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Abstract
The role of dopaminergic receptors in the control of GH release remains controversial. The dopamine 

receptor 2 (D2R) knockout mouse represents a useful model to study the participation of the D2R on 

growth and GHRH-GH regulation. These knockout mice have hyperprolactinemia and lactotrope 

hyperplasia, but unexpectedly, they are also growth retarded. In D2R knockout mice there is a sig-

nificant decrease in somatotrope population, which is paralleled by decreased GH content and out-

put from pituitary cells. The sensitivity of GHRH-induced GH and cAMP release is similar between 

genotypes, even though the response amplitude is lower in knockouts. We point to an involvement 

of D2R signaling at the hypothalamic level as dopamine did not release GH acting at the pituitary 

level, and both somatostatin and GHRH mRNA expression are altered in knockout mice. The similar-

ity of the pituitary defect in the D2R knockout mouse to that of GHRH deficient models suggests a 

probable mechanism. Loss of dopamine signaling via hypothalamic D2Rs at a critical age may cause 

inadequate GHRH secretion subsequently leading to inappropriate somatotrope lineage develop-

ment. Furthermore, GH pulsatility, which depends on a regulated temporal balance between GHRH 

and somatostatin output might be compromised in D2R knockout mice, leading to lower IGF-I, and 

growth retardation. Copyright © 2010 S. Karger AG, Basel

Dopamine is the most abundant catecholamine in the brain. Its involvement and 

importance as a neurotransmitter and neuromodulator in the regulation of different 

physiological functions in the central nervous system is well known, and deregula-

tion of the dopaminergic system has been linked with Parkinson’s disease, Tourette’s 
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syndrome, schizophrenia, attention deficit hyperactive disorder, drug addiction, obe-

sity and generation of pituitary tumors.

Dopamine exerts its action by binding to specific membrane receptors, which 

belong to the family of seven transmembrane domain G-protein-coupled receptors. 

Five distinct dopamine receptors have been isolated, characterized and subdivided 

into two subfamilies, D1- and D2-like, on the basis of their biochemical and phar-

macological properties. The D1-like subfamily comprises D1R and D5R, while the 

D2-like includes D2R, D3R and D4R. D1 receptors are coupled to stimulatory G pro-

teins, and the D2 subtype to inhibitory Gi/Go proteins. The best-described effects 

mediated by dopamine acting on D2Rs are the inhibition of the cAMP pathway and 

modulation of Ca2+ signaling [1].

In brain tissues the D2R is expressed predominantly in the caudate putamen, 

olfactory tubercle and nucleus accumbens. It is also expressed in the substantia 

nigra pars compacta and in the ventral tegmental area. These are the anatomical 

regions that give rise to long dopaminergic fibers (A10 and A9), indicating that 

the D2Rs have a presynaptic location. In contrast, D1-like receptors are exclu-

sively postsynaptic. The D2R is expressed in two isoforms (long and short), and 

mRNA analysis of the two isoforms has shown that D2R-L is the most abundantly 

expressed. Outside the brain the D2R is also localized in the retina, kidney, vascular 

system and pituitary gland.

At the pituitary level, dopamine acting on D2Rs inhibits prolactin secretion from 

lactotropes, and αMSH secretion from melanotropes. On the other hand, the role of 

dopaminergic receptors in the control of GH release remains controversial in several 

respects, i.e. the direction of action (stimulatory or inhibitory) and the species differ-

ences encountered.

Dopamine and GHRH-GH Regulation

Inhibitory as well as stimulatory effects of the amine have been reported on plasma 

levels of GH in vivo depending upon the experimental conditions used [2]. This 

may be explained by the ability of dopamine to release both GHRH and soma-

tostatin from the rat hypothalamus [3]. In particular, it has been suggested that 

dopamine receptors can mediate the stimulation by dopamine of GH, provided 

other neural inhibitory inputs to the pituitary are removed. L-DOPA stimulates 

GH secretion in vivo [2], and apomorphine a central dopamine receptor agonist 

stimulates GH secretion. However, the GH stimulatory action of L-DOPA does not 

appear to be mediated via dopamine receptors as specific blockade of these recep-

tors with antidopaminergic drugs does not alter the GH response [4, 5]. Instead, 

L-DOPA’s effects appear to depend on conversion to noradrenaline or adrenaline, 

as alpha-adrenoceptor blockade with phentolamine disrupts the GH response to 

L-DOPA [6].
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In vitro, positive as well as negative GH responses to the catecholamine have been 

described in pituitary cells [2, 7].

Dopamine in Acromegaly Treatment

On the other hand, dopamine agonists have been largely used for the treatment of 

pituitary tumors, particularly prolactinomas but also in acromegaly, and the respon-

siveness seems to depend on the expression of D2Rs on tumor cells [8].

Somatostatin Sst2A receptors and D2Rs are frequently co-expressed in adenomas 

from acromegalic patients. The additive effect of dopamine and somatostatin ago-

nists in lowering GH suggests that the combination of somatostatin and dopamine 

analogues might be useful in selected patients. Chimeric molecules that are able to 

bind to both somatostatin and dopamine receptors are being developed for the treat-

ment of acromegaly [9, 10]. The mechanism(s) by which such ligands may act are 

still unknown. One possible explanation of their increased potency could be through 

their ability to induce oligodimerization of the receptors at the cell membrane level, 

and modify, in a ligand-specific manner, the subsequent trafficking and recycling of 

the receptors [11].

In vitro experiments demonstrated that D2R immunoreactivity in adenomas from 

acromegalic patients positively correlated with the in vitro GH and PRL suppression 

by quinagolide in primary cultures from the pituitary adenomas [12]. However, D2R 

expression was not correlated with the in vivo GH response to quinagolide, suggest-

ing that the in vivo sensitivity of acromegalic patients to dopamine might be affected 

by other mechanisms, for example antiangiogenesis.

Dopamine and Growth

With regard to a possible role of the dopaminergic system in growth, it has been 

shown that GH deficient children increase their growth velocity after 6 months of 

levodopa treatment, even though the possible intervention of the adrenergic system 

was not tested [13]. On the other hand it has been described that a group of children 

with idiopathic short stature, had high frequencies of the A1 allele of the D2R, indi-

cating a polymorphism of the receptor [14].

The D2R knockout mouse represents a useful model to study the participation of 

the D2R on growth and GHRH-GH regulation. As pituitary D2Rs are mandatory for 

dopamine inhibition of prolactin synthesis and release, as well as lactotrope prolif-

eration, knockout mice have chronic hyperprolactinemia, lactotrope hyperplasia [15, 

16], and after 16 months of age highly vascularized adenomas develop, especially in 

females, but also in males [17]. Unexpectedly, these mice were also growth retarded 

evidencing an alteration in the GH-IGF-I axis [18].
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The D2R Knockout Mouse, a Dwarf Mouse

In wild-type and D2R knockout mice body weight at birth was similar, but growth 

retardation was evidenced starting on the second month of life. Growth retardation 

was especially evident in male mice, females were smaller in the first months and 

there was a growth catch up in the 3rd or 4th month. In males there was an overall 

body weight decrease of 15%.

When body growth gain was determined, it became evident that in D2R knockout 

male and female mice maximal growth retardation compared with that in wild-type 

mice, occurred during the first half of the second month of life, and thereafter ani-

mals grew normally.

Body length and the rate of skeletal maturation recapitulated the genotypic dimor-

phic pattern demonstrated for body weight (fig. 1). These results suggested that the 

D2R was involved, albeit indirectly, in body growth. A chronic treatment with recom-

binant GH in the first month of life reversed the body weight decrease, indicating that 

peripheral sensitivity to GH was maintained [unpubl. results].

Average serum GH levels in wild-type male and female mice were high during the 

first month of life and decreased to adult levels by 3 months of age. The distribution 

profile of these random GH measurements between 1 and 2 months of age revealed 
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Fig. 1. Below: Body weight, body and femur length in wild-type (WT) and D2R knockout (KO) male 

mice at 6 months of age. Average ± SEM. Modified from Diaz-Torga et al. [18]. On the right, represen-

tative photograph. * p < 0.05 vs. respective wild-type.
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a high variability, probably reflecting an exaggerated pulsatility compared with adult 

values (fig. 2). In contrast, in female and male knockout mice GH levels were not 

increased during the first months of age.

This developmental period is characterized by a low effect of the somatostatin 

inhibitory control at the pituitary level, as well as low expression of hypothalamic 

somatostatin [19, 20]. The lack of increased GH levels in the first month of life had 

long-lasting consequences, as IGF-I levels as well as IGFBP-3 were low in adult 

knockout mice, even though serum GH levels were not different between genotypes 

in adult mice (fig. 3). This was the first evidence indicating that the D2R is involved 

in GH release in the first months of life [18].

The assertion was further supported by the acute GH-lowering effect of a D2R 

antagonist (sulpiride) in 1-month-old wild-type mice [18]. A D1R antagonist was 

ineffective. The effect of sulpiride was lost as the animal matured, emphasizing the 

importance of a low somatostatin tone to permit the unfettered effect of dopamine 

on GH release.
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Fig. 2. Individual GH measurements in wild-

type (WT) and D2R male knockout mice (KO), at 

1 month of age. n = 54 and 43.
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Fig. 3. Serum GH (a), IGF-I (b) and IGF-binding protein 3 (IGFBP3) (c). Adapted from Diaz-Torga et al. 

[18]. * p < 0.05 versus respective wild-type mice.
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Even though GH levels in adult animals were not different between genotypes, 

there was a marked reduction in somatotrope number in knockouts, indicating a 

decreased somatotrope population size (fig. 4b) [21]. This result was paralleled by 

decreased pituitary GH concentration and GH secretion from pituitary cells cultured 

in vitro (fig. 4a, c).

In spite of the reduction in somatotrope cell number in knockouts, the functional 

capacity of somatotropes was not impaired, as similar dose response curve of GHRH 

induced GH release was observed in both genotypes (fig. 4d), even though GH net 

secretion was lower, in general, proportional to the low pituitary GH cell number 

[21]. Therefore, total GH response per pituitary was reduced, and this could account 

for lower IGF-I and IGFBP-3 observed in adult knockout mice [18].

This suggested that the mitotic capacity of somatotropes is very sensitive to altera-

tions in neonatal GHRH action while the maintenance of the GH biosynthetic and 

secretory processes has less sensitivity to such changes.

GHRH-R protein in pituitary membranes from knockout mice was reduced to 

46% of the level found in wild-type mice [21], a percentage which was higher than 

the reduction of somatotropes (35 %). In accordance, GHRH- induced cAMP gen-

eration was also decreased in knockouts, but the dose sensitivity was similar (fig. 

4d). Somatostatin control of basal and GHRH- or ghrelin-stimulated GH release was 

similar between genotypes, even though D2Rs and the somatostatin receptor SSTR5 

interact physically through hetero-oligomerization in neurons to create a novel recep-

tor with enhanced functional activity [11].

In order to determine if pituitary D2Rs were involved in GH release, the effect of 

dopamine was tested in cultured pituitary cells. Dopamine did not modify GH acting 

at the pituitary level either in 1-month-old or adult mice [21]. To this regard, it has 
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Fig. 4. Pituitary GH concentration (a), percentage of somatotrope cells in relation to total pituitary 

cells (b), and GH secretion from primary pituitary cultures of wild-type (WT) and D2R knockout (KO) 

mice (c). d Effective GHRH concentration (log M) which produces 50% increase in GH or cAMP in 

primary pituitary cultures of wild-type (WT) and D2R knockout (KO) mice. * p < 0.05 vs. respective 

wild-type. Adapted from Garcia-Tornadu et al. [21].
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been documented that dopamine D1Rs and not D2Rs participate in GH release at 

the pituitary level [7], and that D2Rs are found mainly in lactotropes. Therefore, an 

involvement of D2R signaling at the hypothalamic level was inferred.

GH pulsatility originates at the hypothalamic level. In rodents, males exhibit nar-

row GH pulses with a frequency of about one pulse every 3–4 h, and prolonged nadir 

values below 1–2 ng/ml. Female rats exhibit relatively broader pulses with an irregu-

lar frequency and nadir values of 5–20 ng/ml. This sexually differentiated pattern is 

determined by the complex interplay between GHRH and somatostatin [22].

As periodical sampling is very difficult in mice, an indirect parameter of GH pul-

satility has been commonly used: measurement of the major urinary proteins (MUP). 

MUPs (20 kDa) represent the major protein component of mouse urine. MUP expres-

sion requires pulsatile occupancy of liver GH receptors, and adult males secrete more 

than 3 times as much MUP as do females [23].

These proteins are synthesized in the liver, secreted through the kidneys, and 

excreted in urine in milligram quantities per milliliter. This abundant protein excre-

tion is thought to play a role in chemo-signaling between animals to coordinate social 

behavior [24].

Knockout mice had lower MUPs, and the difference could be caused by a different 

pattern of GHRH or somatostatin release and action. For example, in the lit/lit mouse, 

which has a point mutation in the GHRH-R gene, MUPs are also decreased [25].

Further evidence of a central participation of D2Rs was the decrease in hypotha-

lamic GHRH mRNA found in knockout compared to wild-type mice. This decrease 

was not simply secondary to GH deficiency or dwarfism because other transgenic 

lines with dwarfism and pituitary GH deficiency, caused by a primary somatotrope 

defect, showed the expected increase in GHRH expression [26].

Reduced levels of GHRH within the hypothalamus or GHRH action at the pitu-

itary level during a critical developmental window have a long lasting impact on body 

weight [27–29], and induce an inadequate clonal expansion of the somatotrope popu-

lation. The requirement of GHRH for the normal development of the somatotrope 

lineage is evident from studies examining the etiology of growth retardation in the 

spontaneous mutant mouse lit/lit, in which somatotropes fail to proliferate normally, 

resulting in a mature pituitary containing a limited number of GH cells [27]. Humans 

with mutations in the GHRH receptor show that defective GHRH receptor signaling 

results in profound, selective GH deficiency and dwarfism [30].

Furthermore, experimental ablation or inhibition of GHRH by chemical or immu-

nological means [31, 32] provides strong circumstantial support for the notion that 

both acute and chronic GH release is strongly dependent on the proper functioning 

of arcuate GHRH neurons.

No inactivating mutations or deletions in the GHRH gene have yet been reported 

in human subjects, but GHRH deficiency has been described in rodents as part of 

more complex phenotypes resulting from deletion of other genes, or after the expres-

sion of human GH (hGH) transgenes in central nervous system to inhibit GHRH 
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expression [33]. Recently, a report describing a targeted disruption of the GHRH 

gene has confirmed directly the requirement for GHRH for normal growth and GH 

production [34].

At birth and during the first two weeks of life there was no difference in pituitary 

GH concentration between genotypes. This is consistent with the GHRH-independent 

somatotrope development described in lit/lit mice [27], or the similar growth rate in 

mice with a partial disruption of the GHRH gene (GHRH-M2) mice during the first 

weeks [35], and data from animals which overexpress hGH reporter gene driven by 

a potent promoter, in which the effect of excess GH is only apparent after 3 weeks 

of age [36]. Furthermore, congenital absence of the human pituitary gland does not 

result in abnormal birth or newborn weight [37], indicating that fetal and early post-

natal development may occur independently of GH. But the requirement of GHRH 

for the normal development of the somatotrope lineage after birth has been clearly 

demonstrated as exemplified above.

On the other hand, hypothalamic somatostatin mRNA was increased in knockout 

mice. As D2Rs are inhibitory, the primary effect of disruption of D2Rs may be the lack 

of dopamine inhibition of somatostatin neurons. In this regard, it has been described 

that dopamine neurons in the periventricular nucleus are close to somatostatin neu-

rons [38]. The decrease in hypothalamic GHRH content observed in knockout mice 

might result from the increase in somatostatin, as it has been shown that somatostatin 

neurons innervate GHRH neurons, and decrease GHRH expression [39].

In line with our findings, it has been described that neonatal administration of 

octreotide, a long-lasting somatostatin analogue decreases growth rate, hypothalamic 

GHRH, and sexual differentiation of GH pulsatilily [40]. Even though the number of 

arcuate GHRH mRNA-containing neurons was not affected by the octreotide treat-

ment, GHRH mRNA levels per neuron were decreased by 30%, and median emi-

nence GHRH stores by 50%.

Is There Any Clinical Significance to Our Findings?

With regard to a possible role of the dopaminergic system in growth, it has been shown 

that a group of children with idiopathic short stature, had high frequencies of the A1 

allele of the D2R, indicating a polymorphism of the receptor. The alterations in the dop-

aminergic system encountered were a low binding capacity for dopamine and reduced 

dopaminergic function [41]. In these children there was a mild GH deficiency, decreased 

nocturnal GH secretion, slightly retarded bone maturation, and low blood levels of IGF-

I. Therefore D2Rs might participate in some cases of idiopathic short stature.

On the other hand, D2Rs may be involved in altered hormone secretion in chronic 

treatment with antidopaminergic drugs. In this regard, it has been described that dur-

ing neuroleptic treatment of schizophrenic patients GH nocturnal rise is blunted, and 

that this effect is related to the D2R-binding capacity of neuroleptics used [42].
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