ + V = H and W⊥ ∩ V = {0}. Hence, W⊥ is a common
(algebraic) complement of W and V. It is well known that in this case PW |V : V → W is a
linear bounded isomorphism so, in particular, we see that dimV = dimW as Hilbert spaces.
Moreover, the conditions W⊥ ⊕ V = H and W ⊕V⊥ = H are actually equivalent.

Fix a frame F = {fi}i∈I for W. Following [14, 15] (see also [9]), given a Bessel sequence
G = {gi}i∈I in V we say that G is a (oblique) V-dual of F if

g =
∑

i∈I
〈g , fi〉 gi = TG T

∗
F g for every g ∈ V .

It turns out (see [14, 15]) that G is a V-dual of F if and only if TG T
∗
F = PV//W⊥, where PV//W⊥

denotes the oblique projection with range V and null space W⊥. Hence, TG is surjective onto
V and then G is a frame for V; by taking adjoints in the identity TG T

∗
F = PV//W we also get

that TF T ∗
G = P ∗

V//W⊥ = PW//V⊥ i.e.

f =
∑

i∈I
〈f , gi〉 fi for every f ∈ W .
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We shall consider the set of oblique V-duals of F given by

DV(F)
def
=
{
G ∈ V I : G is a V-dual of F

}
. (4)

Remark 2.1. Let F = {fi}i∈I be a frame for W. If we set V = W then a Bessel sequence
G in W is a W-dual of F if it is a dual frame for F in the classical sense (see [7]) i.e.
TG T

∗
F = PW . Hence

DW(F) = D(F)
def
=
{
G ∈ W I : G is a dual frame for F in W

}
.

Recall that there is a distinguished (classical) dual, called the canonical dual of F , denoted

F# = {f#
i }i∈I given by f#

i = S†
F fi for every i ∈ I ,

where S†
F denotes the Moore-Penrose pseudo-inverse of the (closed range operator) SF . △

In the general setting for oblique duality there also exists a distinguished V-dual for F , the
so- called canonical V-dual which we denote by

F#
V = {f#

V , i}i∈I given by f#
V , i = PV//W⊥ f#

i = PV//W⊥ S†
F fi for every i ∈ I , (5)

where F# = {f#
i }i∈I ∈ D(F) denotes the (classical) canonical dual as described in Remark

2.1. It turns out that the encoding-decoding scheme based on the oblique dual pair (F , F#
V )

has several optimality properties (see [14, 15]).

Convex potentials for finite sequences in H

In their seminal work [4], Benedetto and Fickus introduced a functional defined on finite
sequences of (unit norm) vectors, the so-called frame potential, given by

FP ({fi}i∈In) =
∑

i, j ∈In

|〈fi , fj〉|
2 . (6)

In case dimH = p ∈ N then one of their major results shows that tight unit norm frames
- which form an important class of frames because of their simple reconstruction formulas
and robustness properties - can be characterized as (local) minimizers of this functional
among unit norm frames. Since then, there has been interest in (local) minimizers of the
frame potential within certain classes of frames, since such minimizers can be considered
as natural substitutes of tight frames (see for example [5, 23]). Notice that, given F =
{fi}i∈In ∈ Hn then FP (F) = tr S2

F . Recently, there has been interest in the structure of
frames that minimize other potentials such as the so-called mean squared error (MSE) given
by MSE(F) = tr(S−1

F ) (see [16, 25, 27]). Next, we describe a broad family of potentials
introduced in [23], that contain both the frame potential and the MSE.

In what follows we consider the sets

Conv(R≥0) = {h : [0 , ∞) → [0 , ∞) : h is a convex function }

and Convs(R≥0) = {h ∈ Conv(R≥0) : h is strictly convex }.
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Definition 2.2. Given h ∈ Conv(R≥0) then the convex potential associated to h, denoted by
Ph, is defined as follows: for a finite sequence F = {fi}i∈In ∈ Hn with W = Span{fi : i ∈ In}
and frame operator SF ∈ B(H)+, then

Ph(F) =
∑

i∈Id

h(λi((SF)W)) ,

where d = dimW and (λi((SF)W))i∈Id ∈ R
d
>0 denotes the vector of eigenvalues of the com-

pression (SF)W ∈ B(W)+, counting multiplicities and arranged in non-increasing order. △

Remark 2.3. With the notations of Definition 2.2, notice that by construction W is a
reductive subspace for SF , and hence (SF)W is a well defined positive operator acting on the
finite dimensional subspace W. Moreover,

Ph(F) = tr h((SF)W)

where h((SF)W) ∈ B(W)+ is obtained by means of the usual functional calculus from the
compression (SF )W and the trace is taken in the finite dimensional Hilbert space W. There-
fore, in case h ∈ Conv(R≥0) is such that h(0) = 0 we get that

Ph(F) = tr h((SF)W) = tr h(SF ) .

In particular, we see that if h(x) = x2 then Ph(F) coincides with the frame potential. △

Fix h ∈ Conv(R≥0) and consider its associated convex potential Ph. If F = {fi}i∈In is a
finite sequence in Hn then Ph(F) is a measure of the spread of the eigenvalues of the frame
operator of F . That is, (under suitable normalization hypothesis on F) the smaller the value
Ph(F) is, the more concentrated the non-zero eigenvalues of SF are (see [23, 25, 26, 27]).

In order to deal with these general convex potentials we consider the notions of submajoriza-
tion and log-majorization in the next section.

2.2 (Log-)majorization and convex functions

Next we briefly describe sub-majorization, majorization and log-majorization, that are no-
tions from matrix analysis. For a detailed exposition on these relations see [3].

Given x, y ∈ Rd
≥0 we say that x is submajorized by y, and write x ≺w y, if

k∑

i=1

x↓
i ≤

k∑

i=1

y↓i for every k ∈ Id = {1, . . . , d} ,

where z↓ ∈ Rd (respectively z↑ ∈ Rd) denotes the vector obtained by re-arrangement of
the entries of z ∈ R

d in non-increasing (respectively non-decreasing) order. If x ≺w y and
trx =

∑d
i=1 xi =

∑d
i=1 yi = tr y, then x is majorized by y, and write x ≺ y.

Log-majorization between vectors in Rd
≥0 is a multiplicative analogue of majorization in Rd

≥0.
Indeed, given x, y ∈ Rd

≥0 we say that x is log-majorized by y, denoted x ≺log y, if

k∏

i=1

x↓
i ≤

k∏

i=1

y↓i for every k ∈ Id−1 and
d∏

i=1

x↓
i =

d∏

i=1

y↓i .
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It is known (see [3]) that if x, y ∈ Rd
≥0 are such that x ≺log then x ≺w y . On the other hand

we write x6 y if xi ≤ yi for every i ∈ Id . It is a standard exercise to show that if x, y ∈ Rd
≥0

then x6 y =⇒ x↓ 6 y↓ =⇒ x ≺log y =⇒ x ≺w y.

Our interest in majorization is motivated by the relation of this notion with tracial inequal-
ities for convex functions. Indeed, given x, y ∈ Rd

≥0 and h ∈ Conv(R≥0), then (see for
example [3]):

1. If one assumes that x ≺ y, then tr h(x)
def
=

d∑
i=1

h(xi) ≤
d∑

i=1

h(yi) = trh(y) .

2. If only x ≺w y, but the map h is also non-decreasing, then still tr h(x) ≤ tr h(y).

3. If x ≺w y, h ∈ Convs(R≥0) is non-decreasing and tr h(x) = tr h(y), then there exists a
permutation σ of Id such that yi = xσ(i) for i ∈ Id .

The following result is a multiplicative Lidskii’s inequality for matrices, that also contains a
detailed description of the case of equality. In what follows, given x = (xi)i∈Id , y = (yi)i∈Id ∈
Rd then x ◦ y = (xi yi)i∈Id ∈ Rd denotes the entry-wise product of the vectors. Also, given
a selfadjoint matrix A ∈ Md(C) then λ(A) ∈ Rd denotes the eigenvalues of A, counting
multiplicities and arranged in non-increasing order.

Theorem 2.4 ([26]). Let S ∈ Gl (d)+ and let λ ∈ (Rd
>0)

↓. Then, for every V ∈ Md(C) such
that λ(V ∗V ) = λ we have that

λ(S) ◦ λ↑ ≺log λ(V SV ∗) ≺log λ(S) ◦ λ ∈ (Rd
>0)

↓ . (7)

Moreover, if λ(V SV ∗) = (λ(S) ◦λ↑)↓ (resp. λ(V SV ∗) = λ(S) ◦λ) then there exists an o.n.b.
{vi}i∈Id of Cd such that

S =
∑

i∈Id

λi(S) vi ⊗ vi and |V | =
∑

i∈Id

λ
1/2
d+1−i vi ⊗ vi (8)

(
resp. S =

∑
i∈Id λi(S) vi ⊗ vi and |V | =

∑
i∈Id λ

1/2
i vi ⊗ vi

)
.

3 Spectral structure and optimal oblique duals

In this section we obtain a simple and explicit description of the eigenvalues of the frame
operators of oblique duals of a fixed frame. We then apply this result to study the existence
and structure of oblique duals that are optimal among oblique duals with some restrictions.

3.1 Spectral structure of oblique duals

Let V and W be closed subspaces of the Hilbert space H such that W⊥ ⊕ V = H. Let
F = {fi}i∈I be a sequence in W that is a frame for W. There are several known charac-
terizations of the elements in DV(F) (see for example [9]). In what follows we describe a
simple parametrization of DV(F) in terms of DW(F) i.e. the classical dual frames for F in
W, which is implicit in [9].
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Proposition 3.1. Let V and W be closed subspaces of H such that W⊥ ⊕ V = H. Let
F = {fi}i∈I be a frame for W. Then the map

D(F) ∋ {gi}i∈I 7→ {PV//W⊥ gi}i∈I ∈ DV(F)

is a (linear) bijection between D(F) and DV(F) that sends F# to F#
V .

Proof. Let G = {gi}i∈I ∈ D(F) and set G ′ = {PV//W⊥ gi}i∈I . Then TG′ = PV//W⊥ TG and
hence

TG′ T ∗
F = PV//W⊥ TG T

∗
F = PV//W⊥ PW = PV//W⊥ .

Therefore G ′ ∈ DV(F) and the map is well defined. To check that the map is injective, let
G = {gi}i∈I and K = {ki}i∈I ∈ D(F) be such that PV//W⊥gi = PV//W⊥ki for i ∈ I. Then,

PV//W⊥TG = PV//W⊥TK =⇒ PV//W⊥(TG − TK) = 0 =⇒ R(TG − TK) ⊆ W⊥ .

But also R(TG − TK) ⊆ W, so R(TG − TK) = {0} and TG = TK .

Finally we check that the map is surjective. Recall that, since W⊥ ⊕ V = H, then the map
PV//W⊥|W : W → V is a linear bounded isomorphism. Thus, given K = {ki}i∈I ∈ DV(F)
there exists a unique Bessel sequence G = {gi}i∈I in W such that PV//W⊥gi = ki for i ∈ I.
Then, PV//W⊥TG = TK and therefore

PV//W⊥ = TK T ∗
F = PV//W⊥TG T

∗
F =⇒ PV//W⊥(TG T

∗
F − PW) = 0 .

Since R(TG T
∗
F − PW) ⊆ W then previous equation implies that TG T

∗
F − PW = 0 and hence

G ∈ D(F) is such that {PV//W⊥ gi}i∈I = K.

The previous result allows to obtain several other representations of the V-duals of F from
the classical theory of dual frames for F in W. The following result is an example of this
phenomenon

Corollary 3.2. Let V and W be closed subspaces of H such that W⊥ ⊕ V = H. Let F =
{fi}i∈I be a frame for W with canonical V-dual frame F#

V = {f#
V , i}i∈I defined in Eq. (5).

Given any G ∈ V I , then G ∈ DV(F) ⇐⇒ there exists a Bessel sequence Z = {zi}i∈I ∈ V I

such that

TZ T ∗
F f =

∑

i∈I
〈f , fi〉 zi = 0 for every f ∈ H and G = {f#

V , i + zi}i∈I .

Proof. Let K = {ki}i∈I ∈ D(F) be such that G = {PV//W⊥ ki}i∈I as in Proposition 3.1. Since
K ∈ D(F), it is well known that there exists a Bessel sequence X = {xi}i∈I in W such that
K = {f#

i +xi}i∈I and such that TX T ∗
F = 0, where TX denotes the synthesis operator of X (see

for example [7]). Hence, G = {PV//W⊥(f#
i +xi)}i∈I which shows that TG = TF#

V

+PV//W⊥TX
with (PV//W⊥TX )T

∗
F = 0 and the result holds for Z = {PV//W⊥xi}i∈I ∈ V. The converse is

straightforward.

From now on, we shall restrict our attention to finite sequences of vectors in H; accordingly,
we shall consider decompositions W⊥ ⊕ V = H, where V and W are finite dimensional
subspaces of the Hilbert space H.

In what follows, we shall be concerned with the spectral properties of frame operators of
V-duals of F . Thus, we introduce some convenient notations.
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Definition 3.3. Let V and W be finite dimensional subspaces of the Hilbert space H such
that W⊥ ⊕ V = H. Let F = {fi}i∈In be a frame for W. We consider

SDV(F)
def
= {SG = TG T

∗
G : G ∈ DV(F)} ⊂ B(H)+ .

the set of frame operators of V-dual frames of F . △

Proposition 3.4. Let V and W be finite dimensional subspaces of the Hilbert space H such
that W⊥ ⊕ V = H and let dimV = dimW = d. Let F = {fi}i∈In be a frame for W. Then,

SDV(F) =
{
SF#

V

+B : B ∈ B(H)+ , R(B) ⊆ V and rkB ≤ n− d
}
.

Proof. Given G ∈ DV(F), Corollary 3.2 shows that there exists a Bessel sequence Z =
{zi}i∈In in V such that TG = TF#

V

+ TZ and TZ T ∗
F = 0. Notice that TF#

V

= PV//W⊥ TF# =

PV//W⊥ S†
F TF which implies that TZ T ∗

F#
V

= 0. Hence,

SG = TG T
∗
G = (TF#

V

+ TZ)(TF#
V

+ TZ)
∗ = SF#

V

+ SZ ,

where SZ ∈ B(H)+ is the frame operator of Z, which is a finite rank operator. Since
TZT

∗
F = 0 then dim ker TZ ≥ d. Therefore, R(SZ) = R(TZ) so that R(SZ) ⊂ V and

rkSZ = rkTZ ≤ n− d.

Conversely, let B ∈ B(H)+ be such that R(B) ⊆ V and rk(B) ≤ n − d. Then, there exists
Z ∈ B(Cn , V), such that Z T ∗

F = 0 and B = ZZ∗: indeed, since dim(R(T ∗
F)

⊥) = n− d there
exists a partial isometry W ∈ B(Cn , V) with initial space kerW⊥ ⊂ R(T ∗

F)
⊥ and final space

R(B) = R(B1/2) so that Z = B1/2W has the desired properties. If we let {ei}i∈In denote the
canonical basis of Cn and G = {(TF#

V

+ Z)ei}i∈In then G is a finite sequence in V such that

TG = TF#
V

+ Z so that

TG T
∗
F = TF#

V

T ∗
F = PV//W⊥ .

Hence G ∈ DV(F) and SG = SF#
V

+ ZZ∗ = SF#
V

+B, since ZT ∗
F#

V

= 0.

Remark 3.5. Let A0 ∈ Md(C)
+ and consider an integer m < d. Define

U(A0 , m)
def
= {A0 + C : C ∈ Md(C)

+ , rkC ≤ d−m } . (9)

We point out that the spectral structure of the set U(A0 , m) is described in [25]. Indeed,
given µ ∈ (Rd)↓ then there exists A = A0 + C ∈ U(A0 , m) such that λ(A) = µ (i.e. the
eigenvalues of A, counting multiplicities and arranged in non-increasing order, coincide with
the entries of µ) if and only if

1. µi ≥ λi(A0) for i ∈ Id , in case m ≤ 0;

2. µi ≥ λi(A0) for i ∈ Id and µd−m+i ≤ λi(A0) for i ∈ Im , in case m ≥ 1. △

Recall from Eq. (2) thatM ⊆ N stands forM = Ip orM = N in such a way that dimH = |M|.
Henceforth, ℓ1+(M)↓ denotes the space of sequences λ = (λi)i∈M with λi ≥ λj ≥ 0 for i, j ∈ M

such that i ≤ j and tr(λ)
def
=
∑

i∈M λi < ∞.

Let F = {fi}i∈In ∈ Hn be a finite sequence with frame operator SF ∈ B(H)+. Hence, SF
is a positive semidefinite finite rank operator, with range W = Span{fi : i ∈ In} ⊂ H. Let

9



d = dimW, and let (SF)W ∈ B(W)+ be the compression of SF to W (see Remark 2.3);
Then, we define

λ(SF) = ((λi((SF )W))i∈Id, 0|M|−d) ∈ ℓ1+(M)↓ ,

where (λi((SF)W))i∈Id ∈ R
d
>0 denotes the vector of eigenvalues of the compression (SF)W ∈

B(W)+, counting multiplicities and arranged in non-increasing order. It is straightforward
to check that λ(SF) ∈ ℓ1+(M)↓ coincides with the vector of singular values (or s-numbers) of
the compact operator SF ∈ B(H)+ (see [28]).

Theorem 3.6 (Spectral structure of V-duals). Let V and W be finite dimensional subspaces
of the Hilbert space H such that W⊥ ⊕ V = H and let dimV = dimW = d. Let F =
{fi}i∈In be a frame for W and denote λ(SF#

V

) = λ#
V = (λ#

V , j)j∈M and m = 2d − n. Given

µ = (µi)i∈M ∈ ℓ1+(M)↓, the following conditions are equivalent:

1. There exists G ∈ DV(F) such that λ(SG) = µ;

2. µi = 0 for i ≥ d+ 1 and:

(a) µi >λ#
V , i for i ∈ Id , in case m ≤ 0;

(b) µi >λ#
V , i for i ∈ Id and µd−m+i ≤ λ#

V , i for i ∈ Im, in case m ≥ 1.

Proof. Fix an ONB {vi}i∈Id of V. Let A0 ∈ Md(C)
+ be given by A0 = (〈SF#

V

vj , vi〉)i, j∈Id
and let m = 2d − n (so that d −m = n − d). Then λ(SF#

V

) = (λ(A0) , 0|M|−d) ∈ (ℓ1+(M))↓.

Using Proposition 3.4, to each SG = SF#
V

+ B ∈ SDV(F) we can associate the element

A0 + C ∈ U(A0 , m) where C = ( 〈Bvj , vi〉 )i, j∈Id ∈ Md(C)
+ in such a way that

λ(SG) = (λ(A0 + C) , 0|M|−d) ∈ ℓ1+(M)↓ .

Conversely, if A0 + C ∈ U(A0 , m) then there exists G ∈ DV(F) such that the matrix
corresponding to SG as above is A0 + C. Thus, the previous remarks show that

{λ(SG) : G ∈ DV(F)} = {(λ(A) , 0|M|−d) : A ∈ U(A0 , m)} . (10)

The proof now follows from Eq. (10) above and Remark 3.5.

Remark 3.7. Using Theorem 3.6, in case V = W (i.e. classical duality) we recover the
structure of classical duals of a frame F for the Hilbert space W as described in [25]. △

Corollary 3.8. There exists G ∈ DV(F) which is Parseval in V if and only if:

(a) 1 ≥ λ#
V , i for i ∈ Id , in case m = 2d− n ≤ 0;

(b) 1 ≥ λ#
V , i for i ∈ Id and 1 = λ#

V , i for i ∈ Im, in case d− 1 ≥ m = 2d− n ≥ 1.

Proof. Let G be a frame for V. Notice that G is a Parseval in V, i.e. SG = PV , if and only if
λi(SG) = 1 for every i ∈ Id . Thus, the result now follows from Theorem 3.6.

Remark 3.9. With the notations and terminology from Theorem 3.6, notice that Corollary
3.8 can be written as follows: there exists G ∈ DV(F) which is Parseval in V if and only if

SF#
V

≤ PV and dimR(PV − SF#
V

) ≤ d−m = n− d = dimker TF .

This last formulation of the existence of Parseval V-duals formally resembles the characteri-
zation in [18, Proposition 2.4] in case of classical duality. △

10



3.2 Optimal oblique duals with norm restrictions

In applied situations, it is desired to characterize the existence (and find explicit methods of
construction) of frames with some prescribed parameters. This kind of problems are referred
to as frame design problems, and they are at the core of finite frame theory (see for example
[4, 5, 16, 23, 25, 26, 27] and the recent book [6]).

Let W, V ⊂ H be two finite dimensional subspaces such that W⊕V⊥ = H, and let dimW =
dimV = d. Given a fixed frame F = {fi}i∈In ∈ Wn for W we can ask whether there exists
G ∈ DV(F) with some prescribed parameters; and in case such a dual exists we would like to
obtain a procedure to construct it. For example, given µ ∈ (Rd

≥0)
↓ we can ask whether there

exists G ∈ DV(F) with λ(SG) = µ. Notice that Theorem 3.6 above completely solves this
problem; moreover, the proof of Proposition 3.4 contains a procedure to effectively construct
such a dual.

As a consequence of the description of the spectra of elements in S(DV(F)), we see that if
G ∈ DV(F) then SG ≥ SF#

V

. This last fact implies that the canonical V-dual is optimal with

respect to several criteria (including convex potentials). Yet, from a numerical point of view
the oblique canonical V-dual might not be the best choice of a V-dual for F . For example,
the condition number of the frame operator SF#

V

may not be minimal in DV(F); indeed,

Corollary 3.8 shows that under certain assumptions we can consider a Parseval V-dual of F
(with minimal condition number).

In order to search for alternate V-duals that are numerically robust, we proceed as follows:
for t ≥ tr(SF#

V

) we consider

DV , t(F)
def
=
{
G = {gi}i∈In ∈ DV(F) :

∑

i∈In

‖gi‖
2 ≥ t

}
.

Notice that if t > tr(SF#
V

) then the canonical V-dual is not in DV , t(F) and therefore, it is

natural to ask whether there is an optimal dual in DV , t(F). Using the well known identity

∑

i∈In

‖gi‖
2 = tr(SG) =

∑

i∈Id

µi , (11)

where λ(SG) = µ, we see that Theorem 3.6 gives a complete solution to a frame design
problem in the sense that it allows to get a complete description of the eigenvalue lists of
the frame operators of elements in DV , t(F).

Remark 3.10. Let A0 ∈ Md(C)
+, t ≥ tr(A0) ≥ 0 and consider an integer m < d. Define

Ut(A0 , m)
def
= {A0 + C : C ∈ Md(C)

+ , rk(C) ≤ d−m, tr(A0 + C) ≥ t} .

The spectral and geometrical structure of the set Ut(A0 , m) is described in [25]; in particular,
there it is shown that there exist ≺w-minimizers within this set. Indeed, using the previous
notations, if λ(A0) = λ = (λi)i∈Id ∈ (Rd

≥0)
↓, we consider hm : [λd , ∞) → R≥0 given by

hm(t) =
d∑

i=max{m , 0}+1

(t− λi)
+ ,

where x+ stands for the positive part of x. Notice that hm is strictly increasing; hence there
exists a unique cλ,m(t) = c ≥ λd such that hm(c) = t− trλ. Then, set

11



1. νλ ,m(t)
def
=
(
(c− λ1)

+ + λ1 , . . . , (c− λd)
+ + λd

)
∈ (Rd

≥0)
↓, if m ≤ 0;

2. νλ ,m(t)
def
= (λ1 , . . . , λm , (c−λm+1)

++λm+1 , . . . , (c−λd)
++λd) ∈ Rd

≥0 , if m ∈ Id−1 .

Notice that if t > tr(A0) then νλ ,m(t) ∈ Rd
>0 . Then, it turns out that (see [25])

1. There exists Aop ∈ Ut(A0 , m) such that λ(Aop) = νλ ,m(t)
↓;

2. For every A ∈ Ut(A0 , m) then νλ ,m(t) ≺w λ(A);

3. If A = A0+B ∈ Ut(A0 , m) then λ(A) = νλ ,m(t) if and only if νλ ,m(t) = λ(A0)+λ↑(B)
and there exists an ONB {zi}i∈Id of Cd such that

A0 =
∑

i∈Id

λi zi ⊗ zi and B =
∑

i∈Id

λd−i+1(B) zi ⊗ zi . △

The following result shows that there are structural minimizers of arbitrary (strictly) convex
potentials in DV , t(F), i.e. duals G ∈ DV , t(F) that simultaneously minimize every convex
potential. This is interesting from an applied point of view, since evaluations of convex
potentials (e.g. the frame potential as described in Eq. (6)) are typically easier to compute
than structural parameters (i.e. computing eigenvalue lists or eigenvectors)

Theorem 3.11 (Optimal duals in DV , t(F)). Let V and W be finite dimensional subspaces
of the Hilbert space H such that W⊥ ⊕V = H and let d = dimV = dimW. Let F = {fi}i∈In
be a frame for W and set λ#

V
def

= λ(SF#
V

). For every t ≥ trλ#
V there exists ν ∈ ℓ1+(M)↓ with

the following minimality properties:

1. There exist Gop ∈ DV , t(F) such that λ(SGop) = ν;

2. For every non-decreasing function h ∈ Conv(R≥0) then

Ph(Gop) ≤ Ph(G) , G = {gi}i∈In ∈ DV , t(F) . (12)

Moreover, if we assume further that h ∈ Convs(R≥0) and G = {gi}i∈In ∈ DV , t(F) attains
equality in (12), then λ(SG) = ν and there exists an ONB {xi}i∈Id for V such that

SF#
V

=
∑

i∈Id

λ#
V , i xi ⊗ xi and B = SG − SF#

V

=
∑

i∈Id

λd−i+1(B) xi ⊗ xi .

Proof. Fix {vi}i∈Id an ONB of V and let A0 ∈ Md(C)
+ be given by A0 =

(
〈SF#

V

vj , vi〉
)
i, j∈Id

.

Arguing as in the proof of Theorem 3.6, and taking into account the identity in Eq. (11) we
see that

{λ(SG) : G ∈ DV , t(F)} = {(λ(A) , 0|M|−d) : A ∈ Ut(A0 , m)} . (13)

Set λ = λ(A0) = (λ#
V , i)i∈Id ∈ Rd

>0, and notice that t ≥ trλ; set m = 2d − n and consider

νλ,m(t) ∈ Rd
>0 defined as in Remark 3.10. Finally, define

ν = (νλ,m(t), 0|M|−d) ∈ ℓ1+(M) .

If h ∈ Conv(R≥0) is a non-decreasing function then, by Definition 2.2, we get that

Ph(G) =
∑

i∈Id

h(λi(SG)) = tr((SG)V) for G ∈ DV(F) . (14)

Hence, the proof now follows from Eqs. (13) and (14) above, Remark 3.10 and the relation
between submajorization and non-decreasing convex functions described in Section 2.2.
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4 Optimal (V ,W)-oblique dual pairs with prescribed

parameters

It has long been recognized that for a fixed frame F for W, oblique V-duality offers a much
more flexible theory than classical duality, which comes from the fact that we can choose V
from a large class of subspaces (see [9] for example). Moreover, it has also been noticed that
the relative position of the subspaces V and W for which W⊕V⊥ = H plays a key role when
comparing oblique duality to classical duality. This phenomenon has been studied mainly
though the angle between the subspaces V and W (see [8, 9, 14] and the definitions below).
Yet, the angle between the subspaces V and W only provides qualitative measure of the role
of the relative geometry of V and W in the context of V-duality. In what follows, we give
a detailed description of the role of the relative position of V and W in the V-duality of F
in case the subspaces are finite dimensional. Our analysis relies on a multiplicative Lidskii’s
inequality and it is based on the complete list of the so-called principal angles between V
and W. Our results provide sharp quantitative measures of these relations.

4.1 Relative geometry between finite dimensional subspaces

We begin by describing the principal angles and vectors between finite dimensional subspaces.
Let V, W ⊆ H be finite dimensional subspaces with dimV = dimW = d. Let PV and PW
denote the orthogonal projections onto V and W respectively. The principal angles

0 ≤ θ1 ≤ . . . ≤ θd ≤
π

2

are defined (see [17, 22]) in such a way that the positive finite rank operator |PW PV | ∈ B(H)
satisfies that

λ(|PW PV |) = (cos(θ1) , . . . , cos(θd) , 0|M|−d) ∈ ℓ1+(M)↓ .

We say that w1 , . . . , wd ∈ W (respectively v1 , . . . , vd ∈ V) are principal vectors (or princi-
pal directions) between V and W if they are an o.n. basis of W (respectively if they are an
o.n. basis of V) such that

|PV PW |wi = cos(θi)wi ( respectively|PW PV | vi = cos(θi) vi ) for every i ∈ Id . (15)

An alternative characterization of principal angles and vectors is as follows: given k ∈ Id ,
then define inductively

〈vk , wk〉 = cos(θk) = max
v∈V

max
w∈W

〈v , w〉

subject to the restrictions

‖v‖ = ‖w‖ = 1 , 〈v, vi〉 = 0 and 〈w , wi〉 = 0 for 0 ≤ i ≤ k − 1 ,

where we set v0 = w0 = 0. Notice that the principal angles between V andW are a qualitative
measure of the relative position between these subspaces.

Assume further that W⊥ ⊕ V = H. Consider the oblique projection PV//W⊥ . In this case,
there exists a connection between the principal angles and vectors between V and W and
the geometrical and spectral structure of PV//W⊥ . Indeed, it is known (see [11] and the
references therein) that the Moore-Penrose pseudo-inverse of PV//W⊥ is given by

(PV//W⊥)† = PW PV =⇒ |PV//W⊥|† = |PV PW | and |(PW//V⊥)∗|† = |PW PV | . (16)
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In this case, since PV//W⊥ has rank d, then |PV PW | also has rank d and therefore θd < π/2.
Moreover, by Eq. (15), the principal vectors between V and W satisfy that

|PV//W⊥|wi =
1

cos(θi)
wi and |PW//V⊥| vi =

1

cos(θi)
vi for every i ∈ Id . (17)

Take the polar decomposition PV PW = U |PV PW | with the unique partial isometry U ∈
B(H) with initial space W and final space V. Hence we have that |PW PV | = U |PV PW |U∗.
Therefore, given principal vectors {wi}i∈Id ∈ Wd between V and W, in what follows we shall
assume that the corresponding principal vectors {vi}i∈Id ∈ Vd between V and W are given
by vi = U wi for every i ∈ Id . In particular, it holds that

PW vi = cos(θi)wi and PV wi = cos(θi) vi for every i ∈ Id , (18)

because, for example, PV wi = PV PW wi = U |PV PW |wi = cos(θi) U wi = cos(θi) vi .

Remark 4.1 (On two notions of angle between subspaces). There are two different notions
of angle between subspaces in the literature. Next we include their definitions, we compare
them and we also relate them to the principal angles defined above. Hence, consider two
finite dimensional subspaces V, W ⊆ H with dimV = dimW = d. Let (θj)j∈Id denote the
principal angles between V and W.

1. In [29] the authors introduce the angle θV ,W ∈ [0, π/2] between V and W defined by

cos(θV ,W) = inf
f∈W , ‖f‖=1

‖PVf‖ .

Therefore,
cos(θV ,W)2 = inf

f∈W , ‖f‖=1
〈|PV PW |2f , f〉 = cos(θd)

2 . (19)

That is, we have the identity θV ,W = θd . If we assume further that W⊥ ⊕V = H then
Eqs. (17) and (19) provide a simple proof of the identity ‖PV//W⊥‖ = cos(θV ,W)−1.

2. There is yet another notion of angle between subspaces, the so-called Dixmier angle,
denoted by θV ,W ∈ [0, π/2] and given by

cos(θV ,W) = sup
v∈V , w∈W , ‖v‖=‖w‖=1

|〈v, w〉| = ‖PV PW‖ = cos(θ1) .

That is, we have the identity θV ,W = θ1 . If we assume further that W⊥ ⊕ V = H
then it is well known (see [12]) that ‖PV//W⊥‖ = sin(θV ,W⊥

)−1 which implies that

sin(θV ,W⊥

) = cos(θV ,W) and hence we get that

θV ,W = π/2− θV ,W⊥

. △

4.2 Optimal dual pairs by rigid rotations

We begin by fixing the following notations:

Notations 4.2. Throughout the rest of the paper we shall consider

1. V, W ⊂ H two finite dimensional subspaces such that V ⊕W⊥ = H;
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2. ∠(V;W) = (θj)j∈Id ∈ ([0, π/2)d)↑ principal angles (dimV = dimW = d);

3. {vj}j∈Id ∈ Vd , {wj}j∈Id ∈ Wd principal vectors in V and W obeying Eq. (18);

4. F = {fi}i∈In ∈ Wn a frame for W with

λ(SF) = λ = (λi)i∈M and λ(SF#
V

) = λ#
V = (λ#

V , i)i∈M . △

Consider the Notations 4.2. In order to have an estimate of λ#
V notice that

F#
V = PV//W⊥ · F# =⇒ TF#

V

= PV//W⊥ S†
F TF

and hence
SF#

V

= PV//W⊥ S†
F (PV//W⊥)∗ = PV//W⊥ S†

F PW//V⊥ . (20)

The previous remarks, together with Lidskii’s multiplicative inequalities in Theorem 2.4,
allow us to obtain the following bounds in terms of the spectral structure of SF and the
principal angles (i.e. the relative geometry) between V and W. We point out that the
bounds given in next result are a quantitative measure of how the relative geometry of the
subspaces V and W impact in oblique duality.

Theorem 4.3. Consider the Notations 4.2. If we let µ =
(
λ−1
d−j+1 cos−2(θj)

)↓
j∈Id

then

∏

j∈Ik

µj ≤
∏

j∈Ik

λ#
V , j ≤

(
d∏

j=d−k+1

λj cos
2(θj)

)−1

, k ∈ Id . (21)

Moreover, λ#
V = µ (resp. λ#

V =
(
λ−1
d−j+1 cos

−2(θd−j+1)
)
j∈Id

) ⇐⇒ there exist an o.n.b. in

W of principal vectors {wi}i∈Id between V and W such that

SF =
∑

j∈Id

λd−j+1(SF) wi ⊗ wi

(resp. SF =
∑

j∈Id λj(SF) wi ⊗ wi).

Proof. Consider the representation of SF#
V

given in Eq. (20). Denote by M = |PV//W⊥| and

let PV//W⊥ = V M be the polar decomposition. Notice that R(M) = W; hence, M restricted
to (the reducing subspace) W is invertible. On the other hand, since R(SF#) = W then the
restriction of SF# = S†

F to (the reducing subspace) W is also invertible. Hence, Eq. (20)
implies that

SF#
V

= V (M S†
F M ) V ∗. (22)

Since V is a partial isometry with initial space W and final space V then, Eq. (22) implies
that

λ(SF#
V

) =
(
λ
(
MW (S†

F )W MW

)
, 0|M|−d

)
, (23)

where in general SW ∈ B(W) denotes the restriction of S to its reducing subspace W. Since

λ
(
(S†

F)W
)
= (λ−1

d , . . . , λ−1
1 ) and λ(MW)

(17)
= (cos(θd)

−1, . . . , cos(θ1)
−1), we see that the result

is now a consequence of Theorem 2.4 (Lidskii’s multiplicative inequalities) and the definition
of log-majorization.
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Consider the Notations 4.2. The previous result suggests that we could take advantage of the
relative geometry between the subspaces V and W to construct optimal oblique encoding-
decoding schemes with prescribed properties. Indeed, let U ∈ B(H) be a unitary operator
such that U(W) ⊂ W i.e. W is U -invariant. Hence, we could consider the frame U · F =
{U fj}j∈In for W. Notice that U · F preserves essentially every property of F (e.g., linear
relations, eigenvalues list of its frame operator, norms of the elements of the frame, etc). In
particular, (U · F)# = U · F# since SU ·F = UTF T ∗

FU
∗ = USFU

∗; that is, the (classical)
canonical dual frame of U · F in W is the rotation by U of the canonical frame for F in W.
In particular, we get that S†

U ·F = US†
FU

∗. Nevertheless, F and U ·F can have quite different
properties with respect to V-duality as shown in the following

Example 4.4. Let H = C
3 and let {e1, e2, e3} denote the canonical basis of H. Set V =

{e2,
e1+e3√

2
} and W = {e1, e2}. Notice that in this case we have that C3 = V ⊕W⊥. Set

F1 = {e1; (cos(π/3), sin(π/3), 0)} ⊆ W ,

F2 = {e2; (cos(π/2 + π/3), sin(π/2 + π/3), 0)} ⊆ W .

Notice that F2 = U · F1 where U is the rotation by (the angle) π/2 in the plane W and
such that Ue3 = e3. Straightforward computations show that λ(S(F1)

#
V

) = (8/3; 1; 0) and

λ(S(F2)
#
V

) = (3.59; 0.74; 0). This last fact shows that there is no unitary operator U ′ such

that U ′(V) = V and such that (F2)
#
V = U ′(F1)

#
V . △

The previous example shows that the spectral properties of the V-canonical dual of a frame
U · F indeed depend on U and motivates the construction of unitary operators U ∈ B(H)
with U(W) = W, such that the dual pair (U · F , (U · F)#V ) induces an optimal encoding-
decoding scheme. As a measure of optimality we could consider the minimization of the
joint convex potential of the pair among all such pairs; but, since the spectral properties of
U · F are independent of U we are left to compute those unitary operators U0 ∈ B(H), with
U0(W) = W, that minimize - for a non-decreasing function h ∈ Conv(R≥0) - the convex
potential Ph[(U · F)#V ] among all unitary operators U ∈ B(H) such that U(W) = W. As we
shall see, there exist structural solutions to this problem.

Theorem 4.5. Consider the Notations 4.2. Let {xi}i∈Id ∈ Wd be an ONB of W such that
SF xj = λj xj for every j ∈ Id .

1. Let U0 ∈ B(H) be a unitary operator such that U0 xj = wd−j+1 for every j ∈ Id . Then

λ(S(U0·F)#
V

) =
(
(cos−2(θj) λ

−1
d−j+1)

↓
j∈Id , 0|M|−d

)
. (24)

2. If h ∈ Conv(R≥0) is non-decreasing then

Ph((U0 · F)#V ) = min{Ph((U · F)#V ) : U ∈ B(H) is unitary and , U(W) = W} . (25)

Moreover, if we assume further that h ∈ Convs(R≥0) and U · F attains the minimum of
Eq. (25) then there exist principal vectors {w′

j}j∈Id and a ONB {x′
i}i∈Id for W such that

SF x′
j = λj x

′
j and Ux′

j = w′
d−j+1 , for j ∈ Id .
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Proof. Let U ∈ B(H) be any unitary operator such that U(W) = W and let U · F =
{Ufi}i∈In. Then, notice that

(U · F)#V = PV//W⊥ (U · F)# = PV//W⊥ U · F#

and hence, in general we get that

S(U ·F)#
V

= PV//W⊥ U SF# U∗ P ∗
V//W⊥ . (26)

We can now argue as in the proof of Theorem 4.3 considering M = |PV//W⊥| (and the polar
decomposition PV//W⊥ = V M) and conclude that

λ(S(U ·F)#
V

) =
(
λ
(
MW (U S†

F U∗)W MW

)
, 0|M|−d

)
, (27)

where in general SW ∈ B(W) denotes the restriction of S to its reducing subspace W. Using
Eq. (17), if U0 is as in item 1 then

MW (U0 S
†
F U∗

0 )W MW wj = cos−2(θj) λ
−1
d−j+1 wj for j ∈ Id .

Thus, the previous facts together with Eq. (27) show item 1.

In case U ∈ B(H) is a unitary operator such that U(W) = W then Theorem 4.3 implies that

∏

j∈Ik

λj(S(U0 F)#
V

) ≤
∏

j∈Ik

λj(S(U F)#
V

) , k ∈ Id . (28)

As explained in Section 2.2, Eq. (28) implies that

∑

j∈Ik

λj(S(U0 F)#
V

) ≤
∑

j∈Ik

λj(S(U F)#
V

) , k ∈ Id . (29)

If h ∈ Conv(R≥0) is non-decreasing then, by the submajorization relation in Eq. (29), we
conclude that

Ph((U0 · F)#V ) =
∑

j∈Id

h(λj(S(U0 F)#
V

)) ≤
∑

j∈Id

h(λj(S(U F)#
V

)) = Ph((U · F)#V ) ,

which proves Eq. (25). Similarly, the final claim follows from Eq. (27) and Lidskii’s multi-
plicative inequality, as stated in Theorem 2.4 and the properties of log-majorization described
in Section 2.2.

Consider the Notations 4.2. Then, the previous theorem describes the rigid rotations U0

that leave invariant W and such that spectral structure λ((U0 ·F)#V ) of the oblique canonical
V-dual of U0 · F is optimal with respect to log-majorization.

On the other hand, for a fixed rigid rotation U that leaves invariant W and for a fixed
t ≥ tr(S(U ·F)#

V

) Theorem 3.11 describes the spectral structure λ#
V , t(U · F) of those oblique

V-duals Gop
t (U) ∈ Dt(U · F) that simultaneously minimize every convex potential within the

set Dt(U · F). It is then natural to wonder whether the spectral structure λ#
V , t(U0 · F) of

Gop
t (U0) (optimal dual with trace restriction based on an optimal rigid rotation of F) has

some optimality property. In order to tackle this problem we consider the following result.
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Lemma 4.6. Let λ = (λi)i∈Id , µ = (µi)i∈Id ∈ Rd
≥0 , let m ≤ 0 be an integer and assume that

λ ≺w µ. If we let νλ ,m(t) and νµ ,m(t) be as in Remark 3.10 (based on λ and µ respectively)
for some t ≥ trµ (≥ trλ) then we have that νλ ,m(t) ≺ νµ ,m(t).

Proof. Recall that by construction tr(νλ ,m(t)) = tr(νµ ,m(t)) = t. Hence, in case νλ ,m(t) =
t
d
· 1 the result follows from the well known relation t

d
· 1 ≺ ρ for every ρ ∈ Rd such that

tr ρ = t. Otherwise (see Remark 3.10), there exists 1 ≤ r ≤ d− 1 such that

νλ ,m(t) = (λ1 , . . . , λr , c · 1d−r) with c ≤ λr .

On the other hand we can write νµ ,m(t) = (α , β) ∈ (Rd
≥0)

↓ where

α = (µi + (c ′ − µi)
+)ri=1 ∈ (Rr

≥0)
↓ and β = (µi + (c ′ − µi)

+)di=r+1 ∈ (Rd−r
≥0 )↓ .

Therefore, for every k ∈ Ir we have that

∑

i∈Ik

λi ≤
∑

i∈Ik

µi ≤
∑

i∈Ik

(µi + (c ′ − µi)
+) =⇒ (λi)i∈Ir ≺w α ,

where we have used that λ ≺w µ in the first inequality above. By [24, Lemma 5.6] we
conclude that νλ ,m(t) ≺w νµ ,m(t). The result now follows from the equality tr(νλ ,m(t)) =
tr(νµ ,m(t)).

Theorem 4.7. Consider the Notations 4.2 and assume that n ≥ 2d (i.e. 2d − n ≤ 0). Let
{xi}i∈Id ∈ Wd be an ONB of eigenvectors for SF on W i.e., such that SF xj = λj xj for every
j ∈ Id . Let U0 ∈ B(H) be a unitary operator such that U0 xj = wd−j+1 for every j ∈ Id .
Then,

1. If U ∈ B(H) is a unitary operator such that U(W) = W then tr(S(U0·F)#
V

) ≤ tr(S(U ·F)#
V

).

2. If t ≥ tr(S(U ·F)#
V

) and we let Gop
t (U) ∈ DV , t(U · F) (resp. Gop

t (U0) ∈ DV , t(U0 · F)) be

the optimal dual as in Theorem 3.11 then for every h ∈ Conv(R≥0)

Ph(G
op
t (U0)) ≤ Ph(G

op
t (U)) . (30)

Proof. As explained in the proof of Theorem 4.5 if U and U0 are as above then Eq. (29)
holds. In this case

tr(S(U0·F)#
V

) =
∑

j∈Id

λj(S(U0 F)#
V

) ≤
∑

j∈Id

λj(S(U F)#
V

) = tr(S(U ·F)#
V

) ,

which shows item 1. On the other hand, if t ≥ tr(S(U ·F)#
V

) ≥ tr(S(U0·F)#
V

) then Eq. (29)

together with Lemma 4.6 and Theorem 3.11 (notice that in this case m = 2d−n ≤ 0) imply
that ∑

j∈Ik

λj(SGop
t (U0)) ≤

∑

j∈Ik

λj(SGop
t (U)) , k ∈ Id .

Hence, Eq. (30) follow from the properties of majorization described in Section 2.2 and
Definition 2.2.

We conjecture that Theorem 4.7 is also true in case 2d − n ∈ Id−1 . We shall consider this
problem elsewhere.
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5 Aliasing in oblique duality

Let W, V ⊂ H be closed subspaces such that V ⊕W⊥ = H (or equivalently W ⊕ V⊥ = H).
Recall that in this context the aliasing norm associated to the consistent sampling

f 7→ f̃ = PW//V⊥f , f ∈ H (31)

(see [14, 21]) is given by

A(W,V) = sup
e∈W⊥\{0}

‖PW//V⊥ e‖

‖e‖
= ‖PW//V⊥ PW⊥‖ . (32)

Notice that the aliasing norm measures the incidence of the orthogonal complement of W in
the overall (oblique) encoding-decoding scheme in Eq. (31) based on these two subspaces. We
can interpret A(W,V) as a measure of the amount of noise that we would get in the oblique
encoding-decoding scheme when sampling a perturbed signal f + e that has a component
e ∈ W⊥. This phenomenon is of interest only when V 6= W (as A(W,W) = 0).

Lemma 5.1. Consider the Notations 4.2. Then

1. |PW⊥PV | vi = sin(θi) vi for every i ∈ Id .

2. |PW⊥PV//W⊥|2wi = tan2(θi)wi for every i ∈ Id .

Proof. Recall that with the Notations 4.2, {vi}i∈Id is an ONB of V such that |PW PV | vi =
cos(θi) vi , for i ∈ Id . In this case,

|PW⊥PV |
2 = PV − |PW PV |

2 =⇒ |PW⊥PV | vi = sin(θi) vi for every i ∈ Id . (33)

To prove item 2, let us fix i ∈ Id . By Eq. (18) we know that PWPV vi = PW vi = cos(θi)wi .
On the other hand, recall from Eq. (16) that

(PV//W⊥)† = PW PV =⇒ PV//W⊥ wi = cos(θi)
−1 vi , (34)

since vi ∈ V = (ker PW PV)
⊥ and wi ∈ W = R(PW PV). Similarly, we get that

PW//V⊥ vi
(34)
= P ∗

V//W⊥(cos(θi)PV//W⊥wi) = cos(θi) |PV//W⊥|2wi
(17)
= cos(θi)

−1wi . (35)

On the other hand,

|PW⊥PV//W⊥|2 = |PW⊥ PV PV//W⊥|2 = PW//V⊥ |PW⊥PV |
2 PV//W⊥ .

Hence, using the previous remarks and Eq. (33) we get that, for every i ∈ Id ,

|PW⊥PV//W⊥|2wi
(34)
= PW//V⊥ |PW⊥PV |2(cos(θi)−1 vi)

(33)
= sin(θi)2

cos(θi)
PW//V⊥ vi

(35)
= tan2(θi)wi .

This completes the proof. �

Consider now the Notations 4.2 , so in particular V, W are finite dimensional. Then, using
that ‖PW//V⊥‖ = cos(θd)

−1 we get A(W,V) ≤ cos(θd)
−1 (i.e. with the notations of Remark

4.1 we get A(V,W) ≤ cos(θW ,V)
−1, see [14]). Nevertheless, the previous bound for A(W,V)

is not sharp: in case V = W then A(W,W) = 0, yet cos(θd)
−1 = 1. Next we compute the

exact value of the aliasing norm:
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Corollary 5.2. Consider the Notations 4.2. Then,

A(W,V) = tan(θd) .

Proof. By the definition of the aliasing (32) and Lemma 5.1

A(W,V) = ‖PW//V⊥ PW⊥‖ = ‖ |PW⊥PV//W⊥| ‖ = max
i∈Id

tan(θi) = tan(θd) . �

Consider the Notations 4.2. Let G = {gi}i∈Id ∈ DV(F) i.e., such that TF T ∗
G = PW//V⊥ . Then,

when applying the encoding-decoding scheme induced by the pair (F ,G) the orthogonal
complement W⊥ may also have an incidence in the sampling process; in case V 6= W, if
we sample the perturbation f + e for f ∈ W and e ∈ W⊥ then, there is a corresponding
perturbation of the coefficients T ∗

Gf given by T ∗
Ge: in this case, the squared norm (energy) of

the perturbation is ‖T ∗
Ge‖

2 = 〈SG e , e〉. Thus, we introduce the following

Definition 5.3. Let W, V ⊂ H be closed subspaces such that W⊕V⊥ = H. Let F = {fi}i∈I
and G = {gi}i∈I be frames for W and V respectively such that G ∈ DV(F). Then, we define
the aliasing relative to the oblique dual pair (F ,G), denoted A(F ,G) given by

A(F ,G) = sup
e∈W⊥\{0}

‖T ∗
G e‖

‖e‖
= sup

e∈W⊥\{0}

〈SG e , e 〉1/2

‖e‖
. △

With the notations of Definition 5.3, notice that A(F ,G) is a normalized measure of the
relative incidence of W⊥ in the analysis of perturbed signals in terms of G, in the sense that

‖T ∗
G e‖ ≤ A(F ,G) ‖e‖ , e ∈ W⊥ .

There is an alternative interpretation of the aliasing A(F ,G) that is as follows: with the
previous notations, let e ∈ W⊥: then

‖T ∗
G e‖

2 =
∑

i∈I
|〈e , gi〉|

2 =
∑

i∈I
|〈e , PW⊥gi〉|

2 = ‖T ∗
Ĝ e‖

2 ,

where Ĝ = {PW⊥gi}i∈In is considered as a finite sequence in W⊥. Therefore,

A(F ,G) = sup
e∈W⊥\{0}

(
∑

i∈I

|〈e , PW⊥gi〉|2

‖e‖2

)1/2

= sup
e∈W⊥\{0}

‖T ∗
Ĝ e‖

‖e‖

can be considered as a measure of the (normalized) residual sampling power of Ĝ = PW⊥ · G
in W⊥.

Assume further that F = {fi}i∈I is a Parseval frame forW i.e. SF = PW . Then, F#
V ∈ DV(F)

is such that SF#
V

= |PW//V⊥|2; hence in this case

A(F ,F#
V ) = sup

e∈W⊥\{0}

〈SF#
V

e , e 〉1/2

‖e‖
= sup

e∈W⊥\{0}

‖PW//V⊥e‖

‖e‖
= A(W,V) .

In opposition to A(W,V), the aliasing A(F ,G) depends on the particular choice of oblique
dual frames (F , G) considered, and not only on the subspaces V and W. Then, it is natural
to consider the problem of designing frames F and G for W and V respectively, such that
(F ,G) is an oblique dual pair and such that A(F ,G) is minimum.
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Remark 5.4. Consider the notations 4.2. Given G ∈ DV(F), it is easy to see from Definition
5.3 that

A(F ,G) = ‖T ∗
G PW⊥‖ = ‖PW⊥ SG PW⊥‖1/2 (36)

On the other hand, as a consequence of Proposition 3.4 we see that SF#
V

≤ SG =⇒

PW⊥ SF#
V

PW⊥ ≤ PW⊥ SG PW⊥ . Therefore

A(F ,F#
V ) = ‖PW⊥SF#

V

PW⊥‖1/2 ≤ ‖PW⊥SGPW⊥‖1/2 = A(F ,G) .

That is, in this case the canonical oblique dual pair (F ,F#
V ) minimizes the aliasing among

all oblique dual pairs (F ,G) for G ∈ DV(F). △

Consider the notations 4.2 and let U ∈ B(H) be a unitary operator such that U(W) = W.
As shown in previous sections, the spectral structure of S(U ·F)#

V

depends on the choice of such

a unitary. Therefore it is natural to consider the unitary operators U as before, that minimize
the aliasing A(U · F ,G) where G ∈ DV(U · F). Remark 5.4 shows that in this case we can
restrict attention to the oblique dual pairs of the form (U ·F , (U ·F)#V ) for a unitary operator
U ∈ B(H) such that U(W) = W. The following result fits into the previous analysis scheme
and links optimal solutions of this problem to optimal solutions of the problem considered
in Theorem 4.5.

Theorem 5.5. Consider the Notations 4.2. Let {xi}i∈Id ∈ Wd be an ONB of eigenvectors
for SF on W i.e., such that SF xj = λj xj for every j ∈ Id .

1. If U ∈ B(H) is a unitary operator such that U(W) = W then

A(U · F , (U · F)#V ) ≥ max
j∈Id

tan(θj)

λ
1/2
d−j+1

.

2. If U0 ∈ B(H) is a unitary operator such that U0 xj = wd−j+1 for every j ∈ Id , then

A(U0 · F , (U0 · F)#V ) = max
j∈Id

tan(θj)

λ
1/2
d−j+1

.

In particular, the lower bound in item 1. above is sharp.

Proof. Let U ∈ B(H) be a unitary operator such that U(W) = W. Then, as in the proof of
Theorem 4.5, we have that

S(U ·F)#
V

= PV//W⊥ U SF# U∗ PW//V⊥

Therefore, by Eq. (36) we deduce that

A((U · F)#V , U · F)2 = ‖PW⊥PV//W⊥ U SF# U∗ PW//V⊥PW⊥‖ . (37)

On the other hand, by Lemma 5.1, we have that

|PW⊥PV//W⊥|2wi = tan2(θi)wi for every i ∈ Id . (38)

In particular, rk(|PW⊥PV//W⊥|) = #({i ∈ Id : θi > 0})
def
= k. Let P denote the the

orthogonal projection onto N = R(|PW⊥PV//W⊥|) . Then, by the interlacing inequalities (see
[3]) we get that the eigenvalues λ(P (USF#U∗)P ) = (µi)i∈M satisfy that:

µi ≥ λ(d−k+i)(SF#) = λ−1
k−i+1 if 1 ≤ i ≤ k and µi = 0 if i ≥ k + 1 . (39)
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We apply Lidskii’s multiplicative inequality in Theorem 2.4 (to the operators acting on N ,
where |PW⊥PV//W⊥| acts as an invertible operator) and get

(
tan2(θd−k+i)

)
i∈Ik

◦ (µi)i∈Ik ≺w

(
λi(|PW⊥ PV//W⊥| (P U SF# U∗ P ) |PW⊥ PW//V⊥|)

)
i∈Ik

=
(
λi(PW⊥PV//W⊥ U SF# U∗ PW//V⊥PW⊥)

)
i∈Ik

∈ Rk ,

where the last equality follows by taking polar decomposition of PW⊥PV//W⊥ . In particular,
using the sub-majorization relation, Eq. (37) and the inequalities in (39) we see that

A(U · F , (U · F)#V )
2 ≥ max

i∈Ik

{
tan2(θd−(k−i))

λk−i+1

}
= max

i∈Id

{
tan2(θj)

λd−j+1

}
,

which shows item 1. Fix the unitary U0 ∈ B(H) of item 2. Then (U0 SF#
V

U∗
0 )wi = λ−1

d−i+1wj

for i ∈ Id . Recall from Eq. (38) that |PW⊥PV//W⊥|wi = tan(θi)wi for i ∈ Id . Then

λ
(
|PW⊥ PV//W⊥|U0 SF# U∗

0 |PW⊥ PW//V⊥|
)
=

((
tan2(θj)

λd−j+1

)↓

j∈Id
, 0|M|−d

)
.

This shows that canonical oblique dual pair corresponding to U0 · F attains the minimal
aliasing. �

Remark 5.6. Consider the Notations 4.2. If G ∈ DV(F) then the compression

(SG)W⊥ = PW⊥SG |
W⊥

∈ B(W⊥)+

of SG to W⊥ is a (operator valued) measure of the incidence of W⊥ in the encoding-decoding
scheme based on the oblique dual pair (F ,G). By Eq. (36), it follows that A(F ,G) =
‖(SG)W⊥‖1/2, where ‖T‖ stands for the operator norm of T ∈ B(W⊥). We can consider
other (natural) scalar valued measures of the form

Ah(F ,G) = tr h((SG)W⊥) ,

for h ∈ Conv(R≥0) non-decreasing and such that h(0) = 0 (which is well defined since (SG)W⊥

is a finite rank positive operator and h(0) = 0). A careful inspection of the proof of Theorem
5.5 shows that, with the notations of that result,

Ah(U0 · F , (U0 · F)#V ) ≤ Ah(U · F , (U · F)#V )

for every unitary operator U ∈ B(H) such that U(W) = W, i.e. that the rigid rotation U0

has several other optimal properties. △
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Inc., Boston, MA, 2003.

[8] O. Christensen, Y.C. Eldar, Oblique dual frames and shift-invariant spaces. Appl. Comput. Harmon. Anal. 17 (2004), no.
1, 48-68.

[9] O. Christensen, Y.C. Eldar, Characterization of oblique dual frame pairs. EURASIP J. Appl. Signal Process. (2006), 1-11.

[10] G. Corach, J. Giribet. Oblique projections and sampling problems. Integral Equations Operator Theory 70 (2011), no. 3,
307-322.

[11] G. Corach, A. Maestripieri, Polar decomposition of oblique projections. Linear Algebra Appl. 433 (2010), no. 3, 511-519.

[12] F. Deutsch, The angle between subspaces of a Hilbert space. Approximation theory, wavelets and applications (Maratea,
1994), 107-130, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 454, Kluwer Acad. Publ., Dordrecht, 1995.

[13] T.G. Dvorkind, Y.C. Eldar, Robust and Consistent Sampling. IEEE Signal Process. Lett. 16(9) (2009), 739-742.

[14] Y.C. Eldar, Sampling with arbitrary sampling and reconstruction spaces and oblique dual frame vectors. J. Fourier Anal.
Appl. 9 (2003), no. 1, 77-96.

[15] Y.C. Eldar, T. Werther, General framework for consistent sampling in Hilbert spaces. Int. J. Wavelets Multiresolut. Inf.
Process. 3 (2005), no. 4, 497-509.

[16] M. Fickus, D. G. Mixon and M. J. Poteet, Frame completions for optimally robust reconstruction, Proceedings of SPIE,
8138: 81380Q/1-8 (2011).

[17] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed., Johns Hopkins University Press, Baltimore, MD, 1996.

[18] D. Han, Frame representations and Parseval duals with applications to Gabor frames. Trans. Amer. Math. Soc. 360 (2008),
no. 6, 3307-3326.

[19] A.A. Hemmat, J.P. Gabardo. The uniqueness of shift-generated duals for frames in shift-invariant subspaces. J. Fourier
Anal. Appl. 13 (2007), no. 5, 589-606.

[20] A.A. Hemmat, J.P. Gabardo, Properties of oblique dual frames in shift-invariant systems. J. Math. Anal. Appl. 356 (2009),
no. 1, 346-354.

[21] A.J.E.M. Janssen, The Zak transform and sampling theorems for wavelet subspaces, IEEE Trans. Signal Processing, 41
(1993), 3360-3364.

[22] A.V. Knyazev, M.E. Argentati, Principal angles between subspaces in an A-based scalar product: algorithms and pertur-
bation estimates. SIAM J. Sci. Comput. 23 (2002), no. 6, 2008-2040.

[23] P. Massey, M. Ruiz, Minimization of convex functionals over frame operators. Adv. Comput. Math. 32 (2010), no. 2,
131-153.

[24] P. Massey, M. Ruiz , D. Stojanoff, Duality in reconstruction systems. Linear Algebra Appl. 436 (2012), no. 3, 447-464.

[25] P. Massey, M. Ruiz , D. Stojanoff, Optimal dual frames and frame completions for majorization. Appl. Comput. Harmon.
Anal. 34 (2013), no. 2, 201-223.

[26] P. Massey, M. Ruiz , D. Stojanoff, Multiplicative Lidskii’s inequalities and optimal perturbations of frames (submitted).

[27] M. J. Poteet, Parametrizing finite frames and optimal frame completions, Doctoral thesis, Graduate School of Engineering
and Management, Air Force Institute of Technology, Air University.

[28] B. Simon, Trace ideals and their applications. Second edition. Mathematical Surveys and Monographs, 120. American
Mathematical Society, Providence, RI, 2005.

[29] M. Unser, A. Aldroubi, A general sampling theory for nonideal acquisition devices, IEEE Trans Signal Processing, vol. 42
(1994) no. 11, 2915-2925.

23


	1 Introduction
	2 Preliminaries
	2.1 Oblique dual frames and convex potentials
	2.2 (Log-)majorization and convex functions

	3 Spectral structure and optimal oblique duals
	3.1 Spectral structure of oblique duals
	3.2 Optimal oblique duals with norm restrictions

	4 Optimal (V,W)-oblique dual pairs with prescribed parameters
	4.1 Relative geometry between finite dimensional subspaces
	4.2 Optimal dual pairs by rigid rotations

	5 Aliasing in oblique duality

