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Objectives: Antifungal triazole derivatives have been studied as possible alternatives for the treatment of
Chagas’ disease. Voriconazole has demonstrated in vitro activity against Trypanosoma cruzi, but its efficacy
in vivo has not yet been tested. We aimed to determine the effect of voriconazole in a murine model of
acute T. cruzi infection.

Methods: Treatment efficacy was evaluated by comparing parasitaemia, mortality and organ involvement
(by histological examination) of infected mice.

Results: Treatment with voriconazole significantly lowered parasitaemia and mortality compared with controls,
reduced the percentage of mice with amastigote nests in heart and skeletal muscle and moderately decreased
myocardial inflammation.

Conclusions: Our findings support the potential of voriconazole for the treatment of acute Chagas’ disease and
motivate future animal studies using varying doses and treatment schemes. Further evaluation of voriconazole
for clinical use in human Chagas’ patients is warranted.
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Introduction
Chagas’ disease, caused by the protozoan parasite Trypanosoma
cruzi, constitutes an important public health problem in Latin
America.1,2 In spite of the large number of infected patients,
current treatment options are limited to two drugs: benznidazole
and nifurtimox. However, treatment in many Latin American
countries is largely dependent on either benznidazole or nifurti-
mox, but rarely both, due to the erratic availability of these com-
pounds.3 Both drugs have significant side effects,4 especially in
adults, and are not particularly efficacious in the chronic stage
of the infection in adults. In this context, there is considerable
need for new compounds to improve the chemotherapy of
Chagas’ disease.

Novel antifungal triazole derivatives, originally developed for
the treatment of invasive fungal infections, have arisen as poten-
tial alternative treatments for Chagas’ disease. Azoles inhibit
T. cruzi ergosterol synthesis, which is fundamental for parasite
growth and survival, and have pharmacokinetic properties

suitable for the treatment of this disseminated infection. In
this report we evaluate the in vivo trypanocidal activity of vori-
conazole, a potent triazole antifungal agent with wide-spectrum
activity already used in humans for the treatment of systemic
mycoses, in a murine model of acute T. cruzi infection by deter-
mining its impact on parasitaemia, mortality and histological
condition.

Methods

Experimental animals
Inbred 2-month-old female BALB/c mice were purchased from Central
Bioterium (Veterinary Sciences Faculty, University of Buenos Aires, Argen-
tina) and housed in the bioterium at Ricardo Gutiérrez Children’s Hospital
(Buenos Aires, Argentina). Procedures used for housing and handling
animals were in accordance with the National Research Council’s Guide
for the Care and Use of Laboratory Animals.5 Protocols were approved
by the Ricardo Gutiérrez Children’s Hospital’s Internal Ethics and Teaching
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Committees. Animals were kept in plastic cages (four per cage) with
commercial rodent diet (Ganave Rata Ratónw) and water available ad
libitum, in controlled temperature and light conditions (23+18C and
cycles of 12 h in the dark and 12 h in the light, respectively).

Infection
Mice were infected by intraperitoneal injection of 500 Tulahuén strain
trypomastigotes of T. cruzi (routinely maintained by serial passages in
BALB/c mice). After infection was established, at 10 days post-infection
(pi) mice with detectable parasitaemia were randomly divided into the
following groups: voriconazole treatment (n¼8), non-treated (NT) con-
trols (n¼10) and benznidazole treatment (n¼8).

Drugs and treatment schedules
Voriconazole (pure product provided by Pfizer) was dissolved in a 4%
polyethylene glycol 400 solution and administered at 40 mg per kg of
body weight, once daily for 30 days. Benznidazole (Radanilw, Roche)
was suspended in a 2% solution of carboxymethylcellulose and given
at 100 mg per kg of body weight, once daily for 20 days. Treatment
was administered by 150 mL oral gavage beginning immediately upon
onset of parasitaemia (10 days pi) in all animals. The doses, length of
treatment and route of administration were chosen based on published
data.6 – 8

Evaluation of treatment response
Parasitaemia was evaluated 3 days each week following a modified
Pizzi-Brener method9 in which 5 mL of tail vein blood was compressed
between a glass slide and an 18×18 mm coverslip and examined micro-
scopically at ×400 magnification. The number of parasites per mL of
blood was determined by counting trypomastigotes in 50 fields and
then multiplying that number by a conversion factor to express the
final result in terms of 104 trypomastigotes/mL.10 Body weight, rectal
temperature and clinical condition, including physical appearance and
behaviour metrics based on previously established parameters,11 were
recorded weekly. Mortality was recorded daily.

Histology preparation and evaluation
Surviving mice were sacrificed at completion of the study (60 days pi).
Segments of heart and skeletal muscle were collected from all animals
in order to evaluate the inflammatory process and the presence of amas-
tigote nests. Viable samples were fixed in buffered 10% formaldehyde,
dehydrated and embedded in paraffin. Then, 5 mm thick sections were
stained with haematoxylin and eosin. A single-blind evaluation of the
specimens was performed by light microscopy and the parasite load
was expressed as the presence or absence of amastigote nests. The
degree of myocardial inflammation was scored as (0) absent, (1) focal,
(2) multifocal, (3) diffuse with partial wall involvement or (4) diffuse
with total wall involvement. Skeletal muscle inflammation was scored
as (0) absent, (1) focal, (2) multifocal, (3) multifocal confluent or (4)
diffuse.12,13 See Figure S1 (available as Supplementary data at JAC
Online) for illustrative histological images of amastigote nests and the
scoring regimen.

Statistical analysis
Survival curves of the three experimental groups were compared to de-
termine whether treatment led to significantly longer life spans and
decreased mortality using the Mantel–Cox log rank test and Fisher’s
exact test, respectively. Peak parasitaemia for each mouse was estab-
lished in order to compare the response of voriconazole- and

benznidazole-treated groups with that of NT controls. Because parasit-
aemia data were not normally distributed (Shapiro–Wilk test, P¼0.031
for benznidazole), we applied the non-parametric Kruskal–Wallis rank
sum test to determine whether any significant differences occurred
between the groups, followed by multiple two-sided pair-wise compari-
sons with the Wilcoxon rank sum test. Likewise, Kruskal–Wallis and Wil-
coxon rank sum tests were used to compare the weight change among
the groups at peak infection and at the end of the study. Later, these
tests, along with Fisher’s exact test, were used to see if voriconazole ad-
ministration lowered the inflammation score or the proportion of mice
with parasites in their myocardium and skeletal muscle.

Figure generation and the Mantel–Cox log rank test were performed
using GraphPad Prism (GraphPad Prism, Version 5.0a for Mac OS X, Graph-
Pad Software, San Diego, CA, USA; www.graphpad.com). All other ana-
lyses were conducted using R [R statistical language, V 2.12.0 for Mac
OS X; R Development Core Team (2010). R: A language and environment
for statistical computing. R Foundation for Statistical Computing, Vienna,
Austria. ISBN 3-900051-07-0. http://www.R-project.org]. The significance
threshold (P,0.05) of all results was adjusted post hoc to account for
multiple pair-wise comparisons using the Bonferroni correction (for pair-
wise comparison testing, P,0.017 was significant and is indicated with
an asterisk).

Results

Animal wellbeing

Throughout this study, mice treated with voriconazole displayed
few adverse side effects. Weight loss and abnormal hunched
posture were observed in two of eight animals during peak infec-
tion, followed by death. The remaining six mice lacked grooming
and had slightly depressed behaviour at peak parasitaemia;
however, the clinical condition of all these mice improved
during the course of treatment. Similarly, benznidazole was
well tolerated by mice. All eight subjects appeared physically
healthy, with shiny, well-groomed fur and alert, active behaviour.
In contrast to the treatment groups, NT mice presented with a
soiled coat, a hunched guarding posture, reduced mobility and
severely despondent behaviour and lethargic reflexes. This dete-
riorated state was accompanied with low body temperature and
weight loss, concluding with death in 9 of 10 subjects.

All mice lost weight near maximum parasitaemia (Figure 1a),
although, no statistical difference in weight change was
observed between the groups at peak infection (Kruskal–Wallis,
P¼0.208). Animals treated with voriconazole gained weight
prior to peak infection and afterwards, following a weight trajec-
tory similar to uninfected healthy mice of the same age and
sex.14 In contrast, NT and benznidazole-treated mice lost a con-
siderable amount of weight—13% and 10% of their initial body
weight at 24 days pi, respectively—and surviving mice did not
begin to recover until 46 days pi. At the end of the study,
benznidazole-treated subjects gained significantly less weight
than voriconazole-treated mice (P,0.001*).

At peak of infection, the body temperature (Figure 1b) of all
three experimental groups was below the reference range for
healthy mice. Mice receiving voriconazole continued to display
low temperature until after treatment was discontinued.
However, the temperature of benznidazole-treated subjects
promptly improved to within the normal range. Markedly
reduced temperature was observed in NT animals and only
increased to normal values in the one surviving subject.
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Parasitaemia treatment response

In our model, mice infected with the Tulahuén strain of T. cruzi
exhibited the classical pattern of parasitaemia during the acute
phase of infection (Figure 2). Trypomastigotes were detected in
all animals by 10 days pi, peaking at 26 days pi and declining
gradually to low values by 42 days pi in the surviving animals.
At 26 days pi, mean peak parasitaemia (expressed as 104 trypo-
mastigotes/mL+standard deviation) was 1275.75+781.19 for
NT mice, 238.00+195.27 for voriconazole-treated mice and
0.00+0.00 for benznidazole-treated mice. Non-parametric ana-
lysis of variance (ANOVA; Kruskal–Wallis) showed a statistically
significant difference among groups (P,0.001*). NT animals

had significantly higher parasitaemia levels than animals treated
with voriconazole (P¼0.0014*) or benznidazole (P,0.001*).
Treatment with voriconazole lowered peak parasitaemia at
26 days pi by 81%. Treatment with benznidazole proved signifi-
cantly more effective than voriconazole (P,0.001*), rendering
a 100% reduction (i.e. negative parasitaemia in all treated mice).

Mortality

Survival rates at the conclusion of the trial were 10% (1/10) for
NT mice, 75% (6/8) for mice treated with voriconazole and
100% (8/8) for mice treated with benznidazole. Voriconazole-treated
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Figure 1. (a) Percentage change in body weight of infected mice measured during the acute phase of Chagas’ infection. Initial baseline weight (0%
change) is indicated by the broken line. (b) Body temperature of mice obtained through rectal measurements. Range for normal corporal temperatures
in mice (36.5–388C) is indicated with broken lines. Error bars show standard deviations. NT mice, circles; benznidazole-treated mice, triangles;
voriconazole-treated mice, squares. The asterisk indicates the last timepoint when the number of surviving NT subjects was greater than or equal
to three (n,3 not shown).
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mice were statistically more likely to survive (P¼0.013*) and
lived significantly longer (P¼0.007*) than NT mice. Similarly, as
expected, comparison of the survival curves (Figure 3) indicates
that benznidazole treatment prolonged survival compared with
NT mice (P,0.001*) and lowered the risk of mortality
(P,0.001*). However, no statistically significant differences
could be demonstrated between the benznidazole and voricon-
azole treatment groups regarding lifespan (P¼0.144) and sur-
vival odds (P¼0.467).

Histopathology

In voriconazole-treated mice, parasites were detected in the myo-
cardium in two of eight animals (25%) and in the skeletal muscle
in three of eight animals (37.5%). The two animals that had nests
in both skeletal and myocardial tissue were the same two mice
that did not survive until study completion. Amastigote nests
were not observed in the skeletal muscle from mice treated
with benznidazole; however, one of the eight mice (12.5%) dis-
played parasites in the myocardium. In NT animals, five out of
six (83.3%) and four out of six (66.7%) were positive in the myo-
cardium and the skeletal muscle, respectively. The only NT subject
that survived was also the only animal to not have nests present
in either tissue type. There was no significant difference between
the benznidazole- and voriconazole-treated groups’ proportion
of mice containing parasites in either muscle type. Likewise,

voriconazole-treated and NT mice were not statistically different
regarding the percentage of mice with nests in heart (P¼0.103)
or skeletal (P¼0.592) muscle. After adjustment of the significance
threshold to account for multiple pair-wise comparisons,
benznidazole-treated and NT myocardial proportions were also
not significantly different (P¼0.026); however, benznidazole treat-
ment did lead to significantly fewer mice with amastigote nests
in their skeletal muscle compared with NT controls (P¼0.015*).
These non-significant P values are probably due to the small
number of viable histological samples studied, as the results illus-
trate that voriconazole reduces the number of mice with parasites
compared with NT controls.

Voriconazole- and benznidazole-treated animals displayed
myocardial inflammatory scores that ranged from 0 to 2,
whereas the NT control group had scores ranging from 0 to 3
(Figure 4). Non-parametric ANOVA (Kruskal–Wallis) showed no
statistically significant difference among the groups’ myocar-
dium inflammation scores (P¼0.236). In the skeletal muscle,
scores continued to range between 0 and 2 for benznidazole-
treated mice. However, significantly higher inflammation of the
skeletal muscle was observed in voriconazole-treated and NT
control mice compared with subjects receiving benznidazole,
with scores from 1 to 4 (P¼0.002*) and 1 to 3 (P¼0.005*),
respectively. Voriconazole treatment was not statistically more
effective than no treatment in reducing skeletal muscle inflam-
mation (P¼0.815).
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Figure 2. Parasitaemia curve of infected mice that were either NT controls (circles) or treated with voriconazole (squares) or benznidazole (triangles)
followed through 42 days pi. Error bars show standard deviations. The asterisk indicates the last timepoint when the number of surviving NT subjects
was greater than or equal to three (n,3 not shown).
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Discussion
Voriconazole was selected as a promising chemotherapeutic
agent because previous studies have demonstrated that voricon-
azole possesses in vitro activity against T. cruzi,15 and the clinical
pharmacology and toxicity of this drug are well studied in adults
and children, with relatively few adverse events reported.16 – 18

Experimentally, several other azole derivatives have also been
tested, including posaconazole,19 ravuconazole20 and albacona-
zole.21 However, unlike voriconazole, clinical experience with
these drugs in humans is limited and the safety and pharmaco-
kinetic profiles are still not fully understood.

Even though in vitro voriconazole activity against T. cruzi is
relatively weak compared with other azole derivatives, such as
ketoconazole and posaconazole, its benign toxicity profile
allows potentially higher doses to be used to overcome this rela-
tively low potency.22 Benznidazole likewise displays weak in vitro
anti-T. cruzi activity, but is remarkably effective in vivo and the
reason for this discordance is not understood.15 Thus, we specu-
lated that voriconazole might also display high activity in an
animal model.

Although many animal models exist for Chagas’ disease, mice
were chosen as the most suitable in vivo model in this study for
several reasons. Practically, mice are economical and their
immune system has been extensively studied. In addition, an
inbred line of infected mice already exists that reproduces histo-
pathological lesions and clinical manifestations similar to the
human condition. While acute Chagas’ disease is often asymp-
tomatic and difficult to detect in other animal models, the infec-
tion with pathogenic strains in mice is evident—with high

parasitaemia and mortality—and therefore has been proposed
as a useful method to evaluate and compare the therapeutic ef-
ficacy of new compounds.23,24 The Tulahuén strain of T. cruzi was
chosen for infection because it displays a reproducible parasit-
aemia curve and is not resistant to benznidazole treatment.25

In our murine model of acute T. cruzi infection, voriconazole
treatment was well tolerated in mice, with few side effects
observed and healthy weight maintained throughout the study.
The benznidazole-treated mice gained significantly less weight
in spite of appropriate parasitological response, suggesting the
observed toxicity is drug related. Even though benznidazole is
not commonly associated with anorexia or weight loss in
humans, many patients report gastrointestinal discomfort at
the beginning of treatment.26 Therefore, voriconazole might be
a suitable alternative in patients whose digestive intolerance
causes benznidazole treatment to be suspended.

Treatment with voriconazole significantly reduced peak para-
sitaemia compared with NT mice. Additionally, significantly
increased lifespan and decreased mortality were observed in
voriconazole-treated mice compared with NT control mice. Histo-
pathological analyses show that voriconazole decreases the
proportion of mice with parasite nests present in their heart
and skeletal muscles. Results also suggest that voriconazole is
moderately effective in reducing inflammation of the myocar-
dium, but does not lessen inflammation of the skeletal muscle.
Furthermore, this experiment presented a reliable murine
model to use in the search for new trypanocidal agents, as the
results obtained with benznidazole were consistent with the
treatment response observed in humans.

Additional studies using voriconazole need to be performed
with a greater number of subjects, varying doses and different
treatment methods. One particular treatment scheme of interest
is combination benznidazole/voriconazole therapy, which has
synergic potential as the compounds act on different cellular
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targets, and could thus reduce the toxicity of benznidazole and
possibly improve chemotherapeutic success in benznidazole-re-
sistant strains of T. cruzi.27 In addition to examining the trypano-
cidal activity of voriconazole at higher doses, our future research
may attempt to improve the absorption of voriconazole, and
therefore increase effective blood concentration, by adding
grapefruit juice to the diet, as reported in other work.28 We
also plan to investigate voriconazole’s impact on chronic
Chagas’ infection and check for any toxicity caused by long-term
treatment. In conclusion, our findings illustrate the possibility of
identifying, among commercially available compounds, drugs
such as voriconazole that could improve the treatment of
Chagas’ disease.
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