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a simpler quantitative assessment of soil productivity related 
to soil suitability for crop root growth in the Corn Belt based 
on the work of Neill (1979). "e two indices can be combined 
and called the Kiniry–Pierce soil productivity index. "e soil 
environment was described in terms of su#ciency for root 
growth as in$uenced by %ve variables: soil available water storage 
capacity (SAWSC), aeration, bulk density, pH, and electrical 
conductivity. According to this multiplicative approach, any 
variable could be limiting, and the method is $exible in allowing 
modi%cations of the su#ciency factors. Several modi%ed versions 
exist in which model statements were altered or new ones 
included to account for local soil characteristics (Rijsberman 
and Wolman, 1985).

Deductive productivity indices are generated using 
information from empirical models or process-based models to 
estimate crop yield and are therefore directly validated against 
yield data (Huddleston, 1984). Empirical models attempt 
to determine functional relationships of soil, climate, and 
management factors with yield using either existing or specially 
designed agronomic experiments (Jame and Cutforth, 1996). 
When the necessary data are available, these models o&er a 
reliable method for investigating crop response to environmental 
conditions and are relatively simple to develop. Examples of 
deductive soil productivity indices based on empirical approaches 
could be found for corn (Zea mays L.) and soybean [Glycine max 
(L.) Merr.] in Illinois (García-Paredes et al., 2000), for soybean 
in Mexico (Yang et al., 2003), and for sorghum [Sorghum bicolor 
(L.) Moench] in Australia (Potgieter et al., 2005). Process-based 
models are built using mathematical equations to quantitatively 
model the interactions between environmental and crop factors 
(Sinclair and Seligman, 1996). "e main limiting factor for 
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Soil productivity can be de%ned as the capacity of a 
soil to produce plant biomass or crop seeds (Yang et al., 

2003). To understand causal relationships with crop yield, soil 
types have been grouped and classi%ed for comparison of their 
productivity (Sarkar et al., 1966; Allgood and Gray, 1978). 
"e current reduction of soil productivity by human actions or 
natural processes has increased the need to develop methods for 
its quanti%cation (Kim et al., 2000). A soil productivity index 
represents the potential of a particular soil to generate harvest 
products in relation to the optimal yield that an ideal soil would 
have during its %rst year of cropping (Huddleston, 1984).

"e inductive approach attempted to determine soil 
productivity based solely on the inferred e&ects of various soil 
properties on yield (Huddleston, 1984). Numerical ratings were 
developed without the use of yield data, but they can a`erward 
be calibrated or evaluated with yield information for particular 
regions and crops. A multiplicative model was developed by 
the FAO (Riquier et al., 1970) that considered soil moisture, 
drainage, rooting depth, texture, base saturation and salinity, 
organic matter content, mineral exchange capacity, clay type, and 
mineral reserves. Although the methodology was information 
intensive, it was applied in some countries and for some crops, 
and good performance was obtained. More recently, Kiniry 
et al. (1983) and Pierce et al. (1983) independently developed 



their application is the high demand for information for the 
parameterization–validation procedures that may not always be 
available, especially in developing countries. Uncertainty can 
be high because this information is o!en taken from previous 
research conducted under inadequate environmental conditions 
or from expert opinion.

"e Argentine Pampas covers an area of approximately 
60 Mha, and because of its extension and yield potential it 
is considered one of the main cropping regions of the world 
(Satorre and Slafer, 1999). Wheat production is widespread 
across the region, under both humid and semiarid climates. 
Local soil productivity estimations were not developed, and 
the FAO methodology was used with soil survey information 
for assessing productivity without validation with yield data 
(Instituto Nacional de Tecnología Agropecuaria, 2013). In 
the Pampas, arti#cial neural network (ANN) models had a 
better performance for in-season prediction of wheat yield 
than common regression models (Alvarez, 2009). Arti#cial 
neural networks are empirical modeling techniques that are 
much simpler than process-based models and that have a high 
predictive quality (Özesmi et al., 2006). "is empirical method 
is based on the neuronal structure and processing of the brain, 
which is capable of learning relationships from information 
(Jorgensen and Bendoricchio, 2001). "e advantage over other 
modeling methods is that this method does not assume a prior 
structure of the data and is well suited for #tting nonlinear 
relationships (Batchelor et al., 2002).

At the regional scale of the Pampas, few empirical models 
have assessed the relation between soil properties and wheat 
yield. Lower wheat yields were detected in areas with drainage 
problems (Verón et al., 2004), and SAWSC in the upper 100 
cm of the soil pro#le showed the strongest correlation with 
yield (Alvarez, 2009). Soil organic C explained more yield 
variability under semiarid conditions (Díaz-Zorita et al., 
2002). Nevertheless, there are no studies that have analyzed the 
interaction among soil variables and the interaction of these soil 
properties with regional climate characteristics.

Our objective was to compare the performance of inductive 
productivity indices, the FAO index and the Kiniry–Pierce 
index, with the deductive approach for assessing regional soil 
productivity for wheat in the Pampas. "e hypothesis of this 
study was that deductive productivity indices are more accurate 
than inductive indices because they are directly validated 
with yield data. Di$erent empirical modeling techniques 
were compared for yield estimation for the deductive index 
development, ranging from simple blind guess methods to 
ANNs.

MATERIALS AND METHODS

Study Area

"e Argentine Pampas (located between 28 and 40 S and 
between 68 and 57 W) is a vast plain with relief that is %at or 
slightly rolling. "e natural vegetation consists of grasslands on 
which graminaceous plant species dominate. "e mean annual 
temperature ranges from 14 C in the south to 23 C in the north, 
and the mean annual rainfall varies from 200 to 1200 mm from 
west to east. Rainfed crops are widespread in the humid and 
semiarid portions of the region (with annual rainfall >500 mm), 
on well-drained soils, mainly Mollisols, formed on loess-like 

materials (Hall et al., 1992; Alvarez and Lavado, 1998). At 
present, approximately 60% of the area is under agriculture, and 
the main crops are soybean, wheat, and corn. Because Pampean 
soils are very fertile and crops were commonly rotated with 
livestock production on leguminous pastures, fertilization has 
become a common practice only since approximately 1995 
(Ministerio de Agricultura, Ganadería y Pesca, 2013) but at 
low rates (FAO, 2004). Wheat has been the most common crop 
during the last decades, but currently it is being replaced by 
soybean in many areas. Its growing cycle starts in June or July, 
depending on the sowing date, and it is harvested in December. 
"e fallow period usually runs from April to June.

For this study, we used information from more than 150 
counties in #ve provinces (Buenos Aires, Córdoba, Entre 
Ríos, La Pampa, and Santa Fe) in which wheat is an important 
constituent of rotations. Forty of these counties were removed 
from the analysis because hydromorphic soils predominated 
and the cultivated area was <30% according to seeded area 
information at the county level (Ministerio de Agricultura, 
Ganadería y Pesca, 2013). To reduce statistical noise due to 
large di$erences in county areas (of up to 30-fold), information 
was aggregated into 41 geographic units with an average area of 
1  0.5 Mha each (Fig. 1). We used the isohyet of 800 mm that 
divides the region to de#ne the humid Pampas to the east and 
the semiarid (subhumid) Pampas to the west. On average, these 
geographic units aggregated information from three counties. 
"e spatial aggregation was performed taking into account 
previously de#ned relief, type of landscape, and soil classes of 
Pampean subregions (Alvarez and Lavado, 1998). County-level 
information was aggregated up to the geographic unit level by 
applying weighted averages for each county, corrected for their 
corresponding areas.

Fig. 1. Map of the Pampean Region of Argentina and its 41 
geographical units. Darker geographical units located in the 
eastern portion correspond to the humid Pampas and lighter 
geographical units correspond to the semiarid Pampas in the 
western portion. The division is based on the annual rainfall 
isohyet of 800 mm.



Data Sources

Wheat yield data at the county scale were calculated from 
available records of annually harvested area and grain production 
from 1967 to 2006 (Ministerio de Agricultura, Ganadería y 
Pesca, 2013).

Climate records for the same period were obtained from the 
Servicio Meteorológico Nacional (www.smn.gov.ar) and the 
Instituto Nacional de Tecnología Agropecuaria (www.inta.
gob.ar). Monthly temperature and rainfall information from 
approximately 80 meteorological stations, well distributed across 
the study area and the surroundings, were used. #e number 
of meteorological stations varied from year to year. #e average 
number of stations was 80 for the 40 yr of analysis. #e year 
that had the lowest number of meteorological stations was 1967 
with 74 stations, and in 2005 the number of stations was the 
greatest, with 86 stations. Averages at the county scale were 
interpolated using the inverse distance weighting method in the 
Spatial Analyst extension of ArcGIS 9.1 (ESRI). #is method 
used information from meteorological stations in the county 
or very close to it for estimating an areal average (Zimmerman 
et al., 1999). We evaluated the method by performing point 
estimations for 30 stations spread across the Pampas. #e 
so$ware performed good estimations of temperature as 
indicated by the comparison between modeled and observed 
values (R2 > 0.90, F test P = 0.01, ordinate and slope equal to 
0 and 1, respectively, as indicated by a t-test with P = 0.05). 
Good estimations of monthly rainfall were achieved (R2 > 0.7, 
F test P = 0.01, but intercept and slope were not equal to 0 and 
1, respectively). Because the di%erence between estimated and 
observed values was small (5%), we still used the method for 
interpolation. #e wheat growing cycle was divided into three 
periods for the analysis: fallow (April–June), vegetative growing 
phase (July–September), and 'owering to maturing phase 
(October–November).

Potential evapotranspiration (PET) and kc (a crop coe*cient 
that accounts for di%erences in crop type, cultivar, and 
development stage that should be considered when assessing 
evapotranspiration) were calculated as previously described using 
estimated temperature and rainfall at the county level (Allen et 
al., 1998; Alvarez, 2009). Because no kc values were available 
for the fallow period, we assumed the same value as for the 
sowing period (i.e., 0.5). #e ratios between rainfall (R) and PET 
for the fallow and crop growing periods were calculated. #e 
photothermal quotient was estimated for the critical period of 
1 mo before crop anthesis, with variations related to the latitude 
of the geographic units. Incoming radiation was calculated 
by applying a locally developed method for atmospheric 
transmittance estimation at the county level (Alonso et al., 
2002), and a base temperature of 4.5 C was used (Magrin et al., 
1993).

Soil data from soil surveys of the provinces of Buenos Aires 
(Instituto Nacional de Tecnología Agropecuaria, 1989a), La 
Pampa (Instituto Nacional de Tecnología Agropecuaria, 1980), 
Córdoba (Instituto Nacional de Tecnología Agropecuaria, 
2003), Santa Fe (Instituto Nacional de Tecnología 
Agropecuaria, 1981, 1989b), and Entre Ríos (Instituto Nacional 
de Tecnología Agropecuaria, 1984) were used. #ese surveys 
were performed, mainly, between 1960 and 1980. More than 
1000 soil pro+le descriptions with their corresponding areas of 

in'uence were available. Soil variables taken into account were 
organic C (Nelson and Sommers, 1996), textural composition 
(Gee and Bauder, 1986), and pH (!omas, 1996) from the 
soil surface to the 100-cm depth or the upper limit of the 
petrocalcic horizon. Because these variables were described at 
di%erent depth intervals, depending on the genetic horizons, the 
variation in depth was modeled +tting di%erent functions using 
Table Curve 2D (Systat So$ware) with good results (R2 > 0.90). 
Using the +tted models for each soil variable and soil pro+le, 
the estimated values were assessed in layers of 25 cm up to the 
1-m depth or the upper limit of the petrocalcic horizon. Because 
some surveys reported soil organic C and others reported organic 
matter, a correction factor of 1.72 was applied for transforming 
organic matter to organic C (Nelson and Sommers, 1996). Data 
at the pro+le level were transformed to the cartographic scale and 
a$erward up to the county scale, taking into account the area 
of in'uence of each pro+le and cartographic unit (Alvarez and 
Lavado, 1998).

Soil organic C data published in these surveys were 40 yr 
old on average. A recent study published information at the 
county scale that resulted from a sampling performed during 
2007 to 2008 (Berhongaray et al., 2013). We therefore used 
the soil survey data for the +rst years of the study and the recent 
data for the +nal years, linearly interpolating the C content for 
intermediate years. #e SAWSC for the upper 1 m of the pro+le 
or the upper limit of the petrocalcic horizon was estimated 
using textural information and organic C content (Rawls et al., 
1982). Bulk density was estimated by the Rawls (1983) method, 
expressed on a per hectare basis and corrected by a factor of 4% 
to adjust the demonstrated overestimation of this method for 
Pampean soil density (Berhongaray et al., 2013).

Inductive Soil Productivity Indices

#e FAO methodology (Riquier et al., 1970) was used in the 
Pampas for rating soil productivity; this information is available 
in published soil surveys (Instituto Nacional de Tecnología 
Agropecuaria, 1981, 1984, 1989a, 1989b, 2003, 2013). Soil 
productivity was reported at the soil cartographic unit or county 
scale. We aggregated published data to our geographic unit 
scale taking into account the relative contribution of each value 
related to its area of in'uence. #e range of the FAO index was 
from 0 to 100, but we adapted it to range from 0 to 1 to make 
comparison with other tested productivity indices possible.

Both versions of the index developed by Neill (1979) were 
combined into a single index, called the Kiniry–Pierce index, 
to take advantage of available information. Each of the root 
response functions described in this method represents the 
fractional su*ciency (0.0–1.0) for values of each soil variable. 
#e product of all su*ciencies was considered as describing the 
fractional su*ciency of any soil layer for root growth. Electrical 
conductivity was not measured, and its su*ciency was assumed 
to be 1.0 according to Kiniry et al. (1983). Aeration and the 
su*ciency for aeration were also established at 1.0 because 
'ooding areas were discarded from this analysis. All the other 
su*ciencies were calculated for layers of 25 cm and summed 
to a depth of 1 m or the upper limit of the petrocalcic horizon. 
Results at the county scale were aggregated up to the geographic 
unit level.



We estimated the pro�le root fractions that would exist under 
ideal soil conditions with plant-determined rooting depths 
using Horn’s equation (Horn, 1971). We considered 100 cm as 
the optimal depth for wheat growth in the Pampas (Calviño 
and Sadras, 2002). !e equation predicted pro�le fractional 
depletion with depth restrictions.

!e su"ciency for SAWSC was estimated assuming that a 
value of 0.20 or larger indicated nonlimiting conditions (Kiniry 
et al., 1983).

!e bulk density su"ciency function was estimated according 
to an adaptation proposed by Udawatta and Henderson 
(2003). Clay, silt, and sand contents were regressed, using the 
equations proposed in this work for estimations of growth-
limiting, critical, and nonlimiting bulk densities for each soil 
layer. Values of 1 were assigned to bulk density values larger 
than the nonlimiting density, with a critical su"ciency of 0.83. 
A value of 0 was assigned to bulk densities greater than the 
growth-limiting threshold. Linear interpolation was applied for 
estimating intermediate values.

Su"ciency for pH per soil layer was calculated according to 
the equations of Pierce et al. (1983).

Relative su"ciencies of weather were calculated by a response 
surface model at the geographic unit scale using yearly climate 
information, with detrended yield as the dependent variable, 
according to Kiniry et al. (1983) (see below for a description 
of yield detrending). Independent variables included in the 
model were R/PET ratio for fallow, vegetative growth, and 
#owering periods and the photothermal quotient. Training and 
validation data sets (75 and 25%, respectively) were used for this 
weather su"ciency. Models were �tted with the training set and 
validated against the validation set. Values of all su"ciencies 
were multiplied for each soil layer, and layer values were summed. 
!e highest index value estimated by these models received a 
value of 1, and the results were normalized with respect to this 
value.

A modi�cation of this index was tested by adding a su"ciency 
factor for organic matter. !is su"ciency was included as an 
additive factor to the estimated inductive productivity index 
because its e$ect was not proportional to yield. Not every 
increase in soil organic matter content results in increasing 
yield (Pierce et al., 1983; Wilson et al., 1991). We followed 
the method proposed by Wilson et al. (1991) for the inclusion 
of an organic matter su"ciency factor. !e slope between 
average organic matter and yield was 0.23, indicating a 23% 
increase in yield for each 1% increase in organic matter; however, 
Wilson et al. (1991) showed that using a value near 0.25 as an 
additive factor to the Kiniry–Pierce index caused the level of 
organic matter to be too in#uential in the model. !erefore, we 
chose a slope of 0.15 as reasonable because other values for this 
su"ciency were tested without a$ecting the �nal result.

Deductive Soil Productivity Indices

Four yield-modeling techniques were tested: blind guess, 
polynomial regression, regression trees, and ANNs. !e �nal 
data set generated had 1640 data (n = 41 geographic units × 
40 yr). !e blind guess method corresponds to yield estimations 
for each geographic unit based on information on yield averages 
(Alvarez, 2009). !e estimated yield value does not account for 
any climate or soil information. !e average yield for the �rst 

30 yr of this study and the average yield of 1, 2, 3, 5, 7, or 10 yr 
chosen at random were used to estimate the yield by this method. 
!e estimated yield resulting from these combinations of years 
was validated against the yield average of the last decade of the 
analyzed period for each geographic unit. !e R2 of these linear 
regressions was used as a statistical measure of the performance 
of the tested blind guess method. !e resulting crop yield 
had a highly positive trend with time, largely resulting from 
improvements in technology, mainly the adoption of modern 
cultivars and the increased use of fertilizers; the yield increase 
with time was detrended using the yield equivalent of the year 
2006 (Lobell and Field, 2007).

Response surface models have been frequently used in the 
evaluation of agronomic experiments, with expected positive 
linear e$ects and negative quadratic e$ects (Colwell, 1994). 
Before applying polynomial regression, the normality of the 
variables was tested by the Shapiro–Wilk method. As evidence of 
normality was not found, the data were transformed by applying 
logarithms, exponentials, arcsines, powers, and �nally the Box–
Cox method (Peltier et al., 1998). Because normality was not 
attained but the variables were close to a normal distribution, 
we were restrictive with the size of the hypothesis test (P = 0.01) 
because of asymptotic arguments (Amemiya, 1985). Linear, 
quadratic, and interaction terms were incorporated in the 
models only if they were signi�cant at P = 0.01 and the whole 
model at P = 0.01 (F test). A forward stepwise method was used 
for predictor selection until the maximum R2 was attained. 
Yield was modeled using as predictors time (year), rainfall, 
temperature, potential crop evapotranspiration, the R/PET ratio, 
photothermal quotient, soil depth, clay, sand, and silt contents, 
soil organic C, and SAWSC. Climate variables were tested 
separately for fallow, vegetative, and reproductive crop stages 
and for combinations of periods. !e variance in#ation factor 
was used to check the autocolinearity between independent 
variables (Neter et al., 1990). To assess the generalization ability 
of models, these were �tted using 75% of the data, randomly 
selected (training set), and validated against the independent 
remaining 25% (validation set). A hierarchical approach was also 
used to combine independent variables for calculation of other 
variables with the purpose of including the e$ects of the variables 
in the �rst level and allowing the simpli�cation of the selected 
model (Schaap and Bouten, 1996). !e regression of estimated 
vs. observed yield, slopes, and intercepts were compared using the 
t-test in the IRENE so*ware (Fila et al., 2003).

!e regression tree approach represents a nonparametric 
statistical method used to explain the variation of a single 
numerical response variable by one or more explanatory variables 
(Digby and Kempton, 1994). Normality of variables was not a 
requisite for this technique. A tree was constructed by repeatedly 
splitting the data by a simple rule for every single explanatory 
variable (Steinberg and Colla, 1995). At each split, the data 
were partitioned into two mutually exclusive groups, each of 
which was as homogeneous as possible and provided the best 
explanation of the response variable (McKenzie and Ryan, 
1999). !e splitting procedure was then applied to each new 
group separately. Splits minimized the sums of squares within 
groups. Complex structured trees, with too many rami�cations, 
were discarded in our study to avoid overlearning (De’Ath and 
Frabricius, 2000), using the R2 as the decision criterion for 



tree selection. �e predictors tested to generate a regression 
tree model were the same as those used for the response surface 
regression !t. �e whole data set was partitioned into 75 and 
25% for training and validation, respectively, using the same sets 
as in the regression !tting. Regression trees were !tted using the 
Cubist 2.05 so"ware (Rulequest).

Feed-forward ANNs were tested as modeling methods 
for yield prediction, !tting weights by the back-propagation 
algorithm (Kaul et al., 2005) �e common network architecture 
of three layers was used: input, hidden, and output layers. Linear 
transfer functions were used from the input layer to the hidden 
layer and from the output layer to the network output, while a 
sigmoid function connected the hidden layer to the output layer 
(Lee et al., 2003). Simpli!cation of the network architecture, 
scaling methods, learning rate, and epoch size were similar to 
those described by Alvarez (2009). We aimed for the maximum 
simpli!cation of networks, reducing input variables and neurons 
in the hidden layer as much as possible without a#ecting the 
R2. Sensitivity analysis was performed to weight the e#ect of 
di#erent inputs on wheat yield (the output) by calculating a 
sensitivity ratio (Miao et al., 2006). Only predictors with a 
sensitivity ratio >1 were selected because lower values indicated 
no impact of the input variable on the network output. �e same 
predictors used for the other modeling methods were tested as 
network inputs. To avoid overlearning, the data were partitioned 
into 50% for training, 25% for testing, and 25% for validation. 
Models were adjusted with the training set, and early stopping 
of weight !tting was achieved when the R2 of the test set became 
lower than the R2 of the training set (Kleinbaum and Kupper, 
1979). �e validation data set was the same as used for the 
regressions and regression trees adjustment. Neural networks 
were !tted using Statistica Neural Networks (version 
2011, StatSo").

Model performance was compared using the R2 
and RMSE (Kobayashi and Salam, 2000). Possible 
di#erences between R2 values were tested by a speci!c 
test using Fisheŕ s Z transformation (Kleinbaum and 
Kupper, 1979). Yield-based productivity indices of the 
empirical models were calculated, assigning a value of 
1 to the maximum modeled yield and relating all other 
values to this maximum. �e selected empirical model 
for productivity index development was validated 
against the average observed yield per geographic unit 
of the independent data set. Information from !eld 
experiments located in both the humid and semiarid 
Pampas were used to validate the developed regional 
productivity at the !eld scale (Alvarez and Grigera, 
2005; Bono et al., 2010).

RESULTS

A high variability was observed in the climate and 
soil variables and wheat yield (Table 1). Rainfall was 
the climate variable that showed the largest variability 
among geographic units. In the semiarid west, rainfall 
during the crop growing season averaged 264 mm, 
while in the eastern humid Pampas, it reached a mean 
of 352 mm. As the temperature increased from south to 
north, potential evapotranspiration increased as well, 
ranging from 230 to 345 mm. �is temperature gradient 

determined a photothermal quotient gradient from south to 
north when related to incoming radiation. Soil properties also 
showed a wide range of variation. �e SAWSC contrasted deeply 
between soils of the semiarid and humid Pampas, mainly because 
of textural di#erences. Rich organic C soils from the eastern 
geographic units had approximately threefold higher C levels 
than poor organic C soils from the west. In 12 geographic units, 
no petrocalcic layer was present within the upper 100 cm of the 
soil pro!le, but in some units of the southern portion of the 
Pampas, this was the main soil-related constraint for normal crop 
root development.

Regarding the temporal variability of soil variables for the 
40 yr of this study, we assumed no signi!cant changes in soil 
texture and soil depth between past and present. Accordingly, 
we used constant SAWSC values for each geographic unit. 
Conversely, soil organic C changes were observed when 
comparing available information of the !rst vs. the last decade. 
Some soils from the semiarid Pampas gained organic C, 
while some soils located in the humid Pampas lost organic 
C, according the a previous study by Berhongaray et al. 
(2013). �ese changes were accounted for when using linear 
interpolations for the intermediate decades.

Annual wheat yield varied considerably among geographic 
units and across the 40 growing seasons. Yield increased with 
time by 56% from the start of our time series to the !nal 
analyzed years, with an average yield gain for the whole region 
of 37 kg ha–1 yr–1. In the humid eastern geographic units, yields 
were approximately 71% higher than in the semiarid western 
geographic units of the study area. Because of climatic variability, 
yield could vary up to sixfold in the same geographic unit.

Table 1. Variability of climate, soil variables, and wheat yield throughout 
the 41 geographical units in the Argentine Pampas from 1967 to 2006. 
Minimum and maximum values were calculated from the total data set 
for the 40 yr.

Variable† Min. Mean  SD Max.

‡

¶

R -



Fig. 2. (A) Spatial distribution of the inductive soil productivity index based on the FAO methodology for the geographical units 
of the Pampean Region (darker colors indicate higher productivity indices), and (B) regression between the FAO inductive soil 
productivity index and the average wheat yield during 1967 to 2006 for the geographical units. The original scale of the FAO index 
(0–100) was rescaled to 0 to 1 for comparison with other productivity indices.

Fig. 3. (A) Regression of the inductive Kiniry-Pierce soil productivity index developed by Kiniry et al. (1983) and Pierce et al. (1983) 
and (B) the adapted inductive Kiniry–Pierce soil productivity index with the inclusion of a sufficiency for organic matter vs. the 
average wheat yield during 1967 to 2006 for the geographical units.

Fig. 4. (A) Regression of average yield of the first three decades (1967–1996) vs. average yield of the last decade (1997–2006) of 
analysis; and (B) the relationship between R2, which represents the adjustment of the linear regression of average yield of the last 
decade (1997–2006) and averages generated from combinations of yield information of various numbers of years, vs. the number of 
years of yield data used (1, 2, 3, 5, 7, and 10 yr) to estimate the average yield of the last decade of analysis (1997–2006).



Climate and soil properties were poorly correlated (R2 < 0.15), 
which discarded autocorrelation problems that could arise when 
modeling. Yield was moderately correlated with time (R2 = 
0.37), but poor relationships were also found with organic C, 
SAWSC, and rainfall during the fallow and crop growing cycle 
(R2 < 0.13).

!e spatial distribution of the FAO productivity index 
across the Pampas showed that values >0.7 were obtained in six 
geographic units of the humid Pampas (Fig. 2A). !is inductive 
soil productivity approach estimated low rates for geographic 
units located in both the humid and semiarid Pampas. !e FAO 
soil productivity index ranged from 0.33 up to 0.89 in Pampean 
soils, with a relatively low correlation with average observed 
yield data (Fig. 2B). Regarding the slope of this regression, an 
increase of 0.5 up to 0.7 in this index resulted in an average 
increase of 250 kg ha–1. Similar results were obtained with the 
Kiniry–Pierce index, which ranged from 0.33 to 0.76, and its 
modi"cation, which obtained slightly higher values (ranging 
0.40–0.89). Both the original Kiniry–Pierce inductive method 
and its adaptation gave poor results when correlated with 
observed yield averages for the 41 geographic units (Fig. 3A and 
3B). !e dispersion of the linear correlation of both the original 
and the adapted Kiniry–Pierce indices with average yield was 
greater than that for the FAO productivity index. Regarding the 
slope of this index, an increase of 0.2 units (from 0.5 up to 0.7, 
for example) resulted in a yield increase of 200 kg ha–1.

!e blind guess method allowed a very good estimation of 
current wheat yield (average yield of the last decade) using past 
yield data. For example, using the average yield of the "rst three 
decades to estimate the yield of the last decade of our time series 
resulted in optimal results (R2 = 0.987) (Fig. 4A). Also, when we 
used random averages of past yield data of 1, 2, 3, 5, 7, and 10 yr 
to estimate the average yield of the last 10 yr, at least 3 to 5 yr had 
to be averaged to obtain an acceptable performance (Fig. 4B).

All three empirical modeling methods tested in this study 
allowed "tting models with a good adjustment (R2  0.528, 
RMSE  547 kg ha–1) (Fig. 5). !e generalization capacity 
of these models was good, as no signi"cant di#erences were 
detected in R2 between training and validation data sets. Slopes 
of observed vs. estimated yields were not di#erent from 1, and 
ordinates were equal to 0 in all cases (P = 0.05). Regression trees 
and ANNs were more successful in predicting wheat yields, 

attaining higher R2 values than the polynomial regression 
(P = 0.05). !e generalization capacity of both regression trees 
and ANNs was not statistically di#erent. !e regression model 
included as predictors time, R/PET ratio during fallow and 
vegetative growth, the photothermal quotient, and SAWSC, 
with an R2 = 0.528 and RMSE = 549 kg ha–1 (Fig. 5A). !e 
model predicted that yield increased with time and with 
increasing R/PET ratio, SAWSC, and photothermal quotient. 
Visual inspection of the residuals showed that the frequency 
distribution was close to the normal distribution.

!e regression tree model that best "tted yield data used 
the same predictors as polynomial regression but detected an 
additional e#ect of soil organic C (R2 = 0.577, RMSE = 547 
kg ha–1) (Fig. 5B). !e regression tree had seven rules, and the 
variable SAWSC de"ned the "rst split with a value of 92 mm. 
!e model indicated that the highest yields were obtained 
a$er 1994 in soils with a SAWSC >117 mm and soil organic C 
contents >64 Mg ha–1. !e lowest yields were attained in soils 
with a SAWSC <92 mm. When each variable was analyzed for 
its contribution to the yield tree construction (attribute usage for 
splitting), we observed that time was used 100%, SAWSC 84%, 
organic C 79%, R/PET ratio for the fallow period 74%, R/PET 
ratio for the vegetative period 71%, and photothermal quotient 
32% of the time.

!e best ANN "tted had seven neurons in the hidden layer 
and included as inputs the same predictors as the regression 
tree but also R/PET ratio during the &owering to maturing 
period (R2 = 0.614, RMSE = 548 kg ha–1) (Fig. 5C). Time had 
a positive linear relation with yield. !e R/PET ratio during 
the three periods, organic C, and SAWSC showed curvilinear 
relationships with yield. Because this empirical model based on 
an ANN approach achieved a slightly higher "t, although not 
signi"cantly, than the regression tree method, it was chosen for 
the productivity index development. !e maximum productivity 
index was attained for combinations of medium-to-high levels of 
both organic C and SAWSC.

Regarding the spatial distribution across the Pampas of this 
deductive productivity index based on the ANN approach, 
the highest productivities were observed in the humid eastern 
counties and the lowest in the counties that correspond to the 
western semiarid Pampas (Fig. 6A). Estimated productivity 
was >0.9 in approximately 17% of Pampean geographic units, 

Fig. 5. Relationship between predicted and observed wheat yield values by (A) the polynomial regression method, (B) the 
regression tree method, and (C) the artificial neural network method. For the three empirical models, the model was validated 
against an independent validation set (25% of total data set).



another 60% had productivity indices between 0.7 and 0.9, 
and 23% of the Pampean region showed low productivity, 
<0.7. Average productivity indices for the 40 yr of analysis were 
calculated for each geographic unit and correlated with the 
average observed yield data from the independent data set with 
an adjustment of R2 = 0.728 (Fig. 6B).

!e neural network model was used for exploring the 
e"ects of environmental factors on wheat yield and predicting 
productivity for combinations of inputs. !e model showed 
that SAWSC had a major impact on yield under low-rainfall 
scenarios (low average R/PET ratio), but this e"ect disappeared 
when rainfall was not limiting (Fig. 7A). It also showed 
that soil productivity depends on the positive interaction 
between SAWSC and soil organic C (Fig. 7B). !e maximum 
productivity index was achieved in soils with 70 Mg ha–1 organic 
C and SAWSC of 140 mm up to a depth of 1 m as described by 
the model.

Finally, we tested whether the developed ANN productivity 
index based at the regional scale could be used with information 
from #eld experiments (Fig. 8). We observed no signi#cant 
correlation between the estimated yield at the regional 
scale and the observed yield of #eld trials. !e average yield 
achieved by the ANN model for these climate and soil inputs 
was 2000 kg ha–1, with a minimum of 500 kg ha–1 and a 
maximum of 2900 kg ha–1, while the average observed yield was 
3400 kg ha–1, ranging from 600 to 6200 kg ha–1. !e observed 
yield of the #eld trials almost doubled the yield estimated by the 
ANN model for those speci#c locations.

DISCUSSION

Our results showed that both inductive methods tested, the 
FAO productivity index commonly applied to the Pampas for 
soil evaluation and the Kiniry–Pierce index, were not suitable 
tools for regional Pampean soil ratings for wheat. !e inclusion 
of a su$ciency factor for soil organic matter in the latter did not 

Fig. 7. (A) Productivity index based on the artificial neural network (ANN) approach for an average rainfall/potential 
evapotranspiration (R/PET) ratio during fallow, vegetative crop growth, and flowering for two soil available water storage capacity 
(SAWSC) scenarios: the soil scenario with 160-mm SAWSC up to 1-m depth represents a typical soil of the humid Pampas, while 
the soil scenario with 80-mm SAWSC represents a typical soil of the semiarid Pampas; and (B) interaction between soil organic C 
and SAWSC selected by the ANN model as soil inputs and the resulting wheat yield productivity index.

Fig. 6. (A) Spatial distribution of the deductive productivity index based on the artificial neural network (ANN) approach for the 
geographical units of the Pampean Region (darker colors indicate higher productivity indices), and (B) relationship between the 
predicted productivity index for wheat based on the ANN empirical approach and the average wheat yield during 1967 to 2006 for 
the geographical units.



greatly improve the �t with yield values (Wilson et al., 1991). 
When correlating small-grain yield in Montana with this index, 
low relationships were also found (R2 < 0.35) (Gerhart, 1989).

Yield data seem essential for adequate soil evaluation for wheat 
production in the Pampas. !e simplest blind guess method was 
a good option when yield data were available for the soil to be 
rated. Long yield records were not needed; stable results were 
attained with averages of three to �ve growing seasons. In cases 
in which detailed climate and soil information is not available, 
this kind of yield-based model should be used.

Empirical modeling allowed good wheat yield prediction at 
the regional scale using easily obtainable information under a 
very large range of conditions. !e fraction of yield variability 
not explained by the methods tested in our study (roughly 40%) 
may be accounted for by environmental factors not included 
in the ANN model. Agriculture has been a common regional 
practice for more than a century in the Pampas, but despite its 
economic and ecological importance, o"cial agencies generate 
information with great uncertainties (Paruelo et al., 2004). 
Crop yield information was available at the county scale, while 
climate and soil data were available at smaller scales, which 
makes aggregation for modeling purposes di"cult because 
information scales should be homogeneous.

In this study, we observed that when the modeling method 
was more sophisticated, more environmental e#ects (predictors 
in models) were detected and a higher proportion of yield 
variability could be explained. !e selected neural network 
model allowed analysis of the interaction among predictors and 
the development of a soil productivity index. !is index can be 
used for soil ratings for which wheat yield data are not available. 
A previous neural network model was developed in the Pampas 
for in-season wheat production forecasting that could not 
perform this job because it was �tted to a small data set (n = 100) 
that did not allow a deep analysis of interactions among soil and 
climate variables (Alvarez, 2009).

!e e#ect of time on yield can be attributed mainly to two 
factors: wheat genetic improvement (Calderini and Slafer, 1998) 
and the adoption of fertilization (Ministerio de Agricultura, 
Ganadería y Pesca, 2013). In our data set, the fertilizer rate was 
closely correlated with time (data not presented). Consequently, 
we could not include this management variable as a predictor for 
modeling and instead used the variable time as a partial surrogate 
for this management improvement (Lobell et al., 2005).

Better �ts were attained when the R/PET ratio was calculated 
separately during the fallow, vegetative, and crop $owering to 
maturity phases than if all three periods were combined into one 
or two periods (data not presented). !is result may be attributed 
to the importance of soil water content at sowing on crop yield, 
which has already been quanti�ed in on-farm experiments 
in the semiarid Pampas (Bono et al., 2010). !e e#ect of soil 
water content during fallow on yield was included in the R/
PET ratio for this period. !e same occurred for the other crop 
cycle periods because the impact of water availability on growth 
depends on the crop growth stage (Brisson et al., 2001).

!e SAWSC in Pampean soils depends mainly on soil texture 
and depth and only to a minimum extent (2%) on soil organic 
matter content (De Paepe and Alvarez, 2012). In the Pampas, 
as in other cultivated areas, a strong in$uence of SAWSC on 
crop yield has been observed. For example, in Australia, linear 
relationships have been observed between SAWSC and wheat 
yield up to a threshold of 65 mm (Lawes et al., 2009), yield 
regulation by SAWSC was described in France (Wassenaar et 
al., 1999), and the geographic patterns of SAWSC have been 
determined in the United States because of their importance on 
productivity (Kern, 1995). Determining SAWSC was necessary 
for the development of models that help understand the soil 
in$uence on yield under varying climate and soil conditions 
throughout the Pampas.

Organic matter has a positive in$uence on wheat yield; this 
might be a possible consequence of its function as a nutrient 
source. In the Pampas, it was demonstrated that at the time of 
wheat sowing, NO3 levels were higher in C-rich soils (Alvarez 
et al., 2002) and as organic matter increased, the capacity of 
the soils to mineralize N during wheat growing cycle increased 
(Alvarez and Steinbach, 2011). As we observed at the regional 
scale for the Pampas, signi�cant relationships of soil organic C 
and crop yield were established in other studies from other parts 
of the world (García-Paredes et al., 2000); however, this relation 
was not established in all regions (Jiang and "elen, 2004), and 
this could be associated with soil C gradients and management 
conditions (low or high fertilizer consumption).

When analyzing the impact of di#erent soil scenarios on 
wheat yield, as predicted by the ANN model output, SAWSC 
clearly determined higher productivity in areas with �ne- to 
medium-textured soils. With this empirical model, we were able 
to analyze the interaction between soil variables for di#erent 
Pampean subregions. When the humid and semiarid Pampas 
were analyzed separately (data not shown), the interaction 
between soil organic C and SAWSC remained positive; however, 
some di#erences were observed. In the semiarid area, both soil 
variables had a greater e#ect on wheat yield than in the more 
humid portion of the region. In the semiarid geographic units, 
when soil organic C increased from 40 to 70 Mg ha–1, the 
productivity index increased from 0.3 to 0.9, whereas in the 

Fig. 8. Relationship between predicted wheat yield based 
on the artificial neural network (ANN) approach vs. the 
observed yield data from field experiments distributed along 
the Pampas and separated into humid and semiarid Pampas.



humid part this resulted in a smaller increase from 0.7 to 0.9 
(data not shown). Similarly, when SAWSC increased from 100 
to 140 mm in the semiarid Pampas, the index increased 0.5 units, 
while in the humid area this increase was only 0.2 units. !e 
optimal SAWSC value in the semiarid portion appeared to be 
170 mm up to 1-m depth, while in the humid portion this value 
appeared to be 130 mm.

Some unexpected results were observed in "ne-textured 
soils, with some decreases in predicted productivity at high 
average R/PET ratios. !is may be attributed to a confounding 
e#ect because in very humid areas (the eastern edge of the 
Pampas), in which "ne-textured soils predominate, high rainfall 
scenarios determine disease problems in wheat (Annone, 2001) 
and possible temporarily $ooding conditions. Confounding 
e#ects between environmental variables were one of the main 
problems of yield modeling and special care must be taken when 
interpreting model predictions (Bakker et al., 2005).

Upscaling the information on crop production at the site 
scale across greater areas is necessary to obtain estimates of crop 
production at aggregated regional levels (Olesen et al., 2000). 
Modeling yield estimations at the regional scale results in 
improved "ts because outliers are averaged (Bakker et al., 2005). 
We tested the generalization ability of our data aggregation 
method by developing an ANN model for yield estimation using 
county information instead of geographic unit data; we attained 
similar results to those reported here (n = 4440, R2 = 0.608, 
RMSE = 331 kg ha–1). !e climate and soil variables included in 
this county-scale model were the same as the model that upscaled 
information to the geographic unit level, with a similar impact 
on yield. Regarding regional aggregation, Easterling et al. (1998) 
noted that there seems to be a trade-o# between crop estimations 
at the regional scale gained by aggregating environmental 
variables vs. loss of statistical properties of these variables. For 
our study, this implies that the regional aggregation of yield and 
environmental variables to the geographic unit level or county 
level preserved these variables su%ciently, leading to agreement 
between the estimated and observed yields. Nevertheless, this 
study showed that using data aggregated at the geographic unit 
level with an ANN approach allowed working not only with 
averages of soil information but also with soil information that 
was related to similar landscape properties.

CONCLUSION

!e ANN approach for the development of a regional deductive 
productivity index allowed a better correlation with wheat 
yield in the Pampas than the two tested inductive approaches. 
!ese foreign inductive soil productivity indices should not be 
extrapolated to other regions or crops from which they were 
developed without yield validation. !e ANN productivity index 
showed that regional wheat production was determined by the 
positive interaction of soil organic C and SAWSC. !e regional 
productivity index model developed could not be validated with 
site-speci"c experiment information and was suited only to the 
regional scale. When only yield data are available, averages from 3 
to 5 yr are adequate for regional soil ratings of wheat productivity. 
!e principles of the ANN methodology used here as a tool for 
regional productivity estimation can be applied in other regions of 
the world and for di#erent crops.

ACKNOWLEDGMENTS

This work was supported by grants from the University of Buenos 

Aires (W617 and G033), CONICET (PIP 02608) and FONCYT 

(PID-BID 37164- 49). We thank Prof. R. Ceulemans and his research 

group in Plant Ecology at the University of Antwerp for their helpful 

suggestions and critical reading of earlier versions of this manuscript.

REFERENCES

Allen, R.G., L.S. Pereira, D. Raes, and M. Smith. 1998. Crop evapotranspiration: 
Guidelines for computing crop requirements. Irrig. Drain. Pap. 56. FAO, 
Rome.

Allgood, F.P., and F. Gray. 1978. Utilization of soil characteristics in com-
puting productivity ratings of Oklahoma soils. Soil Sci. 125:359–366. 
doi:10.1097/00010694-197806000-00004

Alonso, M., R. Rodriguez, S. Gomez, and R. Giagnoni. 2002. Un método para esti-
mar la radiación global con la amplitud térmica y la precipitación diarias. Rev. 
Fac. Agron. Vet., Univ. Buenos Aires 22:51–56.

Alvarez, R. 2009. Predicting average regional yield and production of wheat in the 
Argentine Pampas by an arti"cial neural network approach. Eur. J. Agron. 
30:70–77. doi:10.1016/j.eja.2008.07.005

Alvarez, R., C.R. Alvarez, and H. Steinbach. 2002. Association between soil 
organic matter and wheat yield in humid Pampa of Argentina. Commun. 
Soil Sci. Plant Anal. 33:749–757. doi:10.1081/CSS-120003063

Alvarez, R., and S. Grigera. 2005. Analysis of soil fertility and management e#ects 
on yields of wheat and corn in the Rolling Pampa of Argentina. J. Agron. 
Crop Sci. 191:321–329. doi:10.1111/j.1439-037X.2005.00143.x

Alvarez, R., and R.S. Lavado. 1998. Climate, organic matter and clay content rela-
tionships in the Pampa and Chaco soils, Argentina. Geoderma 83:127–141. 
doi:10.1016/S0016-7061(97)00141-9

Alvarez, R., and H.S. Steinbach. 2011. Modeling apparent nitrogen mineraliza-
tion under "eld conditions using regressions and arti"cial neural networks. 
Agron. J. 103:1159–1168. doi:10.2134/agronj2010.0254

Amemiya, T. 1985. Advanced econometrics. Harvard Univ. Press, Cambridge, 
MA.

Annone, J.G. 2001. Criterios empleados para la toma de decisiones en el uso de fun-
gicidas en trigo. Rev. Tecnol. Agropecu. 6:16–20.

Bakker, M.M., G. Govers, F. Ewert, M. Rounsevell, and R. Jones. 2005. Variability 
in regional wheat yields as a function of climate, soil and economic variables: 
Assessing the risk of confounding. Agric. Ecosyst. Environ. 110:195–209. 
doi:10.1016/j.agee.2005.04.016

Batchelor, W.D., B. Basso, and J.O. Paz. 2002. Examples of strategies to analyze spa-
tial and temporal yield variability using crop models. Eur. J. Agron. 18:141–
158. doi:10.1016/S1161-0301(02)00101-6

Berhongaray, G., R. Alvarez, J. De Paepe, C. Caride, and R. Cantet. 2013. Land 
use e#ects on soil carbon in the Argentine Pampas. Geoderma 192:97–110. 
doi:10.1016/j.geoderma.2012.07.016

Bono, A., J. De Paepe, and R. Alvarez. 2010. In-season wheat yield prediction in 
the semiarid Pampa of Argentina using arti"cial neural networks. In: A.J. 
Greco, editor, Progress in food science and technology. Vol. 1. Nova Sci. 
Publ., Hauppauge, NY. p. 133–150.

Brisson, N., E. Guevara, S. Meira, M. Maturano, and G. Coca. 2001. Response of 
"ve wheat cultivars to early drought in the Pampas. Agronomie 21:483–495. 
doi:10.1051/agro:2001139

Calderini, D.F., and G.A. Slafer. 1998. Changes in yield and yield stability in 
wheat during the 20th century. Field Crops Res. 57:335–347. doi:10.1016/
S0378-4290(98)00080-X

Calviño, P., and V. Sadras. 2002. On-farm assessment of constraints to wheat 
yield in the south-eastern Pampas. Field Crops Res. 74:1–11. doi:10.1016/
S0378-4290(01)00193-9

Colwell, J. 1994. Estimating fertilizer requirements. A quantitative approach. CAB 
Int., Wallingford, UK.

De’Ath, G., and K.E. Frabricius. 2000. Classi"cation and regression trees: A power-
ful yet simple technique for ecological data analysis. Ecology 81:3178–3192. 
doi:10.1890/0012-9658(2000)081[3178:CARTAP]2.0.CO;2

De Paepe, J., and R. Alvarez. 2012. Estimacion de la capacidad de almacenamiento 
de agua util de suelos pampeanos con informacion textural. Paper presented 
at the XIX Congreso Latinoamericano de la Ciencia del Suelo y XXII Con-
greso Argentino de la Ciencia del Suelo, Mar del Plata, Argentina. 16–17 Apr. 
2012.

Díaz-Zorita, M., G.A. Duarte, and J.H. Grove. 2002. A review of no-till systems 
and soil management for sustainable crop production in the subhumid and 
semiarid Pampas of Argentina. Soil Tillage Res. 65:1–18. doi:10.1016/
S0167-1987(01)00274-4

Digby, P., and R. Kempton. 1994. Multivariate analysis of ecological communities. 
Chapman and Hall, London.



Easterling, W.E., A. Weiss, C.J. Hays, and L.O. Mearns. 1998. Spatial scales of 
climate information for simulating wheat and maize productivity: !e 
case of the US Great Plains. Agric. For. Meteorol. 90:51–63. doi:10.1016/
S0168-1923(97)00091-9

FAO. 2004. Fertilizer use by crop in Argentina. FAO, Rome.
Fila, G., G. Bellocchi, M. Acutis, and M. Donatelli. 2003. IRENE: A so"ware 

to evaluate model performance. Eur. J. Agron. 18:369–372. doi:10.1016/
S1161-0301(02)00129-6

García-Paredes, J.D., K.R. Olson, and J.M. Lang. 2000. Predicting corn and soy-
bean productivity for Illinois soils. Agric. Syst. 64:151–170. doi:10.1016/
S0308-521X(00)00020-2

Gee, G.W., and J.W. Bauder. 1986. Particle-size analysis. In: A. Klute, editor, Meth-
ods of soil analysis. Part 1. Physical and mineralogical methods. SSSA Book 
Ser. 5. SSSA, Madison WI. p. 383–412. doi:10.2136/sssabookser5.1.2ed.c15

Gerhart, K.E.S. 1989. Evaluating the performance of the soil productivity index 
(PI) model in Cascade County, Montana. M.S. thesis. Montana State Univ., 
Bozeman.

Hall, A.J., C. Rebella, C. Guersa, and J. Culot. 1992. Field-crop systems of the Pam-
pas. In: C.J. Pearson, editor, Field crop ecosystems. Elsevier, Amsterdam.

Horn, F.W. 1971. !e prediction of amounts and depth distribution of water in a 
well-drained soil. M.S. thesis. Univ. of Missouri, Columbia.

Huddleston, J.H. 1984. Development and use of soil productivity ratings in the 
United States. Geoderma 32:297–317. doi:10.1016/0016-7061(84)90009-0

Instituto Nacional de Tecnología Agropecuaria. 1980. Inventario integrado de los 
recursos naturales de la provincia de La Pampa. INTA, Buenos Aires.

Instituto Nacional de Tecnología Agropecuaria. 1981. Mapa de suelos de la provin-
cia de Santa Fe, Parte I. NTA, Buenos Aires.

Instituto Nacional de Tecnología Agropecuaria. 1984. Suelos y erosión de la provin-
cia de Entre Ríos. INTA-EEA, Entre Ríos, Paraná, Argentina.

Instituto Nacional de Tecnología Agropecuaria. 1989a. Mapa de suelos de la pro-
vincia de Buenos Aires. INTA, Buenos Aires.

Instituto Nacional de Tecnología Agropecuaria. 1989b. Mapa de suelos de la pro-
vincia de Santa Fe, Parte II. INTA, Buenos Aires.

Instituto Nacional de Tecnología Agropecuaria, 2003. Recursos naturales de la 
Provincia de Cordoba. INTA, Buenos Aires.

Instituto Nacional de Tecnología Agropecuaria. 2013.Suelos de la República 
Argentina. INTA, Buenos Aires. www.geointa.inta.gov.ar (accessed 2 Jan. 
2013).

Jame, Y.W., and H.W. Cutforth. 1996. Crop growth models for decision support 
systems. Can. J. Plant Sci. 76:9–19. doi:10.4141/cjps96-003

Jiang, P., and K.D. !elen. 2004. E'ect of soil and topographic properties on crop 
yield in a north-central corn–soybean cropping system. Agron. J. 96:252–
258. doi:10.2134/agronj2004.0252

Jorgensen, S., and G. Bendoricchio. 2001. Fundamentals of ecological modelling. 
3rd ed. Elsevier, Amsterdam.

Kaul, M., R.L. Hill, and C. Walthall. 2005. Arti*cial neural networks for 
corn and soybean yield prediction. Agric. Syst. 85:1–18. doi:10.1016/j.
agsy.2004.07.009

Kern, J.S. 1995. Geographic patterns of soil water-holding capacity in the con-
tiguous United States. Soil Sci. Soc. Am. J. 59:1126–1133. doi:10.2136/
sssaj1995.03615995005900040026x

Kim, K., B.L. Barham, and I. Coxhead. 2000. Recovering soil productivity 
attributes from experimental data: A statistical method and an applica-
tion to soil productivity dynamics. Geoderma 96:239–259. doi:10.1016/
S0016-7061(00)00020-3

Kiniry, L., C. Scrivener, and M. Keener. 1983. A soil productivity index based upon 
predicting water depletion on root growth. Res. Bull. 1051. Missouri Agric. 
Exp. Stn., Columbia.

Kleinbaum, D.G., and L.L. Kupper. 1979. Applied regression analysis and other 
multivariable methods. Duxbury Press, North Scituate, MA.

Kobayashi, K., and M.U. Salam. 2000. Comparing simulated and measured values 
using mean squared deviation and its components. Agron. J. 92:345–352.

Lawes, R.A., Y.M. Oliver, and M.J. Robertson. 2009. Integrating the e'ects of 
climate and plant available soil water holding capacity on wheat yield. Field 
Crops Res. 113:297–305. doi:10.1016/j.fcr.2009.06.008

Lee, J.H.W., Y. Huang, M. Dickman, and A.W. Jayawardena. 2003. Neural network 
modeling of coastal algal blooms. Ecol. Modell. 159:179–201. doi:10.1016/
S0304-3800(02)00281-8

Lobell, D.B., and C. Field. 2007. Global scale climate–crop yield relation-
ships and the impacts of recent warming. Environ. Res. Lett. 2:014002. 
doi:10.1088/1748-9326/2/1/014002

Lobell, D.B., I.J. Ortiz-Monasterio, G.P. Asner, R.L. Naylor, and W.P. Falcon. 
2005. Combining *eld surveys, remote sensing, and regression trees to under-
stand yield variations in an irrigated wheat landscape. Agron. J. 97:241–249.

Magrin, G., A.J. Hall, G. Baldi, and M. Grondona. 1993. Spatial and interannual 
variations in the photothermal quotient: Implications for the potential ker-
nel number of wheat crops in Argentina. Agric. For. Meteorol. 67:29–41. 
doi:10.1016/0168-1923(93)90048-M

McKenzie, N.J., and P.J. Ryan. 1999. Spatial prediction of soil properties 
using environmental correlation. Geoderma 89:67–94. doi:10.1016/
S0016-7061(98)00137-2

Miao, Y., D. Mulla, and P. Robert. 2006. Identifying important factors in+uenc-
ing corn yield and grain quality variability using arti*cial neural networks. 
Precis. Agric. 7:117–135. doi:10.1007/s11119-006-9004-y

Ministerio de Agricultura, Ganadería y Pesca. 2013. Producción agricola y forestal. 
Ministerio de Agricultura, Ganadería y Pesca, Buenos Aires. www.minagri.
gob.ar (accessed 1 May 2013).

Neill, L. 1979. An evaluation of soil productivity based on root growth and water 
depletion. M.S. thesis. Univ. of Missouri, Columbia.

Nelson, D.W., and L.E. Sommers. 1996. Total carbon, organic carbon; and organic 
matter. In: D.L. Sparks, editor, Methods of soil analysis. Part 3. Chemical 
methods. SSSA Book Ser. 5. SSSA, Madison WI. p. 961–1010. doi:10.2136/
sssabookser5.3.c34

Neter, J., W. Wasserman, and M. Kutner. 1990. Applied linear statistical models. 
3rd rd. Irwin Publ., Burr Ridge, IL.

Olesen, J.E., P.K. Bøcher, and T. Jensen. 2000. Comparison of scales of climate and 
soil data for aggregating simulated yields of winter wheat in Denmark. Agric. 
Ecosyst. Environ. 82:213–228. doi:10.1016/S0167-8809(00)00227-9

Özesmi, S.L., C.O. Tan, and U. Özesmi. 2006. Methodological issues in building, 
training, and testing arti*cial neural networks in ecological applications. 
Ecol. Modell. 195:83–93. doi:10.1016/j.ecolmodel.2005.11.012

Paruelo, J., J.P. Guerschman, G. Baldi, and C. Di Bella. 2004. La estimacion de la 
super*cie agricola: Antecedentes y una propuesta metodologica. (In Spanish, 
summary in English.) Interciencia 29:421–427.

Peltier, M.R., C.J. Wilcox, and D.C. Sharp. 1998. Application of the Box–Cox data 
transformation to animal science experiments. J. Anim. Sci. 76:847–849.

Pierce, F., W. Larson, R. Dowdy, and W. Graham. 1983. Productivity of soils: 
Assessing long-term changes due to erosion. J. Soil Water Conserv. 38:39–44.

Potgieter, A.B., G.L. Hammer, A. Doherty, and P. de Voil. 2005. A simple regional-
scale model for forecasting sorghum yield across north-eastern Australia. 
Agric. For. Meteorol. 132:143–153. doi:10.1016/j.agrformet.2005.07.009

Rawls, W. 1983. Estimating soil bulk density from particle size anal-
ysis and organic matter content. Soil Sci. 135:123–125. 
doi:10.1097/00010694-198302000-00007

Rawls, W., D. Brakensiek, and K. Saxton. 1982. Estimation of soil water properties. 
Trans. ASAE 25:1316–1332.

Rijsberman, F.R., and M.G. Wolman. 1985. E'ect of erosion on soil productivity: 
An international comparison. J. Soil Water Conserv. 40:349–354.

Riquier, J., D. Bramao, and J. Cornet. 1970. A new system of soil appraisal in terms 
of actual and potential productivity. Mimeo AGT: TESR/70/6. FAO, Rome.

Sarkar, P.K., O.W. Bidwell, and L.F. Marcus. 1966. Selection of characteris-
tics for numerical classi*cation of soils. Soil Sci. Soc. Am. J. 30:269–272. 
doi:10.2136/sssaj1966.03615995003000020035x

Satorre, E., and G. Slafer. 1999. Wheat production systems of the Pampas. In: E. 
Satorre and G. Slafer, editors, Wheat: Ecology and physiology of yield deter-
mination. Hayworth Press, Binghamton, NY. p. 333–348.

Schaap, M.G., and W. Bouten. 1996. Modeling water retention curves of 
sandy soils using neural networks. Water Resour. Res. 32:3033–3040. 
doi:10.1029/96WR02278

Sinclair, T.R., and N.G. Seligman. 1996. Crop modeling: From infancy to matu-
rity. Agron. J. 88:698–704. doi:10.2134/agronj1996.00021962008800050
004x

Steinberg, D., and D. Colla. 1995. CART: Tree-structured non-parametric data 
analysis. Salford Systems, San Diego.

!omas, G.W. 1996. Soil pH and soil acidity. In: D.L. Sparks, editor, Methods of 
soil analysis. Part 3. Chemical methods. SSSA Book Ser. 5. SSSA, Madison 
WI. p. 475–490. doi:10.2136/sssabookser5.3.c16

Udawatta, R.P., and G.S. Henderson. 2003. Root distribution relationships to soil 
properties in Missouri oak stands: A productivity index approach. Soil Sci. 
Soc. Am. J. 67:1869–1878. doi:10.2136/sssaj2003.1869

Verón, S.R., J.M. Paruelo, and G.A. Slafer. 2004. Interannual variability of wheat 
yield in the Argentine Pampas during the 20th century. Agric. Ecosyst. Envi-
ron. 103:177–190. doi:10.1016/j.agee.2003.10.001

Wassenaar, T., P. Lagacherie, J.-P. Legros, and M.D.A. Rounsevell. 1999. Model-
ing wheat yield responses to soil and climate variability at the regional scale. 
Clim. Res. 11:209–220. doi:10.3354/cr011209

Wilson, J.P., S.P. Sandor, and G.A. Nielsen. 1991. Productivity index model modi-
*ed to estimate variability of Montana small grain yields. Soil Sci. Soc. Am. J. 
55:228–234. doi:10.2136/sssaj1991.03615995005500010039x

Yang, J., R. Hammer, A. !ompson, and R. Planchar. 2003. Predicting soybean 
yield in a dry and wet year using a soil productivity index. Plant Soil 250:175–
182. doi:10.1023/A:1022801322245

Zimmerman, D., C. Pavlik, A. Ruggles, and M. Armstrong. 1999. An experimental 
comparison of ordinary and universal kriging and inverse distance weighting. 
Math. Geol. 31:375–390. doi:10.1023/A:1007586507433


